mirror of
https://review.haiku-os.org/buildtools
synced 2024-11-23 15:29:11 +01:00
428 lines
12 KiB
C
428 lines
12 KiB
C
/*
|
|
* Copyright 2010 INRIA Saclay
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
|
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
|
* 91893 Orsay, France
|
|
*/
|
|
|
|
#include <isl_ctx_private.h>
|
|
#include <isl_map_private.h>
|
|
#include <isl_bound.h>
|
|
#include <isl_bernstein.h>
|
|
#include <isl_range.h>
|
|
#include <isl_polynomial_private.h>
|
|
#include <isl_options_private.h>
|
|
|
|
/* Given a polynomial "poly" that is constant in terms
|
|
* of the domain variables, construct a polynomial reduction
|
|
* of type "type" that is equal to "poly" on "bset",
|
|
* with the domain projected onto the parameters.
|
|
*/
|
|
__isl_give isl_pw_qpolynomial_fold *isl_qpolynomial_cst_bound(
|
|
__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
|
|
enum isl_fold type, isl_bool *tight)
|
|
{
|
|
isl_set *dom;
|
|
isl_qpolynomial_fold *fold;
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
|
|
fold = isl_qpolynomial_fold_alloc(type, poly);
|
|
dom = isl_set_from_basic_set(bset);
|
|
if (tight)
|
|
*tight = isl_bool_true;
|
|
pwf = isl_pw_qpolynomial_fold_alloc(type, dom, fold);
|
|
return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
|
|
}
|
|
|
|
/* Add the bound "pwf", which is not known to be tight,
|
|
* to the output of "bound".
|
|
*/
|
|
isl_stat isl_bound_add(struct isl_bound *bound,
|
|
__isl_take isl_pw_qpolynomial_fold *pwf)
|
|
{
|
|
bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
|
|
return isl_stat_non_null(bound->pwf);
|
|
}
|
|
|
|
/* Add the bound "pwf", which is known to be tight,
|
|
* to the output of "bound".
|
|
*/
|
|
isl_stat isl_bound_add_tight(struct isl_bound *bound,
|
|
__isl_take isl_pw_qpolynomial_fold *pwf)
|
|
{
|
|
bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
|
|
return isl_stat_non_null(bound->pwf);
|
|
}
|
|
|
|
/* Given a polynomial "poly" that is constant in terms
|
|
* of the domain variables and the domain "bset",
|
|
* construct the corresponding polynomial reduction and
|
|
* add it to the tight bounds of "bound".
|
|
*/
|
|
static isl_stat add_constant_poly(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
|
|
{
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
|
|
pwf = isl_qpolynomial_cst_bound(bset, poly, bound->type, NULL);
|
|
return isl_bound_add_tight(bound, pwf);
|
|
}
|
|
|
|
/* Compute a bound on the polynomial defined over the parametric polytope
|
|
* using either range propagation or bernstein expansion and
|
|
* store the result in bound->pwf and bound->pwf_tight.
|
|
* Since bernstein expansion requires bounded domains, we apply
|
|
* range propagation on unbounded domains. Otherwise, we respect the choice
|
|
* of the user.
|
|
*
|
|
* If the polynomial does not depend on the set variables
|
|
* then the bound is equal to the polynomial and
|
|
* it can be added to "bound" directly.
|
|
*/
|
|
static isl_stat compressed_guarded_poly_bound(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, void *user)
|
|
{
|
|
struct isl_bound *bound = (struct isl_bound *)user;
|
|
isl_ctx *ctx;
|
|
int bounded;
|
|
int degree;
|
|
|
|
if (!bset || !poly)
|
|
goto error;
|
|
|
|
degree = isl_qpolynomial_degree(poly);
|
|
if (degree < -1)
|
|
goto error;
|
|
if (degree <= 0)
|
|
return add_constant_poly(bset, poly, bound);
|
|
|
|
ctx = isl_basic_set_get_ctx(bset);
|
|
if (ctx->opt->bound == ISL_BOUND_RANGE)
|
|
return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
|
|
|
|
bounded = isl_basic_set_is_bounded(bset);
|
|
if (bounded < 0)
|
|
goto error;
|
|
if (bounded)
|
|
return isl_qpolynomial_bound_on_domain_bernstein(bset, poly, bound);
|
|
else
|
|
return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_qpolynomial_free(poly);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
static isl_stat unwrapped_guarded_poly_bound(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, void *user)
|
|
{
|
|
struct isl_bound *bound = (struct isl_bound *)user;
|
|
isl_pw_qpolynomial_fold *top_pwf;
|
|
isl_pw_qpolynomial_fold *top_pwf_tight;
|
|
isl_space *space;
|
|
isl_morph *morph;
|
|
isl_stat r;
|
|
|
|
bset = isl_basic_set_detect_equalities(bset);
|
|
|
|
if (!bset)
|
|
goto error;
|
|
|
|
if (bset->n_eq == 0)
|
|
return compressed_guarded_poly_bound(bset, poly, user);
|
|
|
|
morph = isl_basic_set_full_compression(bset);
|
|
|
|
bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
|
|
poly = isl_qpolynomial_morph_domain(poly, isl_morph_copy(morph));
|
|
|
|
space = isl_morph_get_ran_space(morph);
|
|
space = isl_space_params(space);
|
|
|
|
top_pwf = bound->pwf;
|
|
top_pwf_tight = bound->pwf_tight;
|
|
|
|
space = isl_space_from_domain(space);
|
|
space = isl_space_add_dims(space, isl_dim_out, 1);
|
|
bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
|
|
bound->type);
|
|
bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
|
|
|
|
r = compressed_guarded_poly_bound(bset, poly, user);
|
|
|
|
morph = isl_morph_dom_params(morph);
|
|
morph = isl_morph_ran_params(morph);
|
|
morph = isl_morph_inverse(morph);
|
|
|
|
bound->pwf = isl_pw_qpolynomial_fold_morph_domain(bound->pwf,
|
|
isl_morph_copy(morph));
|
|
bound->pwf_tight = isl_pw_qpolynomial_fold_morph_domain(
|
|
bound->pwf_tight, morph);
|
|
|
|
isl_bound_add(bound, top_pwf);
|
|
isl_bound_add_tight(bound, top_pwf_tight);
|
|
|
|
return r;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_qpolynomial_free(poly);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Update bound->pwf and bound->pwf_tight with a bound
|
|
* of type bound->type on the polynomial "poly" over the domain "bset".
|
|
*
|
|
* If the original problem had a wrapped relation in the domain,
|
|
* meaning that the bound should be computed over the range
|
|
* of this relation, then temporarily treat the domain dimensions
|
|
* of this wrapped relation as parameters, compute a bound
|
|
* in terms of these and the original parameters,
|
|
* turn the parameters back into set dimensions and
|
|
* add the results to bound->pwf and bound->pwf_tight.
|
|
*
|
|
* Note that even though "bset" is known to live in the same space
|
|
* as the domain of "poly", the names of the set dimensions
|
|
* may be different (or missing). Make sure the naming is exactly
|
|
* the same before turning these dimensions into parameters
|
|
* to ensure that the spaces are still the same after
|
|
* this operation.
|
|
*/
|
|
static isl_stat guarded_poly_bound(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_qpolynomial *poly, void *user)
|
|
{
|
|
struct isl_bound *bound = (struct isl_bound *)user;
|
|
isl_space *space;
|
|
isl_pw_qpolynomial_fold *top_pwf;
|
|
isl_pw_qpolynomial_fold *top_pwf_tight;
|
|
isl_size nparam;
|
|
isl_size n_in;
|
|
isl_stat r;
|
|
|
|
if (!bound->wrapping)
|
|
return unwrapped_guarded_poly_bound(bset, poly, user);
|
|
|
|
nparam = isl_space_dim(bound->dim, isl_dim_param);
|
|
n_in = isl_space_dim(bound->dim, isl_dim_in);
|
|
if (nparam < 0 || n_in < 0)
|
|
goto error;
|
|
|
|
space = isl_qpolynomial_get_domain_space(poly);
|
|
bset = isl_basic_set_reset_space(bset, space);
|
|
|
|
bset = isl_basic_set_move_dims(bset, isl_dim_param, nparam,
|
|
isl_dim_set, 0, n_in);
|
|
poly = isl_qpolynomial_move_dims(poly, isl_dim_param, nparam,
|
|
isl_dim_in, 0, n_in);
|
|
|
|
space = isl_basic_set_get_space(bset);
|
|
space = isl_space_params(space);
|
|
|
|
top_pwf = bound->pwf;
|
|
top_pwf_tight = bound->pwf_tight;
|
|
|
|
space = isl_space_from_domain(space);
|
|
space = isl_space_add_dims(space, isl_dim_out, 1);
|
|
bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
|
|
bound->type);
|
|
bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
|
|
|
|
r = unwrapped_guarded_poly_bound(bset, poly, user);
|
|
|
|
bound->pwf = isl_pw_qpolynomial_fold_reset_space(bound->pwf,
|
|
isl_space_copy(bound->dim));
|
|
bound->pwf_tight = isl_pw_qpolynomial_fold_reset_space(bound->pwf_tight,
|
|
isl_space_copy(bound->dim));
|
|
|
|
isl_bound_add(bound, top_pwf);
|
|
isl_bound_add_tight(bound, top_pwf_tight);
|
|
|
|
return r;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_qpolynomial_free(poly);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
static isl_stat guarded_qp(__isl_take isl_qpolynomial *qp, void *user)
|
|
{
|
|
struct isl_bound *bound = (struct isl_bound *)user;
|
|
isl_stat r;
|
|
|
|
r = isl_qpolynomial_as_polynomial_on_domain(qp, bound->bset,
|
|
&guarded_poly_bound, user);
|
|
isl_qpolynomial_free(qp);
|
|
return r;
|
|
}
|
|
|
|
static isl_stat basic_guarded_fold(__isl_take isl_basic_set *bset, void *user)
|
|
{
|
|
struct isl_bound *bound = (struct isl_bound *)user;
|
|
isl_stat r;
|
|
|
|
bound->bset = bset;
|
|
r = isl_qpolynomial_fold_foreach_qpolynomial(bound->fold,
|
|
&guarded_qp, user);
|
|
isl_basic_set_free(bset);
|
|
return r;
|
|
}
|
|
|
|
static isl_stat guarded_fold(__isl_take isl_set *set,
|
|
__isl_take isl_qpolynomial_fold *fold, void *user)
|
|
{
|
|
struct isl_bound *bound = (struct isl_bound *)user;
|
|
|
|
if (!set || !fold)
|
|
goto error;
|
|
|
|
set = isl_set_make_disjoint(set);
|
|
|
|
bound->fold = fold;
|
|
bound->type = isl_qpolynomial_fold_get_type(fold);
|
|
|
|
if (isl_set_foreach_basic_set(set, &basic_guarded_fold, bound) < 0)
|
|
goto error;
|
|
|
|
isl_set_free(set);
|
|
isl_qpolynomial_fold_free(fold);
|
|
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_set_free(set);
|
|
isl_qpolynomial_fold_free(fold);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_bound(
|
|
__isl_take isl_pw_qpolynomial_fold *pwf, isl_bool *tight)
|
|
{
|
|
isl_size nvar;
|
|
struct isl_bound bound;
|
|
isl_bool covers;
|
|
|
|
if (!pwf)
|
|
return NULL;
|
|
|
|
bound.dim = isl_pw_qpolynomial_fold_get_domain_space(pwf);
|
|
|
|
bound.wrapping = isl_space_is_wrapping(bound.dim);
|
|
if (bound.wrapping)
|
|
bound.dim = isl_space_unwrap(bound.dim);
|
|
nvar = isl_space_dim(bound.dim, isl_dim_out);
|
|
if (nvar < 0)
|
|
bound.dim = isl_space_free(bound.dim);
|
|
bound.dim = isl_space_domain(bound.dim);
|
|
bound.dim = isl_space_from_domain(bound.dim);
|
|
bound.dim = isl_space_add_dims(bound.dim, isl_dim_out, 1);
|
|
|
|
if (nvar == 0) {
|
|
if (tight)
|
|
*tight = isl_bool_true;
|
|
return isl_pw_qpolynomial_fold_reset_space(pwf, bound.dim);
|
|
}
|
|
|
|
if (isl_pw_qpolynomial_fold_is_zero(pwf)) {
|
|
enum isl_fold type = pwf->type;
|
|
isl_pw_qpolynomial_fold_free(pwf);
|
|
if (tight)
|
|
*tight = isl_bool_true;
|
|
return isl_pw_qpolynomial_fold_zero(bound.dim, type);
|
|
}
|
|
|
|
bound.pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
|
|
pwf->type);
|
|
bound.pwf_tight = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
|
|
pwf->type);
|
|
bound.check_tight = !!tight;
|
|
|
|
if (isl_pw_qpolynomial_fold_foreach_lifted_piece(pwf,
|
|
guarded_fold, &bound) < 0)
|
|
goto error;
|
|
|
|
covers = isl_pw_qpolynomial_fold_covers(bound.pwf_tight, bound.pwf);
|
|
if (covers < 0)
|
|
goto error;
|
|
|
|
if (tight)
|
|
*tight = covers;
|
|
|
|
isl_space_free(bound.dim);
|
|
isl_pw_qpolynomial_fold_free(pwf);
|
|
|
|
if (covers) {
|
|
isl_pw_qpolynomial_fold_free(bound.pwf);
|
|
return bound.pwf_tight;
|
|
}
|
|
|
|
bound.pwf = isl_pw_qpolynomial_fold_fold(bound.pwf, bound.pwf_tight);
|
|
|
|
return bound.pwf;
|
|
error:
|
|
isl_pw_qpolynomial_fold_free(bound.pwf_tight);
|
|
isl_pw_qpolynomial_fold_free(bound.pwf);
|
|
isl_pw_qpolynomial_fold_free(pwf);
|
|
isl_space_free(bound.dim);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
|
|
__isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type,
|
|
isl_bool *tight)
|
|
{
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
|
|
pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(type, pwqp);
|
|
return isl_pw_qpolynomial_fold_bound(pwf, tight);
|
|
}
|
|
|
|
struct isl_union_bound_data {
|
|
enum isl_fold type;
|
|
isl_bool tight;
|
|
isl_union_pw_qpolynomial_fold *res;
|
|
};
|
|
|
|
static isl_stat bound_pw(__isl_take isl_pw_qpolynomial *pwqp, void *user)
|
|
{
|
|
struct isl_union_bound_data *data = user;
|
|
isl_pw_qpolynomial_fold *pwf;
|
|
|
|
pwf = isl_pw_qpolynomial_bound(pwqp, data->type,
|
|
data->tight ? &data->tight : NULL);
|
|
data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
|
|
data->res, pwf);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
|
|
__isl_take isl_union_pw_qpolynomial *upwqp,
|
|
enum isl_fold type, isl_bool *tight)
|
|
{
|
|
isl_space *space;
|
|
struct isl_union_bound_data data = { type, 1, NULL };
|
|
|
|
if (!upwqp)
|
|
return NULL;
|
|
|
|
if (!tight)
|
|
data.tight = isl_bool_false;
|
|
|
|
space = isl_union_pw_qpolynomial_get_space(upwqp);
|
|
data.res = isl_union_pw_qpolynomial_fold_zero(space, type);
|
|
if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp,
|
|
&bound_pw, &data) < 0)
|
|
goto error;
|
|
|
|
isl_union_pw_qpolynomial_free(upwqp);
|
|
if (tight)
|
|
*tight = data.tight;
|
|
|
|
return data.res;
|
|
error:
|
|
isl_union_pw_qpolynomial_free(upwqp);
|
|
isl_union_pw_qpolynomial_fold_free(data.res);
|
|
return NULL;
|
|
}
|