mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-19 21:01:18 +01:00
175 lines
5.6 KiB
C
175 lines
5.6 KiB
C
|
/* mpfr_mpn_exp -- auxiliary function for mpfr_get_str and mpfr_set_str
|
||
|
|
||
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
||
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
||
|
Contributed by Alain Delplanque and Paul Zimmermann.
|
||
|
|
||
|
This file is part of the MPFR Library.
|
||
|
|
||
|
The MPFR Library is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Lesser General Public License as published by
|
||
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
The MPFR Library is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
|
License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public License
|
||
|
along with the MPFR Library; see the file COPYING.LIB. If not, write to
|
||
|
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
||
|
MA 02110-1301, USA. */
|
||
|
|
||
|
|
||
|
#define MPFR_NEED_LONGLONG_H
|
||
|
#include "mpfr-impl.h"
|
||
|
|
||
|
/* this function computes an approximation of b^e in {a, n}, with exponent
|
||
|
stored in exp_r. The computed value is rounded towards zero (truncated).
|
||
|
It returns an integer f such that the final error is bounded by 2^f ulps,
|
||
|
that is:
|
||
|
a*2^exp_r <= b^e <= 2^exp_r (a + 2^f),
|
||
|
where a represents {a, n}, i.e. the integer
|
||
|
a[0] + a[1]*B + ... + a[n-1]*B^(n-1) where B=2^BITS_PER_MP_LIMB
|
||
|
|
||
|
Return -2 if an overflow occurred in the computation of exp_r.
|
||
|
*/
|
||
|
|
||
|
long
|
||
|
mpfr_mpn_exp (mp_limb_t *a, mp_exp_t *exp_r, int b, mp_exp_t e, size_t n)
|
||
|
{
|
||
|
mp_limb_t *c, B;
|
||
|
mp_exp_t f, h;
|
||
|
int i;
|
||
|
unsigned long t; /* number of bits in e */
|
||
|
unsigned long bits;
|
||
|
size_t n1;
|
||
|
unsigned int error; /* (number - 1) of loop a^2b inexact */
|
||
|
/* error == t means no error */
|
||
|
int err_s_a2 = 0;
|
||
|
int err_s_ab = 0; /* number of error when shift A^2, AB */
|
||
|
MPFR_TMP_DECL(marker);
|
||
|
|
||
|
MPFR_ASSERTN(e > 0);
|
||
|
MPFR_ASSERTN((2 <= b) && (b <= 36));
|
||
|
|
||
|
MPFR_TMP_MARK(marker);
|
||
|
|
||
|
/* initialization of a, b, f, h */
|
||
|
|
||
|
/* normalize the base */
|
||
|
B = (mp_limb_t) b;
|
||
|
count_leading_zeros (h, B);
|
||
|
|
||
|
bits = BITS_PER_MP_LIMB - h;
|
||
|
|
||
|
B = B << h;
|
||
|
h = - h;
|
||
|
|
||
|
/* allocate space for A and set it to B */
|
||
|
c = (mp_limb_t*) MPFR_TMP_ALLOC(2 * n * BYTES_PER_MP_LIMB);
|
||
|
a [n - 1] = B;
|
||
|
MPN_ZERO (a, n - 1);
|
||
|
/* initial exponent for A: invariant is A = {a, n} * 2^f */
|
||
|
f = h - (n - 1) * BITS_PER_MP_LIMB;
|
||
|
|
||
|
/* determine number of bits in e */
|
||
|
count_leading_zeros (t, (mp_limb_t) e);
|
||
|
|
||
|
t = BITS_PER_MP_LIMB - t; /* number of bits of exponent e */
|
||
|
|
||
|
error = t; /* error <= BITS_PER_MP_LIMB */
|
||
|
|
||
|
MPN_ZERO (c, 2 * n);
|
||
|
|
||
|
for (i = t - 2; i >= 0; i--)
|
||
|
{
|
||
|
|
||
|
/* determine precision needed */
|
||
|
bits = n * BITS_PER_MP_LIMB - mpn_scan1 (a, 0);
|
||
|
n1 = (n * BITS_PER_MP_LIMB - bits) / BITS_PER_MP_LIMB;
|
||
|
|
||
|
/* square of A : {c+2n1, 2(n-n1)} = {a+n1, n-n1}^2 */
|
||
|
mpn_sqr_n (c + 2 * n1, a + n1, n - n1);
|
||
|
|
||
|
/* set {c+n, 2n1-n} to 0 : {c, n} = {a, n}^2*K^n */
|
||
|
|
||
|
/* check overflow on f */
|
||
|
if (MPFR_UNLIKELY(f < MPFR_EXP_MIN/2 || f > MPFR_EXP_MAX/2))
|
||
|
{
|
||
|
overflow:
|
||
|
MPFR_TMP_FREE(marker);
|
||
|
return -2;
|
||
|
}
|
||
|
/* FIXME: Could f = 2*f + n * BITS_PER_MP_LIMB be used? */
|
||
|
f = 2*f;
|
||
|
MPFR_SADD_OVERFLOW (f, f, n * BITS_PER_MP_LIMB,
|
||
|
mp_exp_t, mp_exp_unsigned_t,
|
||
|
MPFR_EXP_MIN, MPFR_EXP_MAX,
|
||
|
goto overflow, goto overflow);
|
||
|
if ((c[2*n - 1] & MPFR_LIMB_HIGHBIT) == 0)
|
||
|
{
|
||
|
/* shift A by one bit to the left */
|
||
|
mpn_lshift (a, c + n, n, 1);
|
||
|
a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
|
||
|
f --;
|
||
|
if (error != t)
|
||
|
err_s_a2 ++;
|
||
|
}
|
||
|
else
|
||
|
MPN_COPY (a, c + n, n);
|
||
|
|
||
|
if ((error == t) && (2 * n1 <= n) &&
|
||
|
(mpn_scan1 (c + 2 * n1, 0) < (n - 2 * n1) * BITS_PER_MP_LIMB))
|
||
|
error = i;
|
||
|
|
||
|
if (e & ((mp_exp_t) 1 << i))
|
||
|
{
|
||
|
/* multiply A by B */
|
||
|
c[2 * n - 1] = mpn_mul_1 (c + n - 1, a, n, B);
|
||
|
f += h + BITS_PER_MP_LIMB;
|
||
|
if ((c[2 * n - 1] & MPFR_LIMB_HIGHBIT) == 0)
|
||
|
{ /* shift A by one bit to the left */
|
||
|
mpn_lshift (a, c + n, n, 1);
|
||
|
a[0] |= mpn_lshift (c + n - 1, c + n - 1, 1, 1);
|
||
|
f --;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
MPN_COPY (a, c + n, n);
|
||
|
if (error != t)
|
||
|
err_s_ab ++;
|
||
|
}
|
||
|
if ((error == t) && (c[n - 1] != 0))
|
||
|
error = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MPFR_TMP_FREE(marker);
|
||
|
|
||
|
*exp_r = f;
|
||
|
|
||
|
if (error == t)
|
||
|
return -1; /* result is exact */
|
||
|
else /* error <= t-2 <= BITS_PER_MP_LIMB-2
|
||
|
err_s_ab, err_s_a2 <= t-1 */
|
||
|
{
|
||
|
/* if there are p loops after the first inexact result, with
|
||
|
j shifts in a^2 and l shifts in a*b, then the final error is
|
||
|
at most 2^(p+ceil((j+1)/2)+l+1)*ulp(res).
|
||
|
This is bounded by 2^(5/2*t-1/2) where t is the number of bits of e.
|
||
|
*/
|
||
|
error = error + err_s_ab + err_s_a2 / 2 + 3; /* <= 5t/2-1/2 */
|
||
|
#if 0
|
||
|
if ((error - 1) >= ((n * BITS_PER_MP_LIMB - 1) / 2))
|
||
|
error = n * BITS_PER_MP_LIMB; /* result is completely wrong:
|
||
|
this is very unlikely since error is
|
||
|
at most 5/2*log_2(e), and
|
||
|
n * BITS_PER_MP_LIMB is at least
|
||
|
3*log_2(e) */
|
||
|
#endif
|
||
|
return error;
|
||
|
}
|
||
|
}
|