/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include "isl_equalities.h" #include "isl_sample.h" #include "isl_tab.h" #include struct isl_basic_map *isl_basic_map_implicit_equalities( struct isl_basic_map *bmap) { struct isl_tab *tab; if (!bmap) return bmap; bmap = isl_basic_map_gauss(bmap, NULL); if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT)) return bmap; if (bmap->n_ineq <= 1) return bmap; tab = isl_tab_from_basic_map(bmap, 0); if (isl_tab_detect_implicit_equalities(tab) < 0) goto error; bmap = isl_basic_map_update_from_tab(bmap, tab); isl_tab_free(tab); bmap = isl_basic_map_gauss(bmap, NULL); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); return bmap; error: isl_tab_free(tab); isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_implicit_equalities( struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_implicit_equalities((struct isl_basic_map*)bset); } struct isl_map *isl_map_implicit_equalities(struct isl_map *map) { int i; if (!map) return map; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_implicit_equalities(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Make eq[row][col] of both bmaps equal so we can add the row * add the column to the common matrix. * Note that because of the echelon form, the columns of row row * after column col are zero. */ static void set_common_multiple( struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned row, unsigned col) { isl_int m, c; if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col])) return; isl_int_init(c); isl_int_init(m); isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]); isl_int_divexact(c, m, bset1->eq[row][col]); isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1); isl_int_divexact(c, m, bset2->eq[row][col]); isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1); isl_int_clear(c); isl_int_clear(m); } /* Delete a given equality, moving all the following equalities one up. */ static void delete_row(struct isl_basic_set *bset, unsigned row) { isl_int *t; int r; t = bset->eq[row]; bset->n_eq--; for (r = row; r < bset->n_eq; ++r) bset->eq[r] = bset->eq[r+1]; bset->eq[bset->n_eq] = t; } /* Make first row entries in column col of bset1 identical to * those of bset2, using the fact that entry bset1->eq[row][col]=a * is non-zero. Initially, these elements of bset1 are all zero. * For each row i < row, we set * A[i] = a * A[i] + B[i][col] * A[row] * B[i] = a * B[i] * so that * A[i][col] = B[i][col] = a * old(B[i][col]) */ static void construct_column( struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned row, unsigned col) { int r; isl_int a; isl_int b; unsigned total; isl_int_init(a); isl_int_init(b); total = 1 + isl_basic_set_n_dim(bset1); for (r = 0; r < row; ++r) { if (isl_int_is_zero(bset2->eq[r][col])) continue; isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]); isl_int_divexact(a, bset1->eq[row][col], b); isl_int_divexact(b, bset2->eq[r][col], b); isl_seq_combine(bset1->eq[r], a, bset1->eq[r], b, bset1->eq[row], total); isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total); } isl_int_clear(a); isl_int_clear(b); delete_row(bset1, row); } /* Make first row entries in column col of bset1 identical to * those of bset2, using only these entries of the two matrices. * Let t be the last row with different entries. * For each row i < t, we set * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t] * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t] * so that * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col]) */ static int transform_column( struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned row, unsigned col) { int i, t; isl_int a, b, g; unsigned total; for (t = row-1; t >= 0; --t) if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col])) break; if (t < 0) return 0; total = 1 + isl_basic_set_n_dim(bset1); isl_int_init(a); isl_int_init(b); isl_int_init(g); isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]); for (i = 0; i < t; ++i) { isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]); isl_int_gcd(g, a, b); isl_int_divexact(a, a, g); isl_int_divexact(g, b, g); isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t], total); isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t], total); } isl_int_clear(a); isl_int_clear(b); isl_int_clear(g); delete_row(bset1, t); delete_row(bset2, t); return 1; } /* The implementation is based on Section 5.2 of Michael Karr, * "Affine Relationships Among Variables of a Program", * except that the echelon form we use starts from the last column * and that we are dealing with integer coefficients. */ static struct isl_basic_set *affine_hull( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { unsigned total; int col; int row; if (!bset1 || !bset2) goto error; total = 1 + isl_basic_set_n_dim(bset1); row = 0; for (col = total-1; col >= 0; --col) { int is_zero1 = row >= bset1->n_eq || isl_int_is_zero(bset1->eq[row][col]); int is_zero2 = row >= bset2->n_eq || isl_int_is_zero(bset2->eq[row][col]); if (!is_zero1 && !is_zero2) { set_common_multiple(bset1, bset2, row, col); ++row; } else if (!is_zero1 && is_zero2) { construct_column(bset1, bset2, row, col); } else if (is_zero1 && !is_zero2) { construct_column(bset2, bset1, row, col); } else { if (transform_column(bset1, bset2, row, col)) --row; } } isl_assert(bset1->ctx, row == bset1->n_eq, goto error); isl_basic_set_free(bset2); bset1 = isl_basic_set_normalize_constraints(bset1); return bset1; error: isl_basic_set_free(bset1); isl_basic_set_free(bset2); return NULL; } /* Find an integer point in the set represented by "tab" * that lies outside of the equality "eq" e(x) = 0. * If "up" is true, look for a point satisfying e(x) - 1 >= 0. * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1). * The point, if found, is returned. * If no point can be found, a zero-length vector is returned. * * Before solving an ILP problem, we first check if simply * adding the normal of the constraint to one of the known * integer points in the basic set represented by "tab" * yields another point inside the basic set. * * The caller of this function ensures that the tableau is bounded or * that tab->basis and tab->n_unbounded have been set appropriately. */ static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up) { struct isl_ctx *ctx; struct isl_vec *sample = NULL; struct isl_tab_undo *snap; unsigned dim; if (!tab) return NULL; ctx = tab->mat->ctx; dim = tab->n_var; sample = isl_vec_alloc(ctx, 1 + dim); if (!sample) return NULL; isl_int_set_si(sample->el[0], 1); isl_seq_combine(sample->el + 1, ctx->one, tab->bmap->sample->el + 1, up ? ctx->one : ctx->negone, eq + 1, dim); if (isl_basic_map_contains(tab->bmap, sample)) return sample; isl_vec_free(sample); sample = NULL; snap = isl_tab_snap(tab); if (!up) isl_seq_neg(eq, eq, 1 + dim); isl_int_sub_ui(eq[0], eq[0], 1); if (isl_tab_extend_cons(tab, 1) < 0) goto error; if (isl_tab_add_ineq(tab, eq) < 0) goto error; sample = isl_tab_sample(tab); isl_int_add_ui(eq[0], eq[0], 1); if (!up) isl_seq_neg(eq, eq, 1 + dim); if (sample && isl_tab_rollback(tab, snap) < 0) goto error; return sample; error: isl_vec_free(sample); return NULL; } struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset) { int i; bset = isl_basic_set_cow(bset); if (!bset) return NULL; isl_assert(bset->ctx, bset->n_div == 0, goto error); for (i = 0; i < bset->n_eq; ++i) isl_int_set_si(bset->eq[i][0], 0); for (i = 0; i < bset->n_ineq; ++i) isl_int_set_si(bset->ineq[i][0], 0); ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT); return isl_basic_set_implicit_equalities(bset); error: isl_basic_set_free(bset); return NULL; } __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set) { int i; if (!set) return NULL; if (set->n == 0) return set; set = isl_set_remove_divs(set); set = isl_set_cow(set); if (!set) return NULL; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_recession_cone(set->p[i]); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } /* Move "sample" to a point that is one up (or down) from the original * point in dimension "pos". */ static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up) { if (up) isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1); else isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1); } /* Check if any points that are adjacent to "sample" also belong to "bset". * If so, add them to "hull" and return the updated hull. * * Before checking whether and adjacent point belongs to "bset", we first * check whether it already belongs to "hull" as this test is typically * much cheaper. */ static __isl_give isl_basic_set *add_adjacent_points( __isl_take isl_basic_set *hull, __isl_take isl_vec *sample, __isl_keep isl_basic_set *bset) { int i, up; int dim; if (!sample) goto error; dim = isl_basic_set_dim(hull, isl_dim_set); for (i = 0; i < dim; ++i) { for (up = 0; up <= 1; ++up) { int contains; isl_basic_set *point; adjacent_point(sample, i, up); contains = isl_basic_set_contains(hull, sample); if (contains < 0) goto error; if (contains) { adjacent_point(sample, i, !up); continue; } contains = isl_basic_set_contains(bset, sample); if (contains < 0) goto error; if (contains) { point = isl_basic_set_from_vec( isl_vec_copy(sample)); hull = affine_hull(hull, point); } adjacent_point(sample, i, !up); if (contains) break; } } isl_vec_free(sample); return hull; error: isl_vec_free(sample); isl_basic_set_free(hull); return NULL; } /* Extend an initial (under-)approximation of the affine hull of basic * set represented by the tableau "tab" * by looking for points that do not satisfy one of the equalities * in the current approximation and adding them to that approximation * until no such points can be found any more. * * The caller of this function ensures that "tab" is bounded or * that tab->basis and tab->n_unbounded have been set appropriately. * * "bset" may be either NULL or the basic set represented by "tab". * If "bset" is not NULL, we check for any point we find if any * of its adjacent points also belong to "bset". */ static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab, __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset) { int i, j; unsigned dim; if (!tab || !hull) goto error; dim = tab->n_var; if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0) goto error; for (i = 0; i < dim; ++i) { struct isl_vec *sample; struct isl_basic_set *point; for (j = 0; j < hull->n_eq; ++j) { sample = outside_point(tab, hull->eq[j], 1); if (!sample) goto error; if (sample->size > 0) break; isl_vec_free(sample); sample = outside_point(tab, hull->eq[j], 0); if (!sample) goto error; if (sample->size > 0) break; isl_vec_free(sample); if (isl_tab_add_eq(tab, hull->eq[j]) < 0) goto error; } if (j == hull->n_eq) break; if (tab->samples) tab = isl_tab_add_sample(tab, isl_vec_copy(sample)); if (!tab) goto error; if (bset) hull = add_adjacent_points(hull, isl_vec_copy(sample), bset); point = isl_basic_set_from_vec(sample); hull = affine_hull(hull, point); if (!hull) return NULL; } return hull; error: isl_basic_set_free(hull); return NULL; } /* Drop all constraints in bmap that involve any of the dimensions * first to first+n-1. */ static __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving( __isl_take isl_basic_map *bmap, unsigned first, unsigned n) { int i; if (n == 0) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; for (i = bmap->n_eq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) == -1) continue; isl_basic_map_drop_equality(bmap, i); } for (i = bmap->n_ineq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) == -1) continue; isl_basic_map_drop_inequality(bmap, i); } return bmap; } /* Drop all constraints in bset that involve any of the dimensions * first to first+n-1. */ __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving( __isl_take isl_basic_set *bset, unsigned first, unsigned n) { return isl_basic_map_drop_constraints_involving(bset, first, n); } /* Drop all constraints in bmap that do not involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_map *isl_basic_map_drop_constraints_not_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned dim; if (n == 0) return isl_basic_map_set_to_empty(bmap); bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; dim = isl_basic_map_dim(bmap, type); if (first + n > dim || first + n < first) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "index out of bounds", return isl_basic_map_free(bmap)); first += isl_basic_map_offset(bmap, type) - 1; for (i = bmap->n_eq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) != -1) continue; isl_basic_map_drop_equality(bmap, i); } for (i = bmap->n_ineq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) != -1) continue; isl_basic_map_drop_inequality(bmap, i); } return bmap; } /* Drop all constraints in bset that do not involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_set *isl_basic_set_drop_constraints_not_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_drop_constraints_not_involving_dims(bset, type, first, n); } /* Drop all constraints in bmap that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { unsigned dim; if (!bmap) return NULL; if (n == 0) return bmap; dim = isl_basic_map_dim(bmap, type); if (first + n > dim || first + n < first) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "index out of bounds", return isl_basic_map_free(bmap)); bmap = isl_basic_map_remove_divs_involving_dims(bmap, type, first, n); first += isl_basic_map_offset(bmap, type) - 1; return isl_basic_map_drop_constraints_involving(bmap, first, n); } /* Drop all constraints in bset that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_drop_constraints_involving_dims(bset, type, first, n); } /* Drop all constraints in map that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_map *isl_map_drop_constraints_involving_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned dim; if (!map) return NULL; if (n == 0) return map; dim = isl_map_dim(map, type); if (first + n > dim || first + n < first) isl_die(isl_map_get_ctx(map), isl_error_invalid, "index out of bounds", return isl_map_free(map)); map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_drop_constraints_involving_dims( map->p[i], type, first, n); if (!map->p[i]) return isl_map_free(map); } return map; } /* Drop all constraints in set that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_set *isl_set_drop_constraints_involving_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return isl_map_drop_constraints_involving_dims(set, type, first, n); } /* Construct an initial underapproximatino of the hull of "bset" * from "sample" and any of its adjacent points that also belong to "bset". */ static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset, __isl_take isl_vec *sample) { isl_basic_set *hull; hull = isl_basic_set_from_vec(isl_vec_copy(sample)); hull = add_adjacent_points(hull, sample, bset); return hull; } /* Look for all equalities satisfied by the integer points in bset, * which is assumed to be bounded. * * The equalities are obtained by successively looking for * a point that is affinely independent of the points found so far. * In particular, for each equality satisfied by the points so far, * we check if there is any point on a hyperplane parallel to the * corresponding hyperplane shifted by at least one (in either direction). */ static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset) { struct isl_vec *sample = NULL; struct isl_basic_set *hull; struct isl_tab *tab = NULL; unsigned dim; if (isl_basic_set_plain_is_empty(bset)) return bset; dim = isl_basic_set_n_dim(bset); if (bset->sample && bset->sample->size == 1 + dim) { int contains = isl_basic_set_contains(bset, bset->sample); if (contains < 0) goto error; if (contains) { if (dim == 0) return bset; sample = isl_vec_copy(bset->sample); } else { isl_vec_free(bset->sample); bset->sample = NULL; } } tab = isl_tab_from_basic_set(bset, 1); if (!tab) goto error; if (tab->empty) { isl_tab_free(tab); isl_vec_free(sample); return isl_basic_set_set_to_empty(bset); } if (!sample) { struct isl_tab_undo *snap; snap = isl_tab_snap(tab); sample = isl_tab_sample(tab); if (isl_tab_rollback(tab, snap) < 0) goto error; isl_vec_free(tab->bmap->sample); tab->bmap->sample = isl_vec_copy(sample); } if (!sample) goto error; if (sample->size == 0) { isl_tab_free(tab); isl_vec_free(sample); return isl_basic_set_set_to_empty(bset); } hull = initialize_hull(bset, sample); hull = extend_affine_hull(tab, hull, bset); isl_basic_set_free(bset); isl_tab_free(tab); return hull; error: isl_vec_free(sample); isl_tab_free(tab); isl_basic_set_free(bset); return NULL; } /* Given an unbounded tableau and an integer point satisfying the tableau, * construct an initial affine hull containing the recession cone * shifted to the given point. * * The unbounded directions are taken from the last rows of the basis, * which is assumed to have been initialized appropriately. */ static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab, __isl_take isl_vec *vec) { int i; int k; struct isl_basic_set *bset = NULL; struct isl_ctx *ctx; unsigned dim; if (!vec || !tab) return NULL; ctx = vec->ctx; isl_assert(ctx, vec->size != 0, goto error); bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0); if (!bset) goto error; dim = isl_basic_set_n_dim(bset) - tab->n_unbounded; for (i = 0; i < dim; ++i) { k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1, vec->size - 1); isl_seq_inner_product(bset->eq[k] + 1, vec->el +1, vec->size - 1, &bset->eq[k][0]); isl_int_neg(bset->eq[k][0], bset->eq[k][0]); } bset->sample = vec; bset = isl_basic_set_gauss(bset, NULL); return bset; error: isl_basic_set_free(bset); isl_vec_free(vec); return NULL; } /* Given a tableau of a set and a tableau of the corresponding * recession cone, detect and add all equalities to the tableau. * If the tableau is bounded, then we can simply keep the * tableau in its state after the return from extend_affine_hull. * However, if the tableau is unbounded, then * isl_tab_set_initial_basis_with_cone will add some additional * constraints to the tableau that have to be removed again. * In this case, we therefore rollback to the state before * any constraints were added and then add the equalities back in. */ struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab, struct isl_tab *tab_cone) { int j; struct isl_vec *sample; struct isl_basic_set *hull = NULL; struct isl_tab_undo *snap; if (!tab || !tab_cone) goto error; snap = isl_tab_snap(tab); isl_mat_free(tab->basis); tab->basis = NULL; isl_assert(tab->mat->ctx, tab->bmap, goto error); isl_assert(tab->mat->ctx, tab->samples, goto error); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error); if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0) goto error; sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!sample) goto error; isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size); isl_vec_free(tab->bmap->sample); tab->bmap->sample = isl_vec_copy(sample); if (tab->n_unbounded == 0) hull = isl_basic_set_from_vec(isl_vec_copy(sample)); else hull = initial_hull(tab, isl_vec_copy(sample)); for (j = tab->n_outside + 1; j < tab->n_sample; ++j) { isl_seq_cpy(sample->el, tab->samples->row[j], sample->size); hull = affine_hull(hull, isl_basic_set_from_vec(isl_vec_copy(sample))); } isl_vec_free(sample); hull = extend_affine_hull(tab, hull, NULL); if (!hull) goto error; if (tab->n_unbounded == 0) { isl_basic_set_free(hull); return tab; } if (isl_tab_rollback(tab, snap) < 0) goto error; if (hull->n_eq > tab->n_zero) { for (j = 0; j < hull->n_eq; ++j) { isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var); if (isl_tab_add_eq(tab, hull->eq[j]) < 0) goto error; } } isl_basic_set_free(hull); return tab; error: isl_basic_set_free(hull); isl_tab_free(tab); return NULL; } /* Compute the affine hull of "bset", where "cone" is the recession cone * of "bset". * * We first compute a unimodular transformation that puts the unbounded * directions in the last dimensions. In particular, we take a transformation * that maps all equalities to equalities (in HNF) on the first dimensions. * Let x be the original dimensions and y the transformed, with y_1 bounded * and y_2 unbounded. * * [ y_1 ] [ y_1 ] [ Q_1 ] * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x * * Let's call the input basic set S. We compute S' = preimage(S, U) * and drop the final dimensions including any constraints involving them. * This results in set S''. * Then we compute the affine hull A'' of S''. * Let F y_1 >= g be the constraint system of A''. In the transformed * space the y_2 are unbounded, so we can add them back without any constraints, * resulting in * * [ y_1 ] * [ F 0 ] [ y_2 ] >= g * or * [ Q_1 ] * [ F 0 ] [ Q_2 ] x >= g * or * F Q_1 x >= g * * The affine hull in the original space is then obtained as * A = preimage(A'', Q_1). */ static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset, struct isl_basic_set *cone) { unsigned total; unsigned cone_dim; struct isl_basic_set *hull; struct isl_mat *M, *U, *Q; if (!bset || !cone) goto error; total = isl_basic_set_total_dim(cone); cone_dim = total - cone->n_eq; M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total); M = isl_mat_left_hermite(M, 0, &U, &Q); if (!M) goto error; isl_mat_free(M); U = isl_mat_lin_to_aff(U); bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim, cone_dim); bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim); Q = isl_mat_lin_to_aff(Q); Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim); if (bset && bset->sample && bset->sample->size == 1 + total) bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample); hull = uset_affine_hull_bounded(bset); if (!hull) { isl_mat_free(Q); isl_mat_free(U); } else { struct isl_vec *sample = isl_vec_copy(hull->sample); U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim); if (sample && sample->size > 0) sample = isl_mat_vec_product(U, sample); else isl_mat_free(U); hull = isl_basic_set_preimage(hull, Q); if (hull) { isl_vec_free(hull->sample); hull->sample = sample; } else isl_vec_free(sample); } isl_basic_set_free(cone); return hull; error: isl_basic_set_free(bset); isl_basic_set_free(cone); return NULL; } /* Look for all equalities satisfied by the integer points in bset, * which is assumed not to have any explicit equalities. * * The equalities are obtained by successively looking for * a point that is affinely independent of the points found so far. * In particular, for each equality satisfied by the points so far, * we check if there is any point on a hyperplane parallel to the * corresponding hyperplane shifted by at least one (in either direction). * * Before looking for any outside points, we first compute the recession * cone. The directions of this recession cone will always be part * of the affine hull, so there is no need for looking for any points * in these directions. * In particular, if the recession cone is full-dimensional, then * the affine hull is simply the whole universe. */ static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset) { struct isl_basic_set *cone; if (isl_basic_set_plain_is_empty(bset)) return bset; cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); if (!cone) goto error; if (cone->n_eq == 0) { struct isl_basic_set *hull; isl_basic_set_free(cone); hull = isl_basic_set_universe_like(bset); isl_basic_set_free(bset); return hull; } if (cone->n_eq < isl_basic_set_total_dim(cone)) return affine_hull_with_cone(bset, cone); isl_basic_set_free(cone); return uset_affine_hull_bounded(bset); error: isl_basic_set_free(bset); return NULL; } /* Look for all equalities satisfied by the integer points in bmap * that are independent of the equalities already explicitly available * in bmap. * * We first remove all equalities already explicitly available, * then look for additional equalities in the reduced space * and then transform the result to the original space. * The original equalities are _not_ added to this set. This is * the responsibility of the calling function. * The resulting basic set has all meaning about the dimensions removed. * In particular, dimensions that correspond to existential variables * in bmap and that are found to be fixed are not removed. */ static struct isl_basic_set *equalities_in_underlying_set( struct isl_basic_map *bmap) { struct isl_mat *T1 = NULL; struct isl_mat *T2 = NULL; struct isl_basic_set *bset = NULL; struct isl_basic_set *hull = NULL; bset = isl_basic_map_underlying_set(bmap); if (!bset) return NULL; if (bset->n_eq) bset = isl_basic_set_remove_equalities(bset, &T1, &T2); if (!bset) goto error; hull = uset_affine_hull(bset); if (!T2) return hull; if (!hull) { isl_mat_free(T1); isl_mat_free(T2); } else { struct isl_vec *sample = isl_vec_copy(hull->sample); if (sample && sample->size > 0) sample = isl_mat_vec_product(T1, sample); else isl_mat_free(T1); hull = isl_basic_set_preimage(hull, T2); if (hull) { isl_vec_free(hull->sample); hull->sample = sample; } else isl_vec_free(sample); } return hull; error: isl_mat_free(T1); isl_mat_free(T2); isl_basic_set_free(bset); isl_basic_set_free(hull); return NULL; } /* Detect and make explicit all equalities satisfied by the (integer) * points in bmap. */ struct isl_basic_map *isl_basic_map_detect_equalities( struct isl_basic_map *bmap) { int i, j; struct isl_basic_set *hull = NULL; if (!bmap) return NULL; if (bmap->n_ineq == 0) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) return isl_basic_map_implicit_equalities(bmap); hull = equalities_in_underlying_set(isl_basic_map_copy(bmap)); if (!hull) goto error; if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) { isl_basic_set_free(hull); return isl_basic_map_set_to_empty(bmap); } bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0, hull->n_eq, 0); for (i = 0; i < hull->n_eq; ++i) { j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + isl_basic_set_total_dim(hull)); } isl_vec_free(bmap->sample); bmap->sample = isl_vec_copy(hull->sample); isl_basic_set_free(hull); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_set_free(hull); isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_detect_equalities( __isl_take isl_basic_set *bset) { return (isl_basic_set *) isl_basic_map_detect_equalities((isl_basic_map *)bset); } __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map) { return isl_map_inline_foreach_basic_map(map, &isl_basic_map_detect_equalities); } __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set) { return (isl_set *)isl_map_detect_equalities((isl_map *)set); } /* After computing the rational affine hull (by detecting the implicit * equalities), we compute the additional equalities satisfied by * the integer points (if any) and add the original equalities back in. */ struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap) { bmap = isl_basic_map_detect_equalities(bmap); bmap = isl_basic_map_cow(bmap); if (bmap) isl_basic_map_free_inequality(bmap, bmap->n_ineq); bmap = isl_basic_map_finalize(bmap); return bmap; } struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_affine_hull((struct isl_basic_map *)bset); } /* Given a rational affine matrix "M", add stride constraints to "bmap" * that ensure that * * M(x) * * is an integer vector. The variables x include all the variables * of "bmap" except the unknown divs. * * If d is the common denominator of M, then we need to impose that * * d M(x) = 0 mod d * * or * * exists alpha : d M(x) = d alpha * * This function is similar to add_strides in isl_morph.c */ static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap, __isl_keep isl_mat *M, int n_known) { int i, div, k; isl_int gcd; if (isl_int_is_one(M->row[0][0])) return bmap; bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), M->n_row - 1, M->n_row - 1, 0); isl_int_init(gcd); for (i = 1; i < M->n_row; ++i) { isl_seq_gcd(M->row[i], M->n_col, &gcd); if (isl_int_is_divisible_by(gcd, M->row[0][0])) continue; div = isl_basic_map_alloc_div(bmap); if (div < 0) goto error; isl_int_set_si(bmap->div[div][0], 0); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col); isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known); isl_int_set(bmap->eq[k][M->n_col - n_known + div], M->row[0][0]); } isl_int_clear(gcd); return bmap; error: isl_int_clear(gcd); isl_basic_map_free(bmap); return NULL; } /* If there are any equalities that involve (multiple) unknown divs, * then extract the stride information encoded by those equalities * and make it explicitly available in "bmap". * * We first sort the divs so that the unknown divs appear last and * then we count how many equalities involve these divs. * * Let these equalities be of the form * * A(x) + B y = 0 * * where y represents the unknown divs and x the remaining variables. * Let [H 0] be the Hermite Normal Form of B, i.e., * * B = [H 0] Q * * Then x is a solution of the equalities iff * * H^-1 A(x) (= - [I 0] Q y) * * is an integer vector. Let d be the common denominator of H^-1. * We impose * * d H^-1 A(x) = d alpha * * in add_strides, with alpha fresh existentially quantified variables. */ static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit( __isl_take isl_basic_map *bmap) { int known; int n_known; int n, n_col; int total; isl_ctx *ctx; isl_mat *A, *B, *M; known = isl_basic_map_divs_known(bmap); if (known < 0) return isl_basic_map_free(bmap); if (known) return bmap; bmap = isl_basic_map_sort_divs(bmap); bmap = isl_basic_map_gauss(bmap, NULL); if (!bmap) return NULL; for (n_known = 0; n_known < bmap->n_div; ++n_known) if (isl_int_is_zero(bmap->div[n_known][0])) break; ctx = isl_basic_map_get_ctx(bmap); total = isl_space_dim(bmap->dim, isl_dim_all); for (n = 0; n < bmap->n_eq; ++n) if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known, bmap->n_div - n_known) == -1) break; if (n == 0) return bmap; B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known); n_col = bmap->n_div - n_known; A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col); A = isl_mat_left_hermite(A, 0, NULL, NULL); A = isl_mat_drop_cols(A, n, n_col - n); A = isl_mat_lin_to_aff(A); A = isl_mat_right_inverse(A); B = isl_mat_insert_zero_rows(B, 0, 1); B = isl_mat_set_element_si(B, 0, 0, 1); M = isl_mat_product(A, B); if (!M) return isl_basic_map_free(bmap); bmap = add_strides(bmap, M, n_known); bmap = isl_basic_map_gauss(bmap, NULL); isl_mat_free(M); return bmap; } /* Compute the affine hull of each basic map in "map" separately * and make all stride information explicit so that we can remove * all unknown divs without losing this information. * The result is also guaranteed to be gaussed. * * In simple cases where a div is determined by an equality, * calling isl_basic_map_gauss is enough to make the stride information * explicit, as it will derive an explicit representation for the div * from the equality. If, however, the stride information * is encoded through multiple unknown divs then we need to make * some extra effort in isl_basic_map_make_strides_explicit. */ static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_affine_hull(map->p[i]); map->p[i] = isl_basic_map_gauss(map->p[i], NULL); map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]); if (!map->p[i]) return isl_map_free(map); } return map; } static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set) { return isl_map_local_affine_hull(set); } /* Compute the affine hull of "map". * * We first compute the affine hull of each basic map separately. * Then we align the divs and recompute the affine hulls of the basic * maps since some of them may now have extra divs. * In order to avoid performing parametric integer programming to * compute explicit expressions for the divs, possible leading to * an explosion in the number of basic maps, we first drop all unknown * divs before aligning the divs. Note that isl_map_local_affine_hull tries * to make sure that all stride information is explicitly available * in terms of known divs. This involves calling isl_basic_set_gauss, * which is also needed because affine_hull assumes its input has been gaussed, * while isl_map_affine_hull may be called on input that has not been gaussed, * in particular from initial_facet_constraint. * Similarly, align_divs may reorder some divs so that we need to * gauss the result again. * Finally, we combine the individual affine hulls into a single * affine hull. */ __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map) { struct isl_basic_map *model = NULL; struct isl_basic_map *hull = NULL; struct isl_set *set; isl_basic_set *bset; map = isl_map_detect_equalities(map); map = isl_map_local_affine_hull(map); map = isl_map_remove_empty_parts(map); map = isl_map_remove_unknown_divs(map); map = isl_map_align_divs(map); if (!map) return NULL; if (map->n == 0) { hull = isl_basic_map_empty_like_map(map); isl_map_free(map); return hull; } model = isl_basic_map_copy(map->p[0]); set = isl_map_underlying_set(map); set = isl_set_cow(set); set = isl_set_local_affine_hull(set); if (!set) goto error; while (set->n > 1) set->p[0] = affine_hull(set->p[0], set->p[--set->n]); bset = isl_basic_set_copy(set->p[0]); hull = isl_basic_map_overlying_set(bset, model); isl_set_free(set); hull = isl_basic_map_simplify(hull); return isl_basic_map_finalize(hull); error: isl_basic_map_free(model); isl_set_free(set); return NULL; } struct isl_basic_set *isl_set_affine_hull(struct isl_set *set) { return (struct isl_basic_set *) isl_map_affine_hull((struct isl_map *)set); }