buildtools/gcc/gmp/tests/mpn/t-sqrmod_bnm1.c

182 lines
4.8 KiB
C
Raw Normal View History

2018-03-19 15:46:45 -05:00
/* Test for sqrmod_bnm1 function.
Contributed to the GNU project by Marco Bodrato.
Copyright 2009 Free Software Foundation, Inc.
This file is part of the GNU MP Library test suite.
2018-03-19 15:46:45 -05:00
The GNU MP Library test suite is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
2018-03-19 15:46:45 -05:00
The GNU MP Library test suite is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
2018-03-19 15:46:45 -05:00
You should have received a copy of the GNU General Public License along with
the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */
2018-03-19 15:46:45 -05:00
#include <stdlib.h>
#include <stdio.h>
2018-03-19 15:46:45 -05:00
#include "gmp-impl.h"
#include "tests.h"
/* Sizes are up to 2^SIZE_LOG limbs */
#ifndef SIZE_LOG
#define SIZE_LOG 12
#endif
#ifndef COUNT
#define COUNT 3000
#endif
#define MAX_N (1L << SIZE_LOG)
#define MIN_N 1
/*
Reference function for squaring modulo B^rn-1.
The result is expected to be ZERO if and only if one of the operand
already is. Otherwise the class [0] Mod(B^rn-1) is represented by
B^rn-1. This should not be a problem if sqrmod_bnm1 is used to
combine results and obtain a natural number when one knows in
advance that the final value is less than (B^rn-1).
*/
static void
ref_sqrmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an)
{
mp_limb_t cy;
ASSERT (0 < an && an <= rn);
refmpn_mul (rp, ap, an, ap, an);
an *= 2;
if (an > rn) {
cy = mpn_add (rp, rp, rn, rp + rn, an - rn);
/* If cy == 1, then the value of rp is at most B^rn - 2, so there can
* be no overflow when adding in the carry. */
MPN_INCR_U (rp, rn, cy);
}
}
/*
Compare the result of the mpn_sqrmod_bnm1 function in the library
with the reference function above.
*/
int
main (int argc, char **argv)
{
mp_ptr ap, refp, pp, scratch;
int count = COUNT;
int test;
gmp_randstate_ptr rands;
TMP_DECL;
TMP_MARK;
TESTS_REPS (count, argv, argc);
2018-03-19 15:46:45 -05:00
tests_start ();
rands = RANDS;
ASSERT_ALWAYS (mpn_sqrmod_bnm1_next_size (MAX_N) == MAX_N);
ap = TMP_ALLOC_LIMBS (MAX_N);
refp = TMP_ALLOC_LIMBS (MAX_N * 4);
pp = 1+TMP_ALLOC_LIMBS (MAX_N + 2);
scratch
= 1+TMP_ALLOC_LIMBS (mpn_sqrmod_bnm1_itch (MAX_N, MAX_N) + 2);
for (test = 0; test < count; test++)
{
unsigned size_min;
unsigned size_range;
mp_size_t an,rn,n;
mp_size_t itch;
mp_limb_t p_before, p_after, s_before, s_after;
for (size_min = 1; (1L << size_min) < MIN_N; size_min++)
;
/* We generate an in the MIN_N <= n <= (1 << size_range). */
size_range = size_min
+ gmp_urandomm_ui (rands, SIZE_LOG + 1 - size_min);
n = MIN_N
+ gmp_urandomm_ui (rands, (1L << size_range) + 1 - MIN_N);
n = mpn_sqrmod_bnm1_next_size (n);
if (n == 1)
an = 1;
else
an = ((n+1) >> 1) + gmp_urandomm_ui (rands, (n+1) >> 1);
mpn_random2 (ap, an);
/* Sometime trigger the borderline conditions
A = -1,0,+1 Mod(B^{n/2}+1).
This only makes sense if there is at least a split, i.e. n is even. */
if ((test & 0x1f) == 1 && (n & 1) == 0) {
mp_size_t x;
MPN_COPY (ap, ap + (n >> 1), an - (n >> 1));
MPN_ZERO (ap + an - (n >> 1) , n - an);
x = (n == an) ? 0 : gmp_urandomm_ui (rands, n - an);
ap[x] += gmp_urandomm_ui (rands, 3) - 1;
}
rn = MIN(n, 2*an);
mpn_random2 (pp-1, rn + 2);
p_before = pp[-1];
p_after = pp[rn];
itch = mpn_sqrmod_bnm1_itch (n, an);
ASSERT_ALWAYS (itch <= mpn_sqrmod_bnm1_itch (MAX_N, MAX_N));
mpn_random2 (scratch-1, itch+2);
s_before = scratch[-1];
s_after = scratch[itch];
mpn_sqrmod_bnm1 ( pp, n, ap, an, scratch);
ref_sqrmod_bnm1 (refp, n, ap, an);
if (pp[-1] != p_before || pp[rn] != p_after
|| scratch[-1] != s_before || scratch[itch] != s_after
|| mpn_cmp (refp, pp, rn) != 0)
{
printf ("ERROR in test %d, an = %d, n = %d\n",
test, (int) an, (int) n);
if (pp[-1] != p_before)
{
printf ("before pp:"); mpn_dump (pp -1, 1);
printf ("keep: "); mpn_dump (&p_before, 1);
}
if (pp[rn] != p_after)
{
printf ("after pp:"); mpn_dump (pp + rn, 1);
printf ("keep: "); mpn_dump (&p_after, 1);
}
if (scratch[-1] != s_before)
{
printf ("before scratch:"); mpn_dump (scratch-1, 1);
printf ("keep: "); mpn_dump (&s_before, 1);
}
if (scratch[itch] != s_after)
{
printf ("after scratch:"); mpn_dump (scratch + itch, 1);
printf ("keep: "); mpn_dump (&s_after, 1);
}
mpn_dump (ap, an);
mpn_dump (pp, rn);
mpn_dump (refp, rn);
abort();
}
}
TMP_FREE;
tests_end ();
return 0;
}