buildtools/binutils/opcodes/m10300-dis.c
Niels Sascha Reedijk a635d7fb9b import binutils 2.41
2023-08-05 16:18:06 +01:00

755 lines
20 KiB
C

/* Disassemble MN10300 instructions.
Copyright (C) 1996-2023 Free Software Foundation, Inc.
This file is part of the GNU opcodes library.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include <stdio.h>
#include "opcode/mn10300.h"
#include "disassemble.h"
#include "opintl.h"
#define HAVE_AM33_2 (info->mach == AM33_2)
#define HAVE_AM33 (info->mach == AM33 || HAVE_AM33_2)
#define HAVE_AM30 (info->mach == AM30)
static void
disassemble (bfd_vma memaddr,
struct disassemble_info *info,
unsigned long insn,
unsigned int size)
{
struct mn10300_opcode *op = (struct mn10300_opcode *) mn10300_opcodes;
const struct mn10300_operand *operand;
bfd_byte buffer[4];
unsigned long extension = 0;
int status, match = 0;
/* Find the opcode. */
while (op->name)
{
int mysize, extra_shift;
if (op->format == FMT_S0)
mysize = 1;
else if (op->format == FMT_S1
|| op->format == FMT_D0)
mysize = 2;
else if (op->format == FMT_S2
|| op->format == FMT_D1)
mysize = 3;
else if (op->format == FMT_S4)
mysize = 5;
else if (op->format == FMT_D2)
mysize = 4;
else if (op->format == FMT_D3)
mysize = 5;
else if (op->format == FMT_D4)
mysize = 6;
else if (op->format == FMT_D6)
mysize = 3;
else if (op->format == FMT_D7 || op->format == FMT_D10)
mysize = 4;
else if (op->format == FMT_D8)
mysize = 6;
else if (op->format == FMT_D9)
mysize = 7;
else
mysize = 7;
if ((op->mask & insn) == op->opcode
&& size == (unsigned int) mysize
&& (op->machine == 0
|| (op->machine == AM33_2 && HAVE_AM33_2)
|| (op->machine == AM33 && HAVE_AM33)
|| (op->machine == AM30 && HAVE_AM30)))
{
const unsigned char *opindex_ptr;
unsigned int nocomma;
int paren = 0;
if (op->format == FMT_D1 || op->format == FMT_S1)
extra_shift = 8;
else if (op->format == FMT_D2 || op->format == FMT_D4
|| op->format == FMT_S2 || op->format == FMT_S4
|| op->format == FMT_S6 || op->format == FMT_D5)
extra_shift = 16;
else if (op->format == FMT_D7
|| op->format == FMT_D8
|| op->format == FMT_D9)
extra_shift = 8;
else
extra_shift = 0;
if (size == 1 || size == 2)
extension = 0;
else if (size == 3
&& (op->format == FMT_D1
|| op->opcode == 0xdf0000
|| op->opcode == 0xde0000))
extension = 0;
else if (size == 3
&& op->format == FMT_D6)
extension = 0;
else if (size == 3)
{
insn &= 0xff0000;
status = (*info->read_memory_func) (memaddr + 1, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
insn |= bfd_getl16 (buffer);
extension = 0;
}
else if (size == 4
&& (op->opcode == 0xfaf80000
|| op->opcode == 0xfaf00000
|| op->opcode == 0xfaf40000))
extension = 0;
else if (size == 4
&& (op->format == FMT_D7
|| op->format == FMT_D10))
extension = 0;
else if (size == 4)
{
insn &= 0xffff0000;
status = (*info->read_memory_func) (memaddr + 2, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
insn |= bfd_getl16 (buffer);
extension = 0;
}
else if (size == 5 && op->opcode == 0xdc000000)
{
unsigned long temp = 0;
status = (*info->read_memory_func) (memaddr + 1, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
temp |= bfd_getl32 (buffer);
insn &= 0xff000000;
insn |= (temp & 0xffffff00) >> 8;
extension = temp & 0xff;
}
else if (size == 5 && op->format == FMT_D3)
{
status = (*info->read_memory_func) (memaddr + 2, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
insn &= 0xffff0000;
insn |= bfd_getl16 (buffer);
status = (*info->read_memory_func) (memaddr + 4, buffer, 1, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
extension = *(unsigned char *) buffer;
}
else if (size == 5)
{
unsigned long temp = 0;
status = (*info->read_memory_func) (memaddr + 1, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
temp |= bfd_getl16 (buffer);
insn &= 0xff0000ff;
insn |= temp << 8;
status = (*info->read_memory_func) (memaddr + 4, buffer, 1, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
extension = *(unsigned char *) buffer;
}
else if (size == 6 && op->format == FMT_D8)
{
insn &= 0xffffff00;
status = (*info->read_memory_func) (memaddr + 5, buffer, 1, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
insn |= *(unsigned char *) buffer;
status = (*info->read_memory_func) (memaddr + 3, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
extension = bfd_getl16 (buffer);
}
else if (size == 6)
{
unsigned long temp = 0;
status = (*info->read_memory_func) (memaddr + 2, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
temp |= bfd_getl32 (buffer);
insn &= 0xffff0000;
insn |= (temp >> 16) & 0xffff;
extension = temp & 0xffff;
}
else if (size == 7 && op->format == FMT_D9)
{
insn &= 0xffffff00;
status = (*info->read_memory_func) (memaddr + 3, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
extension = bfd_getl32 (buffer);
insn |= (extension & 0xff000000) >> 24;
extension &= 0xffffff;
}
else if (size == 7 && op->opcode == 0xdd000000)
{
unsigned long temp = 0;
status = (*info->read_memory_func) (memaddr + 1, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
temp |= bfd_getl32 (buffer);
insn &= 0xff000000;
insn |= (temp >> 8) & 0xffffff;
extension = (temp & 0xff) << 16;
status = (*info->read_memory_func) (memaddr + 5, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
extension |= bfd_getb16 (buffer);
}
else if (size == 7)
{
unsigned long temp = 0;
status = (*info->read_memory_func) (memaddr + 2, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
temp |= bfd_getl32 (buffer);
insn &= 0xffff0000;
insn |= (temp >> 16) & 0xffff;
extension = (temp & 0xffff) << 8;
status = (*info->read_memory_func) (memaddr + 6, buffer, 1, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return;
}
extension |= *(unsigned char *) buffer;
}
match = 1;
(*info->fprintf_func) (info->stream, "%s\t", op->name);
/* Now print the operands. */
for (opindex_ptr = op->operands, nocomma = 1;
*opindex_ptr != 0;
opindex_ptr++)
{
unsigned long value;
operand = &mn10300_operands[*opindex_ptr];
/* If this operand is a PLUS (autoincrement), then do not emit
a comma before emitting the plus. */
if ((operand->flags & MN10300_OPERAND_PLUS) != 0)
nocomma = 1;
if ((operand->flags & MN10300_OPERAND_DREG) != 0
|| (operand->flags & MN10300_OPERAND_AREG) != 0
|| (operand->flags & MN10300_OPERAND_RREG) != 0
|| (operand->flags & MN10300_OPERAND_XRREG) != 0)
value = ((insn >> (operand->shift + extra_shift))
& ((1 << operand->bits) - 1));
else if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
{
unsigned long temp;
value = insn & ((1 << operand->bits) - 1);
value <<= (32 - operand->bits);
temp = extension >> operand->shift;
temp &= ((1 << (32 - operand->bits)) - 1);
value |= temp;
value = ((value ^ (((unsigned long) 1) << 31))
- (((unsigned long) 1) << 31));
}
else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
{
unsigned long temp;
value = insn & ((1 << operand->bits) - 1);
value <<= (24 - operand->bits);
temp = extension >> operand->shift;
temp &= ((1 << (24 - operand->bits)) - 1);
value |= temp;
if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
value = ((value & 0xffffff) ^ 0x800000) - 0x800000;
}
else if ((operand->flags & (MN10300_OPERAND_FSREG
| MN10300_OPERAND_FDREG)))
{
/* See m10300-opc.c just before #define FSM0 for an
explanation of these variables. Note that
FMT-implied shifts are not taken into account for
FP registers. */
unsigned long mask_low, mask_high;
int shl_low, shr_high, shl_high;
switch (operand->bits)
{
case 5:
/* Handle regular FP registers. */
if (operand->shift >= 0)
{
/* This is an `m' register. */
shl_low = operand->shift;
shl_high = 8 + (8 & shl_low) + (shl_low & 4) / 4;
}
else
{
/* This is an `n' register. */
shl_low = -operand->shift;
shl_high = shl_low / 4;
}
mask_low = 0x0f;
mask_high = 0x10;
shr_high = 4;
break;
case 3:
/* Handle accumulators. */
shl_low = -operand->shift;
shl_high = 0;
mask_low = 0x03;
mask_high = 0x04;
shr_high = 2;
break;
default:
abort ();
}
value = ((((insn >> shl_high) << shr_high) & mask_high)
| ((insn >> shl_low) & mask_low));
}
else if ((operand->flags & MN10300_OPERAND_EXTENDED) != 0)
value = ((extension >> (operand->shift))
& ((1 << operand->bits) - 1));
else
value = ((insn >> (operand->shift))
& ((1 << operand->bits) - 1));
if ((operand->flags & MN10300_OPERAND_SIGNED) != 0
/* These are properly extended by the code above. */
&& ((operand->flags & MN10300_OPERAND_24BIT) == 0))
value = ((value ^ (((unsigned long) 1) << (operand->bits - 1)))
- (((unsigned long) 1) << (operand->bits - 1)));
if (!nocomma
&& (!paren
|| ((operand->flags & MN10300_OPERAND_PAREN) == 0)))
(*info->fprintf_func) (info->stream, ",");
nocomma = 0;
if ((operand->flags & MN10300_OPERAND_DREG) != 0)
(*info->fprintf_func) (info->stream, "d%d", (int) value);
else if ((operand->flags & MN10300_OPERAND_AREG) != 0)
(*info->fprintf_func) (info->stream, "a%d", (int) value);
else if ((operand->flags & MN10300_OPERAND_SP) != 0)
(*info->fprintf_func) (info->stream, "sp");
else if ((operand->flags & MN10300_OPERAND_PSW) != 0)
(*info->fprintf_func) (info->stream, "psw");
else if ((operand->flags & MN10300_OPERAND_MDR) != 0)
(*info->fprintf_func) (info->stream, "mdr");
else if ((operand->flags & MN10300_OPERAND_RREG) != 0)
{
if (value < 8)
(*info->fprintf_func) (info->stream, "r%d", (int) value);
else if (value < 12)
(*info->fprintf_func) (info->stream, "a%d", (int) value - 8);
else
(*info->fprintf_func) (info->stream, "d%d", (int) value - 12);
}
else if ((operand->flags & MN10300_OPERAND_XRREG) != 0)
{
if (value == 0)
(*info->fprintf_func) (info->stream, "sp");
else
(*info->fprintf_func) (info->stream, "xr%d", (int) value);
}
else if ((operand->flags & MN10300_OPERAND_FSREG) != 0)
(*info->fprintf_func) (info->stream, "fs%d", (int) value);
else if ((operand->flags & MN10300_OPERAND_FDREG) != 0)
(*info->fprintf_func) (info->stream, "fd%d", (int) value);
else if ((operand->flags & MN10300_OPERAND_FPCR) != 0)
(*info->fprintf_func) (info->stream, "fpcr");
else if ((operand->flags & MN10300_OPERAND_USP) != 0)
(*info->fprintf_func) (info->stream, "usp");
else if ((operand->flags & MN10300_OPERAND_SSP) != 0)
(*info->fprintf_func) (info->stream, "ssp");
else if ((operand->flags & MN10300_OPERAND_MSP) != 0)
(*info->fprintf_func) (info->stream, "msp");
else if ((operand->flags & MN10300_OPERAND_PC) != 0)
(*info->fprintf_func) (info->stream, "pc");
else if ((operand->flags & MN10300_OPERAND_EPSW) != 0)
(*info->fprintf_func) (info->stream, "epsw");
else if ((operand->flags & MN10300_OPERAND_PLUS) != 0)
(*info->fprintf_func) (info->stream, "+");
else if ((operand->flags & MN10300_OPERAND_PAREN) != 0)
{
if (paren)
(*info->fprintf_func) (info->stream, ")");
else
{
(*info->fprintf_func) (info->stream, "(");
nocomma = 1;
}
paren = !paren;
}
else if ((operand->flags & MN10300_OPERAND_PCREL) != 0)
(*info->print_address_func) ((long) value + memaddr, info);
else if ((operand->flags & MN10300_OPERAND_MEMADDR) != 0)
(*info->print_address_func) (value, info);
else if ((operand->flags & MN10300_OPERAND_REG_LIST) != 0)
{
int comma = 0;
(*info->fprintf_func) (info->stream, "[");
if (value & 0x80)
{
(*info->fprintf_func) (info->stream, "d2");
comma = 1;
}
if (value & 0x40)
{
if (comma)
(*info->fprintf_func) (info->stream, ",");
(*info->fprintf_func) (info->stream, "d3");
comma = 1;
}
if (value & 0x20)
{
if (comma)
(*info->fprintf_func) (info->stream, ",");
(*info->fprintf_func) (info->stream, "a2");
comma = 1;
}
if (value & 0x10)
{
if (comma)
(*info->fprintf_func) (info->stream, ",");
(*info->fprintf_func) (info->stream, "a3");
comma = 1;
}
if (value & 0x08)
{
if (comma)
(*info->fprintf_func) (info->stream, ",");
(*info->fprintf_func) (info->stream, "other");
comma = 1;
}
if (value & 0x04)
{
if (comma)
(*info->fprintf_func) (info->stream, ",");
(*info->fprintf_func) (info->stream, "exreg0");
comma = 1;
}
if (value & 0x02)
{
if (comma)
(*info->fprintf_func) (info->stream, ",");
(*info->fprintf_func) (info->stream, "exreg1");
comma = 1;
}
if (value & 0x01)
{
if (comma)
(*info->fprintf_func) (info->stream, ",");
(*info->fprintf_func) (info->stream, "exother");
comma = 1;
}
(*info->fprintf_func) (info->stream, "]");
}
else
(*info->fprintf_func) (info->stream, "%ld", (long) value);
}
/* All done. */
break;
}
op++;
}
if (!match)
/* xgettext:c-format */
(*info->fprintf_func) (info->stream, _("unknown\t0x%04lx"), insn);
}
int
print_insn_mn10300 (bfd_vma memaddr, struct disassemble_info *info)
{
int status;
bfd_byte buffer[4];
unsigned long insn;
unsigned int consume;
/* First figure out how big the opcode is. */
status = (*info->read_memory_func) (memaddr, buffer, 1, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn = *(unsigned char *) buffer;
/* These are one byte insns. */
if ((insn & 0xf3) == 0x00
|| (insn & 0xf0) == 0x10
|| (insn & 0xfc) == 0x3c
|| (insn & 0xf3) == 0x41
|| (insn & 0xf3) == 0x40
|| (insn & 0xfc) == 0x50
|| (insn & 0xfc) == 0x54
|| (insn & 0xf0) == 0x60
|| (insn & 0xf0) == 0x70
|| ((insn & 0xf0) == 0x80
&& (insn & 0x0c) >> 2 != (insn & 0x03))
|| ((insn & 0xf0) == 0x90
&& (insn & 0x0c) >> 2 != (insn & 0x03))
|| ((insn & 0xf0) == 0xa0
&& (insn & 0x0c) >> 2 != (insn & 0x03))
|| ((insn & 0xf0) == 0xb0
&& (insn & 0x0c) >> 2 != (insn & 0x03))
|| (insn & 0xff) == 0xcb
|| (insn & 0xfc) == 0xd0
|| (insn & 0xfc) == 0xd4
|| (insn & 0xfc) == 0xd8
|| (insn & 0xf0) == 0xe0
|| (insn & 0xff) == 0xff)
{
consume = 1;
}
/* These are two byte insns. */
else if ((insn & 0xf0) == 0x80
|| (insn & 0xf0) == 0x90
|| (insn & 0xf0) == 0xa0
|| (insn & 0xf0) == 0xb0
|| (insn & 0xfc) == 0x20
|| (insn & 0xfc) == 0x28
|| (insn & 0xf3) == 0x43
|| (insn & 0xf3) == 0x42
|| (insn & 0xfc) == 0x58
|| (insn & 0xfc) == 0x5c
|| ((insn & 0xf0) == 0xc0
&& (insn & 0xff) != 0xcb
&& (insn & 0xff) != 0xcc
&& (insn & 0xff) != 0xcd)
|| (insn & 0xff) == 0xf0
|| (insn & 0xff) == 0xf1
|| (insn & 0xff) == 0xf2
|| (insn & 0xff) == 0xf3
|| (insn & 0xff) == 0xf4
|| (insn & 0xff) == 0xf5
|| (insn & 0xff) == 0xf6)
{
status = (*info->read_memory_func) (memaddr, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn = bfd_getb16 (buffer);
consume = 2;
}
/* These are three byte insns. */
else if ((insn & 0xff) == 0xf8
|| (insn & 0xff) == 0xcc
|| (insn & 0xff) == 0xf9
|| (insn & 0xf3) == 0x01
|| (insn & 0xf3) == 0x02
|| (insn & 0xf3) == 0x03
|| (insn & 0xfc) == 0x24
|| (insn & 0xfc) == 0x2c
|| (insn & 0xfc) == 0x30
|| (insn & 0xfc) == 0x34
|| (insn & 0xfc) == 0x38
|| (insn & 0xff) == 0xde
|| (insn & 0xff) == 0xdf
|| (insn & 0xff) == 0xf9
|| (insn & 0xff) == 0xcc)
{
status = (*info->read_memory_func) (memaddr, buffer, 2, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn = bfd_getb16 (buffer);
insn <<= 8;
status = (*info->read_memory_func) (memaddr + 2, buffer, 1, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn |= *(unsigned char *) buffer;
consume = 3;
}
/* These are four byte insns. */
else if ((insn & 0xff) == 0xfa
|| (insn & 0xff) == 0xf7
|| (insn & 0xff) == 0xfb)
{
status = (*info->read_memory_func) (memaddr, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn = bfd_getb32 (buffer);
consume = 4;
}
/* These are five byte insns. */
else if ((insn & 0xff) == 0xcd
|| (insn & 0xff) == 0xdc)
{
status = (*info->read_memory_func) (memaddr, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn = bfd_getb32 (buffer);
consume = 5;
}
/* These are six byte insns. */
else if ((insn & 0xff) == 0xfd
|| (insn & 0xff) == 0xfc)
{
status = (*info->read_memory_func) (memaddr, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn = bfd_getb32 (buffer);
consume = 6;
}
/* Else its a seven byte insns (in theory). */
else
{
status = (*info->read_memory_func) (memaddr, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
insn = bfd_getb32 (buffer);
consume = 7;
/* Handle the 5-byte extended instruction codes. */
if ((insn & 0xfff80000) == 0xfe800000)
consume = 5;
}
disassemble (memaddr, info, insn, consume);
return consume;
}