buildtools/gcc/isl/isl_ast_build_expr.c
Adrien Destugues 680f0e1112 import ISL 0.24
2022-07-15 15:05:28 +02:00

2612 lines
74 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2012-2014 Ecole Normale Superieure
* Copyright 2014 INRIA Rocquencourt
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege,
* Ecole Normale Superieure, 45 rue dUlm, 75230 Paris, France
* and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
* B.P. 105 - 78153 Le Chesnay, France
*/
#include <isl/id.h>
#include <isl/space.h>
#include <isl/constraint.h>
#include <isl/ilp.h>
#include <isl/val.h>
#include <isl_ast_build_expr.h>
#include <isl_ast_private.h>
#include <isl_ast_build_private.h>
#include <isl_sort.h>
/* Compute the "opposite" of the (numerator of the) argument of a div
* with denominator "d".
*
* In particular, compute
*
* -aff + (d - 1)
*/
static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff,
__isl_take isl_val *d)
{
aff = isl_aff_neg(aff);
aff = isl_aff_add_constant_val(aff, d);
aff = isl_aff_add_constant_si(aff, -1);
return aff;
}
/* Internal data structure used inside isl_ast_expr_add_term.
* The domain of "build" is used to simplify the expressions.
* "build" needs to be set by the caller of isl_ast_expr_add_term.
* "cst" is the constant term of the expression in which the added term
* appears. It may be modified by isl_ast_expr_add_term.
*
* "v" is the coefficient of the term that is being constructed and
* is set internally by isl_ast_expr_add_term.
*/
struct isl_ast_add_term_data {
isl_ast_build *build;
isl_val *cst;
isl_val *v;
};
/* Given the numerator "aff" of the argument of an integer division
* with denominator "d", check if it can be made non-negative over
* data->build->domain by stealing part of the constant term of
* the expression in which the integer division appears.
*
* In particular, the outer expression is of the form
*
* v * floor(aff/d) + cst
*
* We already know that "aff" itself may attain negative values.
* Here we check if aff + d*floor(cst/v) is non-negative, such
* that we could rewrite the expression to
*
* v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v)
*
* Note that aff + d*floor(cst/v) can only possibly be non-negative
* if data->cst and data->v have the same sign.
* Similarly, if floor(cst/v) is zero, then there is no point in
* checking again.
*/
static int is_non_neg_after_stealing(__isl_keep isl_aff *aff,
__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
isl_aff *shifted;
isl_val *shift;
int is_zero;
int non_neg;
if (isl_val_sgn(data->cst) != isl_val_sgn(data->v))
return 0;
shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v));
shift = isl_val_floor(shift);
is_zero = isl_val_is_zero(shift);
if (is_zero < 0 || is_zero) {
isl_val_free(shift);
return is_zero < 0 ? -1 : 0;
}
shift = isl_val_mul(shift, isl_val_copy(d));
shifted = isl_aff_copy(aff);
shifted = isl_aff_add_constant_val(shifted, shift);
non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted);
isl_aff_free(shifted);
return non_neg;
}
/* Given the numerator "aff' of the argument of an integer division
* with denominator "d", steal part of the constant term of
* the expression in which the integer division appears to make it
* non-negative over data->build->domain.
*
* In particular, the outer expression is of the form
*
* v * floor(aff/d) + cst
*
* We know that "aff" itself may attain negative values,
* but that aff + d*floor(cst/v) is non-negative.
* Find the minimal positive value that we need to add to "aff"
* to make it positive and adjust data->cst accordingly.
* That is, compute the minimal value "m" of "aff" over
* data->build->domain and take
*
* s = ceil(m/d)
*
* such that
*
* aff + d * s >= 0
*
* and rewrite the expression to
*
* v * floor((aff + s*d)/d) + (cst - v*s)
*/
static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff,
__isl_keep isl_val *d, struct isl_ast_add_term_data *data)
{
isl_set *domain;
isl_val *shift, *t;
domain = isl_ast_build_get_domain(data->build);
shift = isl_set_min_val(domain, aff);
isl_set_free(domain);
shift = isl_val_neg(shift);
shift = isl_val_div(shift, isl_val_copy(d));
shift = isl_val_ceil(shift);
t = isl_val_copy(shift);
t = isl_val_mul(t, isl_val_copy(data->v));
data->cst = isl_val_sub(data->cst, t);
shift = isl_val_mul(shift, isl_val_copy(d));
return isl_aff_add_constant_val(aff, shift);
}
/* Create an isl_ast_expr evaluating the div at position "pos" in "ls".
* The result is simplified in terms of data->build->domain.
* This function may change (the sign of) data->v.
*
* "ls" is known to be non-NULL.
*
* Let the div be of the form floor(e/d).
* If the ast_build_prefer_pdiv option is set then we check if "e"
* is non-negative, so that we can generate
*
* (pdiv_q, expr(e), expr(d))
*
* instead of
*
* (fdiv_q, expr(e), expr(d))
*
* If the ast_build_prefer_pdiv option is set and
* if "e" is not non-negative, then we check if "-e + d - 1" is non-negative.
* If so, we can rewrite
*
* floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d)
*
* and still use pdiv_q, while changing the sign of data->v.
*
* Otherwise, we check if
*
* e + d*floor(cst/v)
*
* is non-negative and if so, replace floor(e/d) by
*
* floor((e + s*d)/d) - s
*
* with s the minimal shift that makes the argument non-negative.
*/
static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data,
__isl_keep isl_local_space *ls, int pos)
{
isl_ctx *ctx = isl_local_space_get_ctx(ls);
isl_aff *aff;
isl_ast_expr *num, *den;
isl_val *d;
enum isl_ast_expr_op_type type;
aff = isl_local_space_get_div(ls, pos);
d = isl_aff_get_denominator_val(aff);
aff = isl_aff_scale_val(aff, isl_val_copy(d));
den = isl_ast_expr_from_val(isl_val_copy(d));
type = isl_ast_expr_op_fdiv_q;
if (isl_options_get_ast_build_prefer_pdiv(ctx)) {
int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff);
if (non_neg >= 0 && !non_neg) {
isl_aff *opp = oppose_div_arg(isl_aff_copy(aff),
isl_val_copy(d));
non_neg = isl_ast_build_aff_is_nonneg(data->build, opp);
if (non_neg >= 0 && non_neg) {
data->v = isl_val_neg(data->v);
isl_aff_free(aff);
aff = opp;
} else
isl_aff_free(opp);
}
if (non_neg >= 0 && !non_neg) {
non_neg = is_non_neg_after_stealing(aff, d, data);
if (non_neg >= 0 && non_neg)
aff = steal_from_cst(aff, d, data);
}
if (non_neg < 0)
aff = isl_aff_free(aff);
else if (non_neg)
type = isl_ast_expr_op_pdiv_q;
}
isl_val_free(d);
num = isl_ast_expr_from_aff(aff, data->build);
return isl_ast_expr_alloc_binary(type, num, den);
}
/* Create an isl_ast_expr evaluating the specified dimension of "ls".
* The result is simplified in terms of data->build->domain.
* This function may change (the sign of) data->v.
*
* The isl_ast_expr is constructed based on the type of the dimension.
* - divs are constructed by var_div
* - set variables are constructed from the iterator isl_ids in data->build
* - parameters are constructed from the isl_ids in "ls"
*/
static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data,
__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos)
{
isl_ctx *ctx = isl_local_space_get_ctx(ls);
isl_id *id;
if (type == isl_dim_div)
return var_div(data, ls, pos);
if (type == isl_dim_set) {
id = isl_ast_build_get_iterator_id(data->build, pos);
return isl_ast_expr_from_id(id);
}
if (!isl_local_space_has_dim_id(ls, type, pos))
isl_die(ctx, isl_error_internal, "unnamed dimension",
return NULL);
id = isl_local_space_get_dim_id(ls, type, pos);
return isl_ast_expr_from_id(id);
}
/* Does "expr" represent the zero integer?
*/
static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr)
{
if (!expr)
return -1;
if (expr->type != isl_ast_expr_int)
return 0;
return isl_val_is_zero(expr->u.v);
}
/* Create an expression representing the sum of "expr1" and "expr2",
* provided neither of the two expressions is identically zero.
*/
static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
{
if (!expr1 || !expr2)
goto error;
if (ast_expr_is_zero(expr1)) {
isl_ast_expr_free(expr1);
return expr2;
}
if (ast_expr_is_zero(expr2)) {
isl_ast_expr_free(expr2);
return expr1;
}
return isl_ast_expr_add(expr1, expr2);
error:
isl_ast_expr_free(expr1);
isl_ast_expr_free(expr2);
return NULL;
}
/* Subtract expr2 from expr1.
*
* If expr2 is zero, we simply return expr1.
* If expr1 is zero, we return
*
* (isl_ast_expr_op_minus, expr2)
*
* Otherwise, we return
*
* (isl_ast_expr_op_sub, expr1, expr2)
*/
static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1,
__isl_take isl_ast_expr *expr2)
{
if (!expr1 || !expr2)
goto error;
if (ast_expr_is_zero(expr2)) {
isl_ast_expr_free(expr2);
return expr1;
}
if (ast_expr_is_zero(expr1)) {
isl_ast_expr_free(expr1);
return isl_ast_expr_neg(expr2);
}
return isl_ast_expr_sub(expr1, expr2);
error:
isl_ast_expr_free(expr1);
isl_ast_expr_free(expr2);
return NULL;
}
/* Return an isl_ast_expr that represents
*
* v * (aff mod d)
*
* v is assumed to be non-negative.
* The result is simplified in terms of build->domain.
*/
static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v,
__isl_keep isl_aff *aff, __isl_keep isl_val *d,
__isl_keep isl_ast_build *build)
{
isl_ast_expr *expr;
isl_ast_expr *c;
if (!aff)
return NULL;
expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build);
c = isl_ast_expr_from_val(isl_val_copy(d));
expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_pdiv_r, expr, c);
if (!isl_val_is_one(v)) {
c = isl_ast_expr_from_val(isl_val_copy(v));
expr = isl_ast_expr_mul(c, expr);
}
return expr;
}
/* Create an isl_ast_expr that scales "expr" by "v".
*
* If v is 1, we simply return expr.
* If v is -1, we return
*
* (isl_ast_expr_op_minus, expr)
*
* Otherwise, we return
*
* (isl_ast_expr_op_mul, expr(v), expr)
*/
static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr,
__isl_take isl_val *v)
{
isl_ast_expr *c;
if (!expr || !v)
goto error;
if (isl_val_is_one(v)) {
isl_val_free(v);
return expr;
}
if (isl_val_is_negone(v)) {
isl_val_free(v);
expr = isl_ast_expr_neg(expr);
} else {
c = isl_ast_expr_from_val(v);
expr = isl_ast_expr_mul(c, expr);
}
return expr;
error:
isl_val_free(v);
isl_ast_expr_free(expr);
return NULL;
}
/* Add an expression for "*v" times the specified dimension of "ls"
* to expr.
* If the dimension is an integer division, then this function
* may modify data->cst in order to make the numerator non-negative.
* The result is simplified in terms of data->build->domain.
*
* Let e be the expression for the specified dimension,
* multiplied by the absolute value of "*v".
* If "*v" is negative, we create
*
* (isl_ast_expr_op_sub, expr, e)
*
* except when expr is trivially zero, in which case we create
*
* (isl_ast_expr_op_minus, e)
*
* instead.
*
* If "*v" is positive, we simply create
*
* (isl_ast_expr_op_add, expr, e)
*
*/
static __isl_give isl_ast_expr *isl_ast_expr_add_term(
__isl_take isl_ast_expr *expr,
__isl_keep isl_local_space *ls, enum isl_dim_type type, int pos,
__isl_take isl_val *v, struct isl_ast_add_term_data *data)
{
isl_ast_expr *term;
if (!expr)
return NULL;
data->v = v;
term = var(data, ls, type, pos);
v = data->v;
if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
v = isl_val_neg(v);
term = scale(term, v);
return ast_expr_sub(expr, term);
} else {
term = scale(term, v);
return ast_expr_add(expr, term);
}
}
/* Add an expression for "v" to expr.
*/
static __isl_give isl_ast_expr *isl_ast_expr_add_int(
__isl_take isl_ast_expr *expr, __isl_take isl_val *v)
{
isl_ast_expr *expr_int;
if (!expr || !v)
goto error;
if (isl_val_is_zero(v)) {
isl_val_free(v);
return expr;
}
if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) {
v = isl_val_neg(v);
expr_int = isl_ast_expr_from_val(v);
return ast_expr_sub(expr, expr_int);
} else {
expr_int = isl_ast_expr_from_val(v);
return ast_expr_add(expr, expr_int);
}
error:
isl_ast_expr_free(expr);
isl_val_free(v);
return NULL;
}
/* Internal data structure used inside extract_modulos.
*
* If any modulo expressions are detected in "aff", then the
* expression is removed from "aff" and added to either "pos" or "neg"
* depending on the sign of the coefficient of the modulo expression
* inside "aff".
*
* "add" is an expression that needs to be added to "aff" at the end of
* the computation. It is NULL as long as no modulos have been extracted.
*
* "i" is the position in "aff" of the div under investigation
* "v" is the coefficient in "aff" of the div
* "div" is the argument of the div, with the denominator removed
* "d" is the original denominator of the argument of the div
*
* "nonneg" is an affine expression that is non-negative over "build"
* and that can be used to extract a modulo expression from "div".
* In particular, if "sign" is 1, then the coefficients of "nonneg"
* are equal to those of "div" modulo "d". If "sign" is -1, then
* the coefficients of "nonneg" are opposite to those of "div" modulo "d".
* If "sign" is 0, then no such affine expression has been found (yet).
*/
struct isl_extract_mod_data {
isl_ast_build *build;
isl_aff *aff;
isl_ast_expr *pos;
isl_ast_expr *neg;
isl_aff *add;
int i;
isl_val *v;
isl_val *d;
isl_aff *div;
isl_aff *nonneg;
int sign;
};
/* Does
*
* arg mod data->d
*
* represent (a special case of) a test for some linear expression
* being even?
*
* In particular, is it of the form
*
* (lin - 1) mod 2
*
* ?
*/
static isl_bool is_even_test(struct isl_extract_mod_data *data,
__isl_keep isl_aff *arg)
{
isl_bool res;
isl_val *cst;
res = isl_val_eq_si(data->d, 2);
if (res < 0 || !res)
return res;
cst = isl_aff_get_constant_val(arg);
res = isl_val_eq_si(cst, -1);
isl_val_free(cst);
return res;
}
/* Given that data->v * div_i in data->aff is equal to
*
* f * (term - (arg mod d))
*
* with data->d * f = data->v and "arg" non-negative on data->build, add
*
* f * term
*
* to data->add and
*
* abs(f) * (arg mod d)
*
* to data->neg or data->pos depending on the sign of -f.
*
* In the special case that "arg mod d" is of the form "(lin - 1) mod 2",
* with "lin" some linear expression, first replace
*
* f * (term - ((lin - 1) mod 2))
*
* by
*
* -f * (1 - term - (lin mod 2))
*
* These two are equal because
*
* ((lin - 1) mod 2) + (lin mod 2) = 1
*
* Also, if "lin - 1" is non-negative, then "lin" is non-negative too.
*/
static int extract_term_and_mod(struct isl_extract_mod_data *data,
__isl_take isl_aff *term, __isl_take isl_aff *arg)
{
isl_bool even;
isl_ast_expr *expr;
int s;
even = is_even_test(data, arg);
if (even < 0) {
arg = isl_aff_free(arg);
} else if (even) {
term = oppose_div_arg(term, isl_val_copy(data->d));
data->v = isl_val_neg(data->v);
arg = isl_aff_set_constant_si(arg, 0);
}
data->v = isl_val_div(data->v, isl_val_copy(data->d));
s = isl_val_sgn(data->v);
data->v = isl_val_abs(data->v);
expr = isl_ast_expr_mod(data->v, arg, data->d, data->build);
isl_aff_free(arg);
if (s > 0)
data->neg = ast_expr_add(data->neg, expr);
else
data->pos = ast_expr_add(data->pos, expr);
data->aff = isl_aff_set_coefficient_si(data->aff,
isl_dim_div, data->i, 0);
if (s < 0)
data->v = isl_val_neg(data->v);
term = isl_aff_scale_val(term, isl_val_copy(data->v));
if (!data->add)
data->add = term;
else
data->add = isl_aff_add(data->add, term);
if (!data->add)
return -1;
return 0;
}
/* Given that data->v * div_i in data->aff is of the form
*
* f * d * floor(div/d)
*
* with div nonnegative on data->build, rewrite it as
*
* f * (div - (div mod d)) = f * div - f * (div mod d)
*
* and add
*
* f * div
*
* to data->add and
*
* abs(f) * (div mod d)
*
* to data->neg or data->pos depending on the sign of -f.
*/
static int extract_mod(struct isl_extract_mod_data *data)
{
return extract_term_and_mod(data, isl_aff_copy(data->div),
isl_aff_copy(data->div));
}
/* Given that data->v * div_i in data->aff is of the form
*
* f * d * floor(div/d) (1)
*
* check if div is non-negative on data->build and, if so,
* extract the corresponding modulo from data->aff.
* If not, then check if
*
* -div + d - 1
*
* is non-negative on data->build. If so, replace (1) by
*
* -f * d * floor((-div + d - 1)/d)
*
* and extract the corresponding modulo from data->aff.
*
* This function may modify data->div.
*/
static int extract_nonneg_mod(struct isl_extract_mod_data *data)
{
int mod;
mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
if (mod < 0)
goto error;
if (mod)
return extract_mod(data);
data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
mod = isl_ast_build_aff_is_nonneg(data->build, data->div);
if (mod < 0)
goto error;
if (mod) {
data->v = isl_val_neg(data->v);
return extract_mod(data);
}
return 0;
error:
data->aff = isl_aff_free(data->aff);
return -1;
}
/* Is the affine expression of constraint "c" "simpler" than data->nonneg
* for use in extracting a modulo expression?
*
* We currently only consider the constant term of the affine expression.
* In particular, we prefer the affine expression with the smallest constant
* term.
* This means that if there are two constraints, say x >= 0 and -x + 10 >= 0,
* then we would pick x >= 0
*
* More detailed heuristics could be used if it turns out that there is a need.
*/
static int mod_constraint_is_simpler(struct isl_extract_mod_data *data,
__isl_keep isl_constraint *c)
{
isl_val *v1, *v2;
int simpler;
if (!data->nonneg)
return 1;
v1 = isl_val_abs(isl_constraint_get_constant_val(c));
v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg));
simpler = isl_val_lt(v1, v2);
isl_val_free(v1);
isl_val_free(v2);
return simpler;
}
/* Check if the coefficients of "c" are either equal or opposite to those
* of data->div modulo data->d. If so, and if "c" is "simpler" than
* data->nonneg, then replace data->nonneg by the affine expression of "c"
* and set data->sign accordingly.
*
* Both "c" and data->div are assumed not to involve any integer divisions.
*
* Before we start the actual comparison, we first quickly check if
* "c" and data->div have the same non-zero coefficients.
* If not, then we assume that "c" is not of the desired form.
* Note that while the coefficients of data->div can be reasonably expected
* not to involve any coefficients that are multiples of d, "c" may
* very well involve such coefficients. This means that we may actually
* miss some cases.
*
* If the constant term is "too large", then the constraint is rejected,
* where "too large" is fairly arbitrarily set to 1 << 15.
* We do this to avoid picking up constraints that bound a variable
* by a very large number, say the largest or smallest possible
* variable in the representation of some integer type.
*/
static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c,
void *user)
{
struct isl_extract_mod_data *data = user;
enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set };
enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in };
int i, t;
isl_size n[2];
int parallel = 1, opposite = 1;
for (t = 0; t < 2; ++t) {
n[t] = isl_constraint_dim(c, c_type[t]);
if (n[t] < 0)
return isl_stat_error;
for (i = 0; i < n[t]; ++i) {
int a, b;
a = isl_constraint_involves_dims(c, c_type[t], i, 1);
b = isl_aff_involves_dims(data->div, a_type[t], i, 1);
if (a != b)
parallel = opposite = 0;
}
}
if (parallel || opposite) {
isl_val *v;
v = isl_val_abs(isl_constraint_get_constant_val(c));
if (isl_val_cmp_si(v, 1 << 15) > 0)
parallel = opposite = 0;
isl_val_free(v);
}
for (t = 0; t < 2; ++t) {
for (i = 0; i < n[t]; ++i) {
isl_val *v1, *v2;
if (!parallel && !opposite)
break;
v1 = isl_constraint_get_coefficient_val(c,
c_type[t], i);
v2 = isl_aff_get_coefficient_val(data->div,
a_type[t], i);
if (parallel) {
v1 = isl_val_sub(v1, isl_val_copy(v2));
parallel = isl_val_is_divisible_by(v1, data->d);
v1 = isl_val_add(v1, isl_val_copy(v2));
}
if (opposite) {
v1 = isl_val_add(v1, isl_val_copy(v2));
opposite = isl_val_is_divisible_by(v1, data->d);
}
isl_val_free(v1);
isl_val_free(v2);
}
}
if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) {
isl_aff_free(data->nonneg);
data->nonneg = isl_constraint_get_aff(c);
data->sign = parallel ? 1 : -1;
}
isl_constraint_free(c);
if (data->sign != 0 && data->nonneg == NULL)
return isl_stat_error;
return isl_stat_ok;
}
/* Given that data->v * div_i in data->aff is of the form
*
* f * d * floor(div/d) (1)
*
* see if we can find an expression div' that is non-negative over data->build
* and that is related to div through
*
* div' = div + d * e
*
* or
*
* div' = -div + d - 1 + d * e
*
* with e some affine expression.
* If so, we write (1) as
*
* f * div + f * (div' mod d)
*
* or
*
* -f * (-div + d - 1) - f * (div' mod d)
*
* exploiting (in the second case) the fact that
*
* f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d)
*
*
* We first try to find an appropriate expression for div'
* from the constraints of data->build->domain (which is therefore
* guaranteed to be non-negative on data->build), where we remove
* any integer divisions from the constraints and skip this step
* if "div" itself involves any integer divisions.
* If we cannot find an appropriate expression this way, then
* we pass control to extract_nonneg_mod where check
* if div or "-div + d -1" themselves happen to be
* non-negative on data->build.
*
* While looking for an appropriate constraint in data->build->domain,
* we ignore the constant term, so after finding such a constraint,
* we still need to fix up the constant term.
* In particular, if a is the constant term of "div"
* (or d - 1 - the constant term of "div" if data->sign < 0)
* and b is the constant term of the constraint, then we need to find
* a non-negative constant c such that
*
* b + c \equiv a mod d
*
* We therefore take
*
* c = (a - b) mod d
*
* and add it to b to obtain the constant term of div'.
* If this constant term is "too negative", then we add an appropriate
* multiple of d to make it positive.
*
*
* Note that the above is a only a very simple heuristic for finding an
* appropriate expression. We could try a bit harder by also considering
* sums of constraints that involve disjoint sets of variables or
* we could consider arbitrary linear combinations of constraints,
* although that could potentially be much more expensive as it involves
* the solution of an LP problem.
*
* In particular, if v_i is a column vector representing constraint i,
* w represents div and e_i is the i-th unit vector, then we are looking
* for a solution of the constraints
*
* \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i
*
* with \lambda_i >= 0 and alpha_i of unrestricted sign.
* If we are not just interested in a non-negative expression, but
* also in one with a minimal range, then we don't just want
* c = \sum_i lambda_i v_i to be non-negative over the domain,
* but also beta - c = \sum_i mu_i v_i, where beta is a scalar
* that we want to minimize and we now also have to take into account
* the constant terms of the constraints.
* Alternatively, we could first compute the dual of the domain
* and plug in the constraints on the coefficients.
*/
static int try_extract_mod(struct isl_extract_mod_data *data)
{
isl_basic_set *hull;
isl_val *v1, *v2;
isl_stat r;
isl_size n;
if (!data->build)
goto error;
n = isl_aff_dim(data->div, isl_dim_div);
if (n < 0)
goto error;
if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n))
return extract_nonneg_mod(data);
hull = isl_set_simple_hull(isl_set_copy(data->build->domain));
hull = isl_basic_set_remove_divs(hull);
data->sign = 0;
data->nonneg = NULL;
r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite,
data);
isl_basic_set_free(hull);
if (!data->sign || r < 0) {
isl_aff_free(data->nonneg);
if (r < 0)
goto error;
return extract_nonneg_mod(data);
}
v1 = isl_aff_get_constant_val(data->div);
v2 = isl_aff_get_constant_val(data->nonneg);
if (data->sign < 0) {
v1 = isl_val_neg(v1);
v1 = isl_val_add(v1, isl_val_copy(data->d));
v1 = isl_val_sub_ui(v1, 1);
}
v1 = isl_val_sub(v1, isl_val_copy(v2));
v1 = isl_val_mod(v1, isl_val_copy(data->d));
v1 = isl_val_add(v1, v2);
v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d));
v2 = isl_val_ceil(v2);
if (isl_val_is_neg(v2)) {
v2 = isl_val_mul(v2, isl_val_copy(data->d));
v1 = isl_val_sub(v1, isl_val_copy(v2));
}
data->nonneg = isl_aff_set_constant_val(data->nonneg, v1);
isl_val_free(v2);
if (data->sign < 0) {
data->div = oppose_div_arg(data->div, isl_val_copy(data->d));
data->v = isl_val_neg(data->v);
}
return extract_term_and_mod(data,
isl_aff_copy(data->div), data->nonneg);
error:
data->aff = isl_aff_free(data->aff);
return -1;
}
/* Check if "data->aff" involves any (implicit) modulo computations based
* on div "data->i".
* If so, remove them from aff and add expressions corresponding
* to those modulo computations to data->pos and/or data->neg.
*
* "aff" is assumed to be an integer affine expression.
*
* In particular, check if (v * div_j) is of the form
*
* f * m * floor(a / m)
*
* and, if so, rewrite it as
*
* f * (a - (a mod m)) = f * a - f * (a mod m)
*
* and extract out -f * (a mod m).
* In particular, if f > 0, we add (f * (a mod m)) to *neg.
* If f < 0, we add ((-f) * (a mod m)) to *pos.
*
* Note that in order to represent "a mod m" as
*
* (isl_ast_expr_op_pdiv_r, a, m)
*
* we need to make sure that a is non-negative.
* If not, we check if "-a + m - 1" is non-negative.
* If so, we can rewrite
*
* floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m)
*
* and still extract a modulo.
*/
static int extract_modulo(struct isl_extract_mod_data *data)
{
data->div = isl_aff_get_div(data->aff, data->i);
data->d = isl_aff_get_denominator_val(data->div);
if (isl_val_is_divisible_by(data->v, data->d)) {
data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d));
if (try_extract_mod(data) < 0)
data->aff = isl_aff_free(data->aff);
}
isl_aff_free(data->div);
isl_val_free(data->d);
return 0;
}
/* Check if "aff" involves any (implicit) modulo computations.
* If so, remove them from aff and add expressions corresponding
* to those modulo computations to *pos and/or *neg.
* We only do this if the option ast_build_prefer_pdiv is set.
*
* "aff" is assumed to be an integer affine expression.
*
* A modulo expression is of the form
*
* a mod m = a - m * floor(a / m)
*
* To detect them in aff, we look for terms of the form
*
* f * m * floor(a / m)
*
* rewrite them as
*
* f * (a - (a mod m)) = f * a - f * (a mod m)
*
* and extract out -f * (a mod m).
* In particular, if f > 0, we add (f * (a mod m)) to *neg.
* If f < 0, we add ((-f) * (a mod m)) to *pos.
*/
static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff,
__isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg,
__isl_keep isl_ast_build *build)
{
struct isl_extract_mod_data data = { build, aff, *pos, *neg };
isl_ctx *ctx;
isl_size n;
if (!aff)
return NULL;
ctx = isl_aff_get_ctx(aff);
if (!isl_options_get_ast_build_prefer_pdiv(ctx))
return aff;
n = isl_aff_dim(data.aff, isl_dim_div);
if (n < 0)
return isl_aff_free(aff);
for (data.i = 0; data.i < n; ++data.i) {
data.v = isl_aff_get_coefficient_val(data.aff,
isl_dim_div, data.i);
if (!data.v)
return isl_aff_free(aff);
if (isl_val_is_zero(data.v) ||
isl_val_is_one(data.v) || isl_val_is_negone(data.v)) {
isl_val_free(data.v);
continue;
}
if (extract_modulo(&data) < 0)
data.aff = isl_aff_free(data.aff);
isl_val_free(data.v);
if (!data.aff)
break;
}
if (data.add)
data.aff = isl_aff_add(data.aff, data.add);
*pos = data.pos;
*neg = data.neg;
return data.aff;
}
/* Check if aff involves any non-integer coefficients.
* If so, split aff into
*
* aff = aff1 + (aff2 / d)
*
* with both aff1 and aff2 having only integer coefficients.
* Return aff1 and add (aff2 / d) to *expr.
*/
static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff,
__isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build)
{
int i, j;
isl_size n;
isl_aff *rat = NULL;
isl_local_space *ls = NULL;
isl_ast_expr *rat_expr;
isl_val *v, *d;
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
if (!aff)
return NULL;
d = isl_aff_get_denominator_val(aff);
if (!d)
goto error;
if (isl_val_is_one(d)) {
isl_val_free(d);
return aff;
}
aff = isl_aff_scale_val(aff, isl_val_copy(d));
ls = isl_aff_get_domain_local_space(aff);
rat = isl_aff_zero_on_domain(isl_local_space_copy(ls));
for (i = 0; i < 3; ++i) {
n = isl_aff_dim(aff, t[i]);
if (n < 0)
goto error;
for (j = 0; j < n; ++j) {
isl_aff *rat_j;
v = isl_aff_get_coefficient_val(aff, t[i], j);
if (!v)
goto error;
if (isl_val_is_divisible_by(v, d)) {
isl_val_free(v);
continue;
}
rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls),
l[i], j);
rat_j = isl_aff_scale_val(rat_j, v);
rat = isl_aff_add(rat, rat_j);
}
}
v = isl_aff_get_constant_val(aff);
if (isl_val_is_divisible_by(v, d)) {
isl_val_free(v);
} else {
isl_aff *rat_0;
rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v);
rat = isl_aff_add(rat, rat_0);
}
isl_local_space_free(ls);
aff = isl_aff_sub(aff, isl_aff_copy(rat));
aff = isl_aff_scale_down_val(aff, isl_val_copy(d));
rat_expr = isl_ast_expr_from_aff(rat, build);
rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d));
*expr = ast_expr_add(*expr, rat_expr);
return aff;
error:
isl_aff_free(rat);
isl_local_space_free(ls);
isl_aff_free(aff);
isl_val_free(d);
return NULL;
}
/* Construct an isl_ast_expr that evaluates the affine expression "aff",
* The result is simplified in terms of build->domain.
*
* We first extract hidden modulo computations from the affine expression
* and then add terms for each variable with a non-zero coefficient.
* Finally, if the affine expression has a non-trivial denominator,
* we divide the resulting isl_ast_expr by this denominator.
*/
__isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff,
__isl_keep isl_ast_build *build)
{
int i, j;
isl_size n;
isl_val *v;
isl_ctx *ctx = isl_aff_get_ctx(aff);
isl_ast_expr *expr, *expr_neg;
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
isl_local_space *ls;
struct isl_ast_add_term_data data;
if (!aff)
return NULL;
expr = isl_ast_expr_alloc_int_si(ctx, 0);
expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
aff = extract_rational(aff, &expr, build);
aff = extract_modulos(aff, &expr, &expr_neg, build);
expr = ast_expr_sub(expr, expr_neg);
ls = isl_aff_get_domain_local_space(aff);
data.build = build;
data.cst = isl_aff_get_constant_val(aff);
for (i = 0; i < 3; ++i) {
n = isl_aff_dim(aff, t[i]);
if (n < 0)
expr = isl_ast_expr_free(expr);
for (j = 0; j < n; ++j) {
v = isl_aff_get_coefficient_val(aff, t[i], j);
if (!v)
expr = isl_ast_expr_free(expr);
if (isl_val_is_zero(v)) {
isl_val_free(v);
continue;
}
expr = isl_ast_expr_add_term(expr,
ls, l[i], j, v, &data);
}
}
expr = isl_ast_expr_add_int(expr, data.cst);
isl_local_space_free(ls);
isl_aff_free(aff);
return expr;
}
/* Add terms to "expr" for each variable in "aff" with a coefficient
* with sign equal to "sign".
* The result is simplified in terms of data->build->domain.
*/
static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr,
__isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data)
{
int i, j;
isl_val *v;
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div };
enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div };
isl_local_space *ls;
ls = isl_aff_get_domain_local_space(aff);
for (i = 0; i < 3; ++i) {
isl_size n = isl_aff_dim(aff, t[i]);
if (n < 0)
expr = isl_ast_expr_free(expr);
for (j = 0; j < n; ++j) {
v = isl_aff_get_coefficient_val(aff, t[i], j);
if (sign * isl_val_sgn(v) <= 0) {
isl_val_free(v);
continue;
}
v = isl_val_abs(v);
expr = isl_ast_expr_add_term(expr,
ls, l[i], j, v, data);
}
}
isl_local_space_free(ls);
return expr;
}
/* Should the constant term "v" be considered positive?
*
* A positive constant will be added to "pos" by the caller,
* while a negative constant will be added to "neg".
* If either "pos" or "neg" is exactly zero, then we prefer
* to add the constant "v" to that side, irrespective of the sign of "v".
* This results in slightly shorter expressions and may reduce the risk
* of overflows.
*/
static int constant_is_considered_positive(__isl_keep isl_val *v,
__isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg)
{
if (ast_expr_is_zero(pos))
return 1;
if (ast_expr_is_zero(neg))
return 0;
return isl_val_is_pos(v);
}
/* Check if the equality
*
* aff = 0
*
* represents a stride constraint on the integer division "pos".
*
* In particular, if the integer division "pos" is equal to
*
* floor(e/d)
*
* then check if aff is equal to
*
* e - d floor(e/d)
*
* or its opposite.
*
* If so, the equality is exactly
*
* e mod d = 0
*
* Note that in principle we could also accept
*
* e - d floor(e'/d)
*
* where e and e' differ by a constant.
*/
static int is_stride_constraint(__isl_keep isl_aff *aff, int pos)
{
isl_aff *div;
isl_val *c, *d;
int eq;
div = isl_aff_get_div(aff, pos);
c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
d = isl_aff_get_denominator_val(div);
eq = isl_val_abs_eq(c, d);
if (eq >= 0 && eq) {
aff = isl_aff_copy(aff);
aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
div = isl_aff_scale_val(div, d);
if (isl_val_is_pos(c))
div = isl_aff_neg(div);
eq = isl_aff_plain_is_equal(div, aff);
isl_aff_free(aff);
} else
isl_val_free(d);
isl_val_free(c);
isl_aff_free(div);
return eq;
}
/* Are all coefficients of "aff" (zero or) negative?
*/
static isl_bool all_negative_coefficients(__isl_keep isl_aff *aff)
{
int i;
isl_size n;
n = isl_aff_dim(aff, isl_dim_param);
if (n < 0)
return isl_bool_error;
for (i = 0; i < n; ++i)
if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0)
return isl_bool_false;
n = isl_aff_dim(aff, isl_dim_in);
if (n < 0)
return isl_bool_error;
for (i = 0; i < n; ++i)
if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0)
return isl_bool_false;
return isl_bool_true;
}
/* Give an equality of the form
*
* aff = e - d floor(e/d) = 0
*
* or
*
* aff = -e + d floor(e/d) = 0
*
* with the integer division "pos" equal to floor(e/d),
* construct the AST expression
*
* (isl_ast_expr_op_eq,
* (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
*
* If e only has negative coefficients, then construct
*
* (isl_ast_expr_op_eq,
* (isl_ast_expr_op_zdiv_r, expr(-e), expr(d)), expr(0))
*
* instead.
*/
static __isl_give isl_ast_expr *extract_stride_constraint(
__isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build)
{
isl_bool all_neg;
isl_ctx *ctx;
isl_val *c;
isl_ast_expr *expr, *cst;
if (!aff)
return NULL;
ctx = isl_aff_get_ctx(aff);
c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos);
aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0);
all_neg = all_negative_coefficients(aff);
if (all_neg < 0)
aff = isl_aff_free(aff);
else if (all_neg)
aff = isl_aff_neg(aff);
cst = isl_ast_expr_from_val(isl_val_abs(c));
expr = isl_ast_expr_from_aff(aff, build);
expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_zdiv_r, expr, cst);
cst = isl_ast_expr_alloc_int_si(ctx, 0);
expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_eq, expr, cst);
return expr;
}
/* Construct an isl_ast_expr that evaluates the condition "constraint",
* The result is simplified in terms of build->domain.
*
* We first check if the constraint is an equality of the form
*
* e - d floor(e/d) = 0
*
* i.e.,
*
* e mod d = 0
*
* If so, we convert it to
*
* (isl_ast_expr_op_eq,
* (isl_ast_expr_op_zdiv_r, expr(e), expr(d)), expr(0))
*
* Otherwise, let the constraint by either "a >= 0" or "a == 0".
* We first extract hidden modulo computations from "a"
* and then collect all the terms with a positive coefficient in cons_pos
* and the terms with a negative coefficient in cons_neg.
*
* The result is then of the form
*
* (isl_ast_expr_op_ge, expr(pos), expr(-neg)))
*
* or
*
* (isl_ast_expr_op_eq, expr(pos), expr(-neg)))
*
* However, if the first expression is an integer constant (and the second
* is not), then we swap the two expressions. This ensures that we construct,
* e.g., "i <= 5" rather than "5 >= i".
*
* Furthermore, is there are no terms with positive coefficients (or no terms
* with negative coefficients), then the constant term is added to "pos"
* (or "neg"), ignoring the sign of the constant term.
*/
static __isl_give isl_ast_expr *isl_ast_expr_from_constraint(
__isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build)
{
int i;
isl_size n;
isl_ctx *ctx;
isl_ast_expr *expr_pos;
isl_ast_expr *expr_neg;
isl_ast_expr *expr;
isl_aff *aff;
int eq;
enum isl_ast_expr_op_type type;
struct isl_ast_add_term_data data;
if (!constraint)
return NULL;
aff = isl_constraint_get_aff(constraint);
eq = isl_constraint_is_equality(constraint);
isl_constraint_free(constraint);
n = isl_aff_dim(aff, isl_dim_div);
if (n < 0)
aff = isl_aff_free(aff);
if (eq && n > 0)
for (i = 0; i < n; ++i) {
int is_stride;
is_stride = is_stride_constraint(aff, i);
if (is_stride < 0)
goto error;
if (is_stride)
return extract_stride_constraint(aff, i, build);
}
ctx = isl_aff_get_ctx(aff);
expr_pos = isl_ast_expr_alloc_int_si(ctx, 0);
expr_neg = isl_ast_expr_alloc_int_si(ctx, 0);
aff = extract_modulos(aff, &expr_pos, &expr_neg, build);
data.build = build;
data.cst = isl_aff_get_constant_val(aff);
expr_pos = add_signed_terms(expr_pos, aff, 1, &data);
data.cst = isl_val_neg(data.cst);
expr_neg = add_signed_terms(expr_neg, aff, -1, &data);
data.cst = isl_val_neg(data.cst);
if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) {
expr_pos = isl_ast_expr_add_int(expr_pos, data.cst);
} else {
data.cst = isl_val_neg(data.cst);
expr_neg = isl_ast_expr_add_int(expr_neg, data.cst);
}
if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int &&
isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) {
type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_le;
expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos);
} else {
type = eq ? isl_ast_expr_op_eq : isl_ast_expr_op_ge;
expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg);
}
isl_aff_free(aff);
return expr;
error:
isl_aff_free(aff);
return NULL;
}
/* Wrapper around isl_constraint_cmp_last_non_zero for use
* as a callback to isl_constraint_list_sort.
* If isl_constraint_cmp_last_non_zero cannot tell the constraints
* apart, then use isl_constraint_plain_cmp instead.
*/
static int cmp_constraint(__isl_keep isl_constraint *a,
__isl_keep isl_constraint *b, void *user)
{
int cmp;
cmp = isl_constraint_cmp_last_non_zero(a, b);
if (cmp != 0)
return cmp;
return isl_constraint_plain_cmp(a, b);
}
/* Construct an isl_ast_expr that evaluates the conditions defining "bset".
* The result is simplified in terms of build->domain.
*
* If "bset" is not bounded by any constraint, then we construct
* the expression "1", i.e., "true".
*
* Otherwise, we sort the constraints, putting constraints that involve
* integer divisions after those that do not, and construct an "and"
* of the ast expressions of the individual constraints.
*
* Each constraint is added to the generated constraints of the build
* after it has been converted to an AST expression so that it can be used
* to simplify the following constraints. This may change the truth value
* of subsequent constraints that do not satisfy the earlier constraints,
* but this does not affect the outcome of the conjunction as it is
* only true if all the conjuncts are true (no matter in what order
* they are evaluated). In particular, the constraints that do not
* involve integer divisions may serve to simplify some constraints
* that do involve integer divisions.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set(
__isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset)
{
int i;
isl_size n;
isl_constraint *c;
isl_constraint_list *list;
isl_ast_expr *res;
isl_set *set;
list = isl_basic_set_get_constraint_list(bset);
isl_basic_set_free(bset);
list = isl_constraint_list_sort(list, &cmp_constraint, NULL);
n = isl_constraint_list_n_constraint(list);
if (n < 0)
build = NULL;
if (n == 0) {
isl_ctx *ctx = isl_constraint_list_get_ctx(list);
isl_constraint_list_free(list);
return isl_ast_expr_alloc_int_si(ctx, 1);
}
build = isl_ast_build_copy(build);
c = isl_constraint_list_get_constraint(list, 0);
bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
set = isl_set_from_basic_set(bset);
res = isl_ast_expr_from_constraint(c, build);
build = isl_ast_build_restrict_generated(build, set);
for (i = 1; i < n; ++i) {
isl_ast_expr *expr;
c = isl_constraint_list_get_constraint(list, i);
bset = isl_basic_set_from_constraint(isl_constraint_copy(c));
set = isl_set_from_basic_set(bset);
expr = isl_ast_expr_from_constraint(c, build);
build = isl_ast_build_restrict_generated(build, set);
res = isl_ast_expr_and(res, expr);
}
isl_constraint_list_free(list);
isl_ast_build_free(build);
return res;
}
/* Construct an isl_ast_expr that evaluates the conditions defining "set".
* The result is simplified in terms of build->domain.
*
* If "set" is an (obviously) empty set, then return the expression "0".
*
* If there are multiple disjuncts in the description of the set,
* then subsequent disjuncts are simplified in a context where
* the previous disjuncts have been removed from build->domain.
* In particular, constraints that ensure that there is no overlap
* with these previous disjuncts, can be removed.
* This is mostly useful for disjuncts that are only defined by
* a single constraint (relative to the build domain) as the opposite
* of that single constraint can then be removed from the other disjuncts.
* In order not to increase the number of disjuncts in the build domain
* after subtracting the previous disjuncts of "set", the simple hull
* is computed after taking the difference with each of these disjuncts.
* This means that constraints that prevent overlap with a union
* of multiple previous disjuncts are not removed.
*
* "set" lives in the internal schedule space.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal(
__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
int i;
isl_size n;
isl_basic_set *bset;
isl_basic_set_list *list;
isl_set *domain;
isl_ast_expr *res;
list = isl_set_get_basic_set_list(set);
isl_set_free(set);
n = isl_basic_set_list_n_basic_set(list);
if (n < 0)
build = NULL;
if (n == 0) {
isl_ctx *ctx = isl_ast_build_get_ctx(build);
isl_basic_set_list_free(list);
return isl_ast_expr_from_val(isl_val_zero(ctx));
}
domain = isl_ast_build_get_domain(build);
bset = isl_basic_set_list_get_basic_set(list, 0);
set = isl_set_from_basic_set(isl_basic_set_copy(bset));
res = isl_ast_build_expr_from_basic_set(build, bset);
for (i = 1; i < n; ++i) {
isl_ast_expr *expr;
isl_set *rest;
rest = isl_set_subtract(isl_set_copy(domain), set);
rest = isl_set_from_basic_set(isl_set_simple_hull(rest));
domain = isl_set_intersect(domain, rest);
bset = isl_basic_set_list_get_basic_set(list, i);
set = isl_set_from_basic_set(isl_basic_set_copy(bset));
bset = isl_basic_set_gist(bset,
isl_set_simple_hull(isl_set_copy(domain)));
expr = isl_ast_build_expr_from_basic_set(build, bset);
res = isl_ast_expr_or(res, expr);
}
isl_set_free(domain);
isl_set_free(set);
isl_basic_set_list_free(list);
return res;
}
/* Construct an isl_ast_expr that evaluates the conditions defining "set".
* The result is simplified in terms of build->domain.
*
* If "set" is an (obviously) empty set, then return the expression "0".
*
* "set" lives in the external schedule space.
*
* The internal AST expression generation assumes that there are
* no unknown divs, so make sure an explicit representation is available.
* Since the set comes from the outside, it may have constraints that
* are redundant with respect to the build domain. Remove them first.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_set(
__isl_keep isl_ast_build *build, __isl_take isl_set *set)
{
isl_bool needs_map;
needs_map = isl_ast_build_need_schedule_map(build);
if (needs_map < 0) {
set = isl_set_free(set);
} else if (needs_map) {
isl_multi_aff *ma;
ma = isl_ast_build_get_schedule_map_multi_aff(build);
set = isl_set_preimage_multi_aff(set, ma);
}
set = isl_set_compute_divs(set);
set = isl_ast_build_compute_gist(build, set);
return isl_ast_build_expr_from_set_internal(build, set);
}
/* State of data about previous pieces in
* isl_ast_build_expr_from_pw_aff_internal.
*
* isl_state_none: no data about previous pieces
* isl_state_single: data about a single previous piece
* isl_state_min: data represents minimum of several pieces
* isl_state_max: data represents maximum of several pieces
*/
enum isl_from_pw_aff_state {
isl_state_none,
isl_state_single,
isl_state_min,
isl_state_max
};
/* Internal date structure representing a single piece in the input of
* isl_ast_build_expr_from_pw_aff_internal.
*
* If "state" is isl_state_none, then "set_list" and "aff_list" are not used.
* If "state" is isl_state_single, then "set_list" and "aff_list" contain the
* single previous subpiece.
* If "state" is isl_state_min, then "set_list" and "aff_list" contain
* a sequence of several previous subpieces that are equal to the minimum
* of the entries in "aff_list" over the union of "set_list"
* If "state" is isl_state_max, then "set_list" and "aff_list" contain
* a sequence of several previous subpieces that are equal to the maximum
* of the entries in "aff_list" over the union of "set_list"
*
* During the construction of the pieces, "set" is NULL.
* After the construction, "set" is set to the union of the elements
* in "set_list", at which point "set_list" is set to NULL.
*/
struct isl_from_pw_aff_piece {
enum isl_from_pw_aff_state state;
isl_set *set;
isl_set_list *set_list;
isl_aff_list *aff_list;
};
/* Internal data structure for isl_ast_build_expr_from_pw_aff_internal.
*
* "build" specifies the domain against which the result is simplified.
* "dom" is the domain of the entire isl_pw_aff.
*
* "n" is the number of pieces constructed already.
* In particular, during the construction of the pieces, "n" points to
* the piece that is being constructed. After the construction of the
* pieces, "n" is set to the total number of pieces.
* "max" is the total number of allocated entries.
* "p" contains the individual pieces.
*/
struct isl_from_pw_aff_data {
isl_ast_build *build;
isl_set *dom;
int n;
int max;
struct isl_from_pw_aff_piece *p;
};
/* Initialize "data" based on "build" and "pa".
*/
static isl_stat isl_from_pw_aff_data_init(struct isl_from_pw_aff_data *data,
__isl_keep isl_ast_build *build, __isl_keep isl_pw_aff *pa)
{
isl_size n;
isl_ctx *ctx;
ctx = isl_pw_aff_get_ctx(pa);
n = isl_pw_aff_n_piece(pa);
if (n < 0)
return isl_stat_error;
if (n == 0)
isl_die(ctx, isl_error_invalid,
"cannot handle void expression", return isl_stat_error);
data->max = n;
data->p = isl_calloc_array(ctx, struct isl_from_pw_aff_piece, n);
if (!data->p)
return isl_stat_error;
data->build = build;
data->dom = isl_pw_aff_domain(isl_pw_aff_copy(pa));
data->n = 0;
return isl_stat_ok;
}
/* Free all memory allocated for "data".
*/
static void isl_from_pw_aff_data_clear(struct isl_from_pw_aff_data *data)
{
int i;
isl_set_free(data->dom);
if (!data->p)
return;
for (i = 0; i < data->max; ++i) {
isl_set_free(data->p[i].set);
isl_set_list_free(data->p[i].set_list);
isl_aff_list_free(data->p[i].aff_list);
}
free(data->p);
}
/* Initialize the current entry of "data" to an unused piece.
*/
static void set_none(struct isl_from_pw_aff_data *data)
{
data->p[data->n].state = isl_state_none;
data->p[data->n].set_list = NULL;
data->p[data->n].aff_list = NULL;
}
/* Store "set" and "aff" in the current entry of "data" as a single subpiece.
*/
static void set_single(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff)
{
data->p[data->n].state = isl_state_single;
data->p[data->n].set_list = isl_set_list_from_set(set);
data->p[data->n].aff_list = isl_aff_list_from_aff(aff);
}
/* Extend the current entry of "data" with "set" and "aff"
* as a minimum expression.
*/
static isl_stat extend_min(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff)
{
int n = data->n;
data->p[n].state = isl_state_min;
data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
if (!data->p[n].set_list || !data->p[n].aff_list)
return isl_stat_error;
return isl_stat_ok;
}
/* Extend the current entry of "data" with "set" and "aff"
* as a maximum expression.
*/
static isl_stat extend_max(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff)
{
int n = data->n;
data->p[n].state = isl_state_max;
data->p[n].set_list = isl_set_list_add(data->p[n].set_list, set);
data->p[n].aff_list = isl_aff_list_add(data->p[n].aff_list, aff);
if (!data->p[n].set_list || !data->p[n].aff_list)
return isl_stat_error;
return isl_stat_ok;
}
/* Extend the domain of the current entry of "data", which is assumed
* to contain a single subpiece, with "set". If "replace" is set,
* then also replace the affine function by "aff". Otherwise,
* simply free "aff".
*/
static isl_stat extend_domain(struct isl_from_pw_aff_data *data,
__isl_take isl_set *set, __isl_take isl_aff *aff, int replace)
{
int n = data->n;
isl_set *set_n;
set_n = isl_set_list_get_set(data->p[n].set_list, 0);
set_n = isl_set_union(set_n, set);
data->p[n].set_list =
isl_set_list_set_set(data->p[n].set_list, 0, set_n);
if (replace)
data->p[n].aff_list =
isl_aff_list_set_aff(data->p[n].aff_list, 0, aff);
else
isl_aff_free(aff);
if (!data->p[n].set_list || !data->p[n].aff_list)
return isl_stat_error;
return isl_stat_ok;
}
/* Construct an isl_ast_expr from "list" within "build".
* If "state" is isl_state_single, then "list" contains a single entry and
* an isl_ast_expr is constructed for that entry.
* Otherwise a min or max expression is constructed from "list"
* depending on "state".
*/
static __isl_give isl_ast_expr *ast_expr_from_aff_list(
__isl_take isl_aff_list *list, enum isl_from_pw_aff_state state,
__isl_keep isl_ast_build *build)
{
int i;
isl_size n;
isl_aff *aff;
isl_ast_expr *expr = NULL;
enum isl_ast_expr_op_type op_type;
if (state == isl_state_single) {
aff = isl_aff_list_get_aff(list, 0);
isl_aff_list_free(list);
return isl_ast_expr_from_aff(aff, build);
}
n = isl_aff_list_n_aff(list);
if (n < 0)
goto error;
op_type = state == isl_state_min ? isl_ast_expr_op_min
: isl_ast_expr_op_max;
expr = isl_ast_expr_alloc_op(isl_ast_build_get_ctx(build), op_type, n);
if (!expr)
goto error;
for (i = 0; i < n; ++i) {
isl_ast_expr *expr_i;
aff = isl_aff_list_get_aff(list, i);
expr_i = isl_ast_expr_from_aff(aff, build);
if (!expr_i)
goto error;
expr->u.op.args[i] = expr_i;
}
isl_aff_list_free(list);
return expr;
error:
isl_aff_list_free(list);
isl_ast_expr_free(expr);
return NULL;
}
/* Extend the expression in "next" to take into account
* the piece at position "pos" in "data", allowing for a further extension
* for the next piece(s).
* In particular, "next" is set to a select operation that selects
* an isl_ast_expr corresponding to data->aff_list on data->set and
* to an expression that will be filled in by later calls.
* Return a pointer to this location.
* Afterwards, the state of "data" is set to isl_state_none.
*
* The constraints of data->set are added to the generated
* constraints of the build such that they can be exploited to simplify
* the AST expression constructed from data->aff_list.
*/
static isl_ast_expr **add_intermediate_piece(struct isl_from_pw_aff_data *data,
int pos, isl_ast_expr **next)
{
isl_ctx *ctx;
isl_ast_build *build;
isl_ast_expr *ternary, *arg;
isl_set *set, *gist;
set = data->p[pos].set;
data->p[pos].set = NULL;
ctx = isl_ast_build_get_ctx(data->build);
ternary = isl_ast_expr_alloc_op(ctx, isl_ast_expr_op_select, 3);
gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom));
arg = isl_ast_build_expr_from_set_internal(data->build, gist);
ternary = isl_ast_expr_set_op_arg(ternary, 0, arg);
build = isl_ast_build_copy(data->build);
build = isl_ast_build_restrict_generated(build, set);
arg = ast_expr_from_aff_list(data->p[pos].aff_list,
data->p[pos].state, build);
data->p[pos].aff_list = NULL;
isl_ast_build_free(build);
ternary = isl_ast_expr_set_op_arg(ternary, 1, arg);
data->p[pos].state = isl_state_none;
if (!ternary)
return NULL;
*next = ternary;
return &ternary->u.op.args[2];
}
/* Extend the expression in "next" to take into account
* the final piece, located at position "pos" in "data".
* In particular, "next" is set to evaluate data->aff_list
* and the domain is ignored.
* Return isl_stat_ok on success and isl_stat_error on failure.
*
* The constraints of data->set are however added to the generated
* constraints of the build such that they can be exploited to simplify
* the AST expression constructed from data->aff_list.
*/
static isl_stat add_last_piece(struct isl_from_pw_aff_data *data,
int pos, isl_ast_expr **next)
{
isl_ast_build *build;
if (data->p[pos].state == isl_state_none)
isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
"cannot handle void expression", return isl_stat_error);
build = isl_ast_build_copy(data->build);
build = isl_ast_build_restrict_generated(build, data->p[pos].set);
data->p[pos].set = NULL;
*next = ast_expr_from_aff_list(data->p[pos].aff_list,
data->p[pos].state, build);
data->p[pos].aff_list = NULL;
isl_ast_build_free(build);
data->p[pos].state = isl_state_none;
if (!*next)
return isl_stat_error;
return isl_stat_ok;
}
/* Return -1 if the piece "p1" should be sorted before "p2"
* and 1 if it should be sorted after "p2".
* Return 0 if they do not need to be sorted in a specific order.
*
* Pieces are sorted according to the number of disjuncts
* in their domains.
*/
static int sort_pieces_cmp(const void *p1, const void *p2, void *arg)
{
const struct isl_from_pw_aff_piece *piece1 = p1;
const struct isl_from_pw_aff_piece *piece2 = p2;
isl_size n1, n2;
n1 = isl_set_n_basic_set(piece1->set);
n2 = isl_set_n_basic_set(piece2->set);
return n1 - n2;
}
/* Construct an isl_ast_expr from the pieces in "data".
* Return the result or NULL on failure.
*
* When this function is called, data->n points to the current piece.
* If this is an effective piece, then first increment data->n such
* that data->n contains the number of pieces.
* The "set_list" fields are subsequently replaced by the corresponding
* "set" fields, after which the pieces are sorted according to
* the number of disjuncts in these "set" fields.
*
* Construct intermediate AST expressions for the initial pieces and
* finish off with the final pieces.
*/
static isl_ast_expr *build_pieces(struct isl_from_pw_aff_data *data)
{
int i;
isl_ast_expr *res = NULL;
isl_ast_expr **next = &res;
if (data->p[data->n].state != isl_state_none)
data->n++;
if (data->n == 0)
isl_die(isl_ast_build_get_ctx(data->build), isl_error_invalid,
"cannot handle void expression", return NULL);
for (i = 0; i < data->n; ++i) {
data->p[i].set = isl_set_list_union(data->p[i].set_list);
if (data->p[i].state != isl_state_single)
data->p[i].set = isl_set_coalesce(data->p[i].set);
data->p[i].set_list = NULL;
}
if (isl_sort(data->p, data->n, sizeof(data->p[0]),
&sort_pieces_cmp, NULL) < 0)
return isl_ast_expr_free(res);
for (i = 0; i + 1 < data->n; ++i) {
next = add_intermediate_piece(data, i, next);
if (!next)
return isl_ast_expr_free(res);
}
if (add_last_piece(data, data->n - 1, next) < 0)
return isl_ast_expr_free(res);
return res;
}
/* Is the domain of the current entry of "data", which is assumed
* to contain a single subpiece, a subset of "set"?
*/
static isl_bool single_is_subset(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set)
{
isl_bool subset;
isl_set *set_n;
set_n = isl_set_list_get_set(data->p[data->n].set_list, 0);
subset = isl_set_is_subset(set_n, set);
isl_set_free(set_n);
return subset;
}
/* Is "aff" a rational expression, i.e., does it have a denominator
* different from one?
*/
static isl_bool aff_is_rational(__isl_keep isl_aff *aff)
{
isl_bool rational;
isl_val *den;
den = isl_aff_get_denominator_val(aff);
rational = isl_bool_not(isl_val_is_one(den));
isl_val_free(den);
return rational;
}
/* Does "list" consist of a single rational affine expression?
*/
static isl_bool is_single_rational_aff(__isl_keep isl_aff_list *list)
{
isl_size n;
isl_bool rational;
isl_aff *aff;
n = isl_aff_list_n_aff(list);
if (n < 0)
return isl_bool_error;
if (n != 1)
return isl_bool_false;
aff = isl_aff_list_get_aff(list, 0);
rational = aff_is_rational(aff);
isl_aff_free(aff);
return rational;
}
/* Can the list of subpieces in the last piece of "data" be extended with
* "set" and "aff" based on "test"?
* In particular, is it the case for each entry (set_i, aff_i) that
*
* test(aff, aff_i) holds on set_i, and
* test(aff_i, aff) holds on set?
*
* "test" returns the set of elements where the tests holds, meaning
* that test(aff_i, aff) holds on set if set is a subset of test(aff_i, aff).
*
* This function is used to detect min/max expressions.
* If the ast_build_detect_min_max option is turned off, then
* do not even try and perform any detection and return false instead.
*
* Rational affine expressions are not considered for min/max expressions
* since the combined expression will be defined on the union of the domains,
* while a rational expression may only yield integer values
* on its own definition domain.
*/
static isl_bool extends(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set, __isl_keep isl_aff *aff,
__isl_give isl_basic_set *(*test)(__isl_take isl_aff *aff1,
__isl_take isl_aff *aff2))
{
int i;
isl_size n;
isl_bool is_rational;
isl_ctx *ctx;
isl_set *dom;
is_rational = aff_is_rational(aff);
if (is_rational >= 0 && !is_rational)
is_rational = is_single_rational_aff(data->p[data->n].aff_list);
if (is_rational < 0 || is_rational)
return isl_bool_not(is_rational);
ctx = isl_ast_build_get_ctx(data->build);
if (!isl_options_get_ast_build_detect_min_max(ctx))
return isl_bool_false;
n = isl_set_list_n_set(data->p[data->n].set_list);
if (n < 0)
return isl_bool_error;
dom = isl_ast_build_get_domain(data->build);
set = isl_set_intersect(dom, isl_set_copy(set));
for (i = 0; i < n ; ++i) {
isl_aff *aff_i;
isl_set *valid;
isl_set *dom, *required;
isl_bool is_valid;
aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
valid = isl_set_from_basic_set(test(isl_aff_copy(aff), aff_i));
required = isl_set_list_get_set(data->p[data->n].set_list, i);
dom = isl_ast_build_get_domain(data->build);
required = isl_set_intersect(dom, required);
is_valid = isl_set_is_subset(required, valid);
isl_set_free(required);
isl_set_free(valid);
if (is_valid < 0 || !is_valid) {
isl_set_free(set);
return is_valid;
}
aff_i = isl_aff_list_get_aff(data->p[data->n].aff_list, i);
valid = isl_set_from_basic_set(test(aff_i, isl_aff_copy(aff)));
is_valid = isl_set_is_subset(set, valid);
isl_set_free(valid);
if (is_valid < 0 || !is_valid) {
isl_set_free(set);
return is_valid;
}
}
isl_set_free(set);
return isl_bool_true;
}
/* Can the list of pieces in "data" be extended with "set" and "aff"
* to form/preserve a minimum expression?
* In particular, is it the case for each entry (set_i, aff_i) that
*
* aff >= aff_i on set_i, and
* aff_i >= aff on set?
*/
static isl_bool extends_min(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set, __isl_keep isl_aff *aff)
{
return extends(data, set, aff, &isl_aff_ge_basic_set);
}
/* Can the list of pieces in "data" be extended with "set" and "aff"
* to form/preserve a maximum expression?
* In particular, is it the case for each entry (set_i, aff_i) that
*
* aff <= aff_i on set_i, and
* aff_i <= aff on set?
*/
static isl_bool extends_max(struct isl_from_pw_aff_data *data,
__isl_keep isl_set *set, __isl_keep isl_aff *aff)
{
return extends(data, set, aff, &isl_aff_le_basic_set);
}
/* This function is called during the construction of an isl_ast_expr
* that evaluates an isl_pw_aff.
* If the last piece of "data" contains a single subpiece and
* if its affine function is equal to "aff" on a part of the domain
* that includes either "set" or the domain of that single subpiece,
* then extend the domain of that single subpiece with "set".
* If it was the original domain of the single subpiece where
* the two affine functions are equal, then also replace
* the affine function of the single subpiece by "aff".
* If the last piece of "data" contains either a single subpiece
* or a minimum, then check if this minimum expression can be extended
* with (set, aff).
* If so, extend the sequence and return.
* Perform the same operation for maximum expressions.
* If no such extension can be performed, then move to the next piece
* in "data" (if the current piece contains any data), and then store
* the current subpiece in the current piece of "data" for later handling.
*/
static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set,
__isl_take isl_aff *aff, void *user)
{
struct isl_from_pw_aff_data *data = user;
isl_bool test;
enum isl_from_pw_aff_state state;
state = data->p[data->n].state;
if (state == isl_state_single) {
isl_aff *aff0;
isl_set *eq;
isl_bool subset1, subset2 = isl_bool_false;
aff0 = isl_aff_list_get_aff(data->p[data->n].aff_list, 0);
eq = isl_aff_eq_set(isl_aff_copy(aff), aff0);
subset1 = isl_set_is_subset(set, eq);
if (subset1 >= 0 && !subset1)
subset2 = single_is_subset(data, eq);
isl_set_free(eq);
if (subset1 < 0 || subset2 < 0)
goto error;
if (subset1)
return extend_domain(data, set, aff, 0);
if (subset2)
return extend_domain(data, set, aff, 1);
}
if (state == isl_state_single || state == isl_state_min) {
test = extends_min(data, set, aff);
if (test < 0)
goto error;
if (test)
return extend_min(data, set, aff);
}
if (state == isl_state_single || state == isl_state_max) {
test = extends_max(data, set, aff);
if (test < 0)
goto error;
if (test)
return extend_max(data, set, aff);
}
if (state != isl_state_none)
data->n++;
set_single(data, set, aff);
return isl_stat_ok;
error:
isl_set_free(set);
isl_aff_free(aff);
return isl_stat_error;
}
/* Construct an isl_ast_expr that evaluates "pa".
* The result is simplified in terms of build->domain.
*
* The domain of "pa" lives in the internal schedule space.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal(
__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
struct isl_from_pw_aff_data data = { NULL };
isl_ast_expr *res = NULL;
pa = isl_ast_build_compute_gist_pw_aff(build, pa);
pa = isl_pw_aff_coalesce(pa);
if (!pa)
return NULL;
if (isl_from_pw_aff_data_init(&data, build, pa) < 0)
goto error;
set_none(&data);
if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) >= 0)
res = build_pieces(&data);
isl_pw_aff_free(pa);
isl_from_pw_aff_data_clear(&data);
return res;
error:
isl_pw_aff_free(pa);
isl_from_pw_aff_data_clear(&data);
return NULL;
}
/* Construct an isl_ast_expr that evaluates "pa".
* The result is simplified in terms of build->domain.
*
* The domain of "pa" lives in the external schedule space.
*/
__isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff(
__isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa)
{
isl_ast_expr *expr;
isl_bool needs_map;
needs_map = isl_ast_build_need_schedule_map(build);
if (needs_map < 0) {
pa = isl_pw_aff_free(pa);
} else if (needs_map) {
isl_multi_aff *ma;
ma = isl_ast_build_get_schedule_map_multi_aff(build);
pa = isl_pw_aff_pullback_multi_aff(pa, ma);
}
expr = isl_ast_build_expr_from_pw_aff_internal(build, pa);
return expr;
}
/* Set the ids of the input dimensions of "mpa" to the iterator ids
* of "build".
*
* The domain of "mpa" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_multi_pw_aff *set_iterator_names(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
int i;
isl_size n;
n = isl_multi_pw_aff_dim(mpa, isl_dim_in);
if (n < 0)
return isl_multi_pw_aff_free(mpa);
for (i = 0; i < n; ++i) {
isl_id *id;
id = isl_ast_build_get_iterator_id(build, i);
mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id);
}
return mpa;
}
/* Construct an isl_ast_expr of type "type" with as first argument "arg0" and
* the remaining arguments derived from "mpa".
* That is, construct a call or access expression that calls/accesses "arg0"
* with arguments/indices specified by "mpa".
*/
static __isl_give isl_ast_expr *isl_ast_build_with_arguments(
__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
__isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa)
{
int i;
isl_size n;
isl_ctx *ctx;
isl_ast_expr *expr;
ctx = isl_ast_build_get_ctx(build);
n = isl_multi_pw_aff_dim(mpa, isl_dim_out);
expr = n >= 0 ? isl_ast_expr_alloc_op(ctx, type, 1 + n) : NULL;
expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
for (i = 0; i < n; ++i) {
isl_pw_aff *pa;
isl_ast_expr *arg;
pa = isl_multi_pw_aff_get_pw_aff(mpa, i);
arg = isl_ast_build_expr_from_pw_aff_internal(build, pa);
expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg);
}
isl_multi_pw_aff_free(mpa);
return expr;
}
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
__isl_take isl_multi_pw_aff *mpa);
/* Construct an isl_ast_expr that accesses the member specified by "mpa".
* The range of "mpa" is assumed to be wrapped relation.
* The domain of this wrapped relation specifies the structure being
* accessed, while the range of this wrapped relation spacifies the
* member of the structure being accessed.
*
* The domain of "mpa" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
isl_id *id;
isl_multi_pw_aff *domain;
isl_ast_expr *domain_expr, *expr;
enum isl_ast_expr_op_type type = isl_ast_expr_op_access;
domain = isl_multi_pw_aff_copy(mpa);
domain = isl_multi_pw_aff_range_factor_domain(domain);
domain_expr = isl_ast_build_from_multi_pw_aff_internal(build,
type, domain);
mpa = isl_multi_pw_aff_range_factor_range(mpa);
if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
"missing field name", goto error);
id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
expr = isl_ast_expr_from_id(id);
expr = isl_ast_expr_alloc_binary(isl_ast_expr_op_member,
domain_expr, expr);
return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
isl_multi_pw_aff_free(mpa);
return NULL;
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "mpa".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* If the range of "mpa" is a mapped relation, then we assume it
* represents an access to a member of a structure.
*
* The domain of "mpa" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal(
__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
__isl_take isl_multi_pw_aff *mpa)
{
isl_ctx *ctx;
isl_id *id;
isl_ast_expr *expr;
if (!mpa)
goto error;
if (type == isl_ast_expr_op_access &&
isl_multi_pw_aff_range_is_wrapping(mpa))
return isl_ast_build_from_multi_pw_aff_member(build, mpa);
mpa = set_iterator_names(build, mpa);
if (!build || !mpa)
goto error;
ctx = isl_ast_build_get_ctx(build);
if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out))
id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out);
else
id = isl_id_alloc(ctx, "", NULL);
expr = isl_ast_expr_from_id(id);
return isl_ast_build_with_arguments(build, type, expr, mpa);
error:
isl_multi_pw_aff_free(mpa);
return NULL;
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "pma".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the internal schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal(
__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
__isl_take isl_pw_multi_aff *pma)
{
isl_multi_pw_aff *mpa;
mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "mpa".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* The domain of "mpa" is assumed to live in the external schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff(
__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
__isl_take isl_multi_pw_aff *mpa)
{
isl_bool is_domain;
isl_bool needs_map;
isl_ast_expr *expr;
isl_space *space_build, *space_mpa;
space_build = isl_ast_build_get_space(build, 0);
space_mpa = isl_multi_pw_aff_get_space(mpa);
is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set,
space_mpa, isl_dim_in);
isl_space_free(space_build);
isl_space_free(space_mpa);
if (is_domain < 0)
goto error;
if (!is_domain)
isl_die(isl_ast_build_get_ctx(build), isl_error_invalid,
"spaces don't match", goto error);
needs_map = isl_ast_build_need_schedule_map(build);
if (needs_map < 0)
goto error;
if (needs_map) {
isl_multi_aff *ma;
ma = isl_ast_build_get_schedule_map_multi_aff(build);
mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma);
}
expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa);
return expr;
error:
isl_multi_pw_aff_free(mpa);
return NULL;
}
/* Construct an isl_ast_expr that calls the domain element specified by "mpa".
* The name of the function is obtained from the output tuple name.
* The arguments are given by the piecewise affine expressions.
*
* The domain of "mpa" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
return isl_ast_build_from_multi_pw_aff(build,
isl_ast_expr_op_call, mpa);
}
/* Construct an isl_ast_expr that accesses the array element specified by "mpa".
* The name of the array is obtained from the output tuple name.
* The index expressions are given by the piecewise affine expressions.
*
* The domain of "mpa" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff(
__isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa)
{
return isl_ast_build_from_multi_pw_aff(build,
isl_ast_expr_op_access, mpa);
}
/* Construct an isl_ast_expr of type "type" that calls or accesses
* the element specified by "pma".
* The first argument is obtained from the output tuple name.
* The remaining arguments are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the external schedule domain.
*/
static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff(
__isl_keep isl_ast_build *build, enum isl_ast_expr_op_type type,
__isl_take isl_pw_multi_aff *pma)
{
isl_multi_pw_aff *mpa;
mpa = isl_multi_pw_aff_from_pw_multi_aff(pma);
return isl_ast_build_from_multi_pw_aff(build, type, mpa);
}
/* Construct an isl_ast_expr that calls the domain element specified by "pma".
* The name of the function is obtained from the output tuple name.
* The arguments are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff(
__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
return isl_ast_build_from_pw_multi_aff(build,
isl_ast_expr_op_call, pma);
}
/* Construct an isl_ast_expr that accesses the array element specified by "pma".
* The name of the array is obtained from the output tuple name.
* The index expressions are given by the piecewise affine expressions.
*
* The domain of "pma" is assumed to live in the external schedule domain.
*/
__isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff(
__isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma)
{
return isl_ast_build_from_pw_multi_aff(build,
isl_ast_expr_op_access, pma);
}
/* Construct an isl_ast_expr that calls the domain element
* specified by "executed".
*
* "executed" is assumed to be single-valued, with a domain that lives
* in the internal schedule space.
*/
__isl_give isl_ast_node *isl_ast_build_call_from_executed(
__isl_keep isl_ast_build *build, __isl_take isl_map *executed)
{
isl_pw_multi_aff *iteration;
isl_ast_expr *expr;
iteration = isl_pw_multi_aff_from_map(executed);
iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration);
iteration = isl_pw_multi_aff_intersect_domain(iteration,
isl_ast_build_get_domain(build));
expr = isl_ast_build_from_pw_multi_aff_internal(build,
isl_ast_expr_op_call, iteration);
return isl_ast_node_alloc_user(expr);
}