/* Test Polyhedron::is_disjoint_from(const Polyhedron& y). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { NNC_Polyhedron half_strip(const Generator& p, const Linear_Expression& e, bool closed = true) { assert((p.is_point() && closed) || (p.is_closure_point() && ! closed)); Linear_Expression e1(p); e1 += 3*Variable(0); Generator_System gs; gs.insert(p); gs.insert(ray(e)); if (closed) gs.insert(point(e1, p.divisor())); else { gs.insert(closure_point(e1, p.divisor())); e1 -= Variable(0); e1 += e.coefficient(Variable(1)) * p.divisor() * Variable(1); gs.insert(point(e1)); } NNC_Polyhedron ph(gs); return ph; } bool test01() { Variable A(0); Variable B(1); NNC_Polyhedron ph1 = half_strip(point(A + B), B); NNC_Polyhedron ph2(2, EMPTY); ph2.add_generator(point(3*A + B)); ph2.add_generator(closure_point(2*A + B)); ph2.add_generator(closure_point(4*A + 3*B)); ph2.add_generator(ray(A - B)); bool disjoint = ph1.is_disjoint_from(ph2); print_generators(ph1, "*** ph1 ***"); print_generators(ph2, "*** ph2 ***"); return !disjoint; } bool test02() { Variable A(0); Variable B(1); NNC_Polyhedron ph1 = half_strip(point(A + B), B); NNC_Polyhedron ph2 = half_strip(closure_point(4*A + B), B, false); bool disjoint = ph1.is_disjoint_from(ph2); print_generators(ph1, "*** ph1 ***"); print_generators(ph2, "*** ph2 ***"); return disjoint; } bool test03() { Variable A(0); Variable B(1); NNC_Polyhedron ph1 = half_strip(point(A + B), B); NNC_Polyhedron ph2 = half_strip(closure_point(A + B), -B, false); bool disjoint = ph1.is_disjoint_from(ph2); print_generators(ph1, "*** ph1 ***"); print_generators(ph2, "*** ph2 ***"); return disjoint; } bool test04() { Variable A(0); Variable B(1); NNC_Polyhedron ph1 = half_strip(point(), B); NNC_Polyhedron ph2(2, EMPTY); ph2.add_generator(point(-2*A - 2*B)); ph2.add_generator(closure_point(2*A - 2*B)); ph2.add_generator(closure_point(-2*A + 2*B)); ph2.add_generator(ray(-A - B)); bool disjoint = ph1.is_disjoint_from(ph2); print_generators(ph1, "*** ph1 ***"); print_generators(ph2, "*** ph2 ***"); return disjoint; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); END_MAIN