mirror of
https://review.haiku-os.org/buildtools
synced 2024-11-23 07:18:49 +01:00
2111 lines
48 KiB
C
2111 lines
48 KiB
C
/*
|
|
* Copyright 2008-2009 Katholieke Universiteit Leuven
|
|
* Copyright 2010 INRIA Saclay
|
|
* Copyright 2014 Ecole Normale Superieure
|
|
* Copyright 2017 Sven Verdoolaege
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, K.U.Leuven, Departement
|
|
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
|
|
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
|
|
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
|
|
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
|
|
*/
|
|
|
|
#include <isl_ctx_private.h>
|
|
#include <isl_map_private.h>
|
|
#include <isl/space.h>
|
|
#include <isl_seq.h>
|
|
#include <isl_mat_private.h>
|
|
#include <isl_vec_private.h>
|
|
#include <isl_space_private.h>
|
|
#include <isl_val_private.h>
|
|
|
|
isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat)
|
|
{
|
|
return mat ? mat->ctx : NULL;
|
|
}
|
|
|
|
/* Return a hash value that digests "mat".
|
|
*/
|
|
uint32_t isl_mat_get_hash(__isl_keep isl_mat *mat)
|
|
{
|
|
int i;
|
|
uint32_t hash;
|
|
|
|
if (!mat)
|
|
return 0;
|
|
|
|
hash = isl_hash_init();
|
|
isl_hash_byte(hash, mat->n_row & 0xFF);
|
|
isl_hash_byte(hash, mat->n_col & 0xFF);
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
uint32_t row_hash;
|
|
|
|
row_hash = isl_seq_get_hash(mat->row[i], mat->n_col);
|
|
isl_hash_hash(hash, row_hash);
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx,
|
|
unsigned n_row, unsigned n_col)
|
|
{
|
|
int i;
|
|
struct isl_mat *mat;
|
|
|
|
mat = isl_alloc_type(ctx, struct isl_mat);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
mat->row = NULL;
|
|
mat->block = isl_blk_alloc(ctx, n_row * n_col);
|
|
if (isl_blk_is_error(mat->block))
|
|
goto error;
|
|
mat->row = isl_calloc_array(ctx, isl_int *, n_row);
|
|
if (n_row && !mat->row)
|
|
goto error;
|
|
|
|
if (n_col != 0) {
|
|
for (i = 0; i < n_row; ++i)
|
|
mat->row[i] = mat->block.data + i * n_col;
|
|
}
|
|
|
|
mat->ctx = ctx;
|
|
isl_ctx_ref(ctx);
|
|
mat->ref = 1;
|
|
mat->n_row = n_row;
|
|
mat->n_col = n_col;
|
|
mat->max_col = n_col;
|
|
mat->flags = 0;
|
|
|
|
return mat;
|
|
error:
|
|
isl_blk_free(ctx, mat->block);
|
|
free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_extend(__isl_take isl_mat *mat,
|
|
unsigned n_row, unsigned n_col)
|
|
{
|
|
int i;
|
|
isl_int *old;
|
|
isl_int **row;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
if (mat->max_col >= n_col && mat->n_row >= n_row) {
|
|
if (mat->n_col < n_col)
|
|
mat->n_col = n_col;
|
|
return mat;
|
|
}
|
|
|
|
if (mat->max_col < n_col) {
|
|
struct isl_mat *new_mat;
|
|
|
|
if (n_row < mat->n_row)
|
|
n_row = mat->n_row;
|
|
new_mat = isl_mat_alloc(mat->ctx, n_row, n_col);
|
|
if (!new_mat)
|
|
goto error;
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_seq_cpy(new_mat->row[i], mat->row[i], mat->n_col);
|
|
isl_mat_free(mat);
|
|
return new_mat;
|
|
}
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
goto error;
|
|
|
|
old = mat->block.data;
|
|
mat->block = isl_blk_extend(mat->ctx, mat->block, n_row * mat->max_col);
|
|
if (isl_blk_is_error(mat->block))
|
|
goto error;
|
|
row = isl_realloc_array(mat->ctx, mat->row, isl_int *, n_row);
|
|
if (n_row && !row)
|
|
goto error;
|
|
mat->row = row;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
mat->row[i] = mat->block.data + (mat->row[i] - old);
|
|
for (i = mat->n_row; i < n_row; ++i)
|
|
mat->row[i] = mat->block.data + i * mat->max_col;
|
|
mat->n_row = n_row;
|
|
if (mat->n_col < n_col)
|
|
mat->n_col = n_col;
|
|
|
|
return mat;
|
|
error:
|
|
isl_mat_free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_sub_alloc6(isl_ctx *ctx, isl_int **row,
|
|
unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col)
|
|
{
|
|
int i;
|
|
struct isl_mat *mat;
|
|
|
|
mat = isl_alloc_type(ctx, struct isl_mat);
|
|
if (!mat)
|
|
return NULL;
|
|
mat->row = isl_alloc_array(ctx, isl_int *, n_row);
|
|
if (n_row && !mat->row)
|
|
goto error;
|
|
for (i = 0; i < n_row; ++i)
|
|
mat->row[i] = row[first_row+i] + first_col;
|
|
mat->ctx = ctx;
|
|
isl_ctx_ref(ctx);
|
|
mat->ref = 1;
|
|
mat->n_row = n_row;
|
|
mat->n_col = n_col;
|
|
mat->block = isl_blk_empty();
|
|
mat->flags = ISL_MAT_BORROWED;
|
|
return mat;
|
|
error:
|
|
free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_sub_alloc(__isl_keep isl_mat *mat,
|
|
unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col)
|
|
{
|
|
if (!mat)
|
|
return NULL;
|
|
return isl_mat_sub_alloc6(mat->ctx, mat->row, first_row, n_row,
|
|
first_col, n_col);
|
|
}
|
|
|
|
void isl_mat_sub_copy(struct isl_ctx *ctx, isl_int **dst, isl_int **src,
|
|
unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n_row; ++i)
|
|
isl_seq_cpy(dst[i]+dst_col, src[i]+src_col, n_col);
|
|
}
|
|
|
|
void isl_mat_sub_neg(struct isl_ctx *ctx, isl_int **dst, isl_int **src,
|
|
unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n_row; ++i)
|
|
isl_seq_neg(dst[i]+dst_col, src[i]+src_col, n_col);
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat)
|
|
{
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
mat->ref++;
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_dup(__isl_keep isl_mat *mat)
|
|
{
|
|
int i;
|
|
struct isl_mat *mat2;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
mat2 = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col);
|
|
if (!mat2)
|
|
return NULL;
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_seq_cpy(mat2->row[i], mat->row[i], mat->n_col);
|
|
return mat2;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_cow(__isl_take isl_mat *mat)
|
|
{
|
|
struct isl_mat *mat2;
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
if (mat->ref == 1 && !ISL_F_ISSET(mat, ISL_MAT_BORROWED))
|
|
return mat;
|
|
|
|
mat2 = isl_mat_dup(mat);
|
|
isl_mat_free(mat);
|
|
return mat2;
|
|
}
|
|
|
|
__isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat)
|
|
{
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
if (--mat->ref > 0)
|
|
return NULL;
|
|
|
|
if (!ISL_F_ISSET(mat, ISL_MAT_BORROWED))
|
|
isl_blk_free(mat->ctx, mat->block);
|
|
isl_ctx_deref(mat->ctx);
|
|
free(mat->row);
|
|
free(mat);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
isl_size isl_mat_rows(__isl_keep isl_mat *mat)
|
|
{
|
|
return mat ? mat->n_row : isl_size_error;
|
|
}
|
|
|
|
isl_size isl_mat_cols(__isl_keep isl_mat *mat)
|
|
{
|
|
return mat ? mat->n_col : isl_size_error;
|
|
}
|
|
|
|
/* Check that "col" is a valid column position for "mat".
|
|
*/
|
|
static isl_stat check_col(__isl_keep isl_mat *mat, int col)
|
|
{
|
|
if (!mat)
|
|
return isl_stat_error;
|
|
if (col < 0 || col >= mat->n_col)
|
|
isl_die(isl_mat_get_ctx(mat), isl_error_invalid,
|
|
"column out of range", return isl_stat_error);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Check that "row" is a valid row position for "mat".
|
|
*/
|
|
static isl_stat check_row(__isl_keep isl_mat *mat, int row)
|
|
{
|
|
if (!mat)
|
|
return isl_stat_error;
|
|
if (row < 0 || row >= mat->n_row)
|
|
isl_die(isl_mat_get_ctx(mat), isl_error_invalid,
|
|
"row out of range", return isl_stat_error);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Check that there are "n" columns starting at position "first" in "mat".
|
|
*/
|
|
static isl_stat check_col_range(__isl_keep isl_mat *mat, unsigned first,
|
|
unsigned n)
|
|
{
|
|
if (!mat)
|
|
return isl_stat_error;
|
|
if (first + n > mat->n_col || first + n < first)
|
|
isl_die(isl_mat_get_ctx(mat), isl_error_invalid,
|
|
"column position or range out of bounds",
|
|
return isl_stat_error);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Check that there are "n" rows starting at position "first" in "mat".
|
|
*/
|
|
static isl_stat check_row_range(__isl_keep isl_mat *mat, unsigned first,
|
|
unsigned n)
|
|
{
|
|
if (!mat)
|
|
return isl_stat_error;
|
|
if (first + n > mat->n_row || first + n < first)
|
|
isl_die(isl_mat_get_ctx(mat), isl_error_invalid,
|
|
"row position or range out of bounds",
|
|
return isl_stat_error);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
int isl_mat_get_element(__isl_keep isl_mat *mat, int row, int col, isl_int *v)
|
|
{
|
|
if (check_row(mat, row) < 0)
|
|
return -1;
|
|
if (check_col(mat, col) < 0)
|
|
return -1;
|
|
isl_int_set(*v, mat->row[row][col]);
|
|
return 0;
|
|
}
|
|
|
|
/* Extract the element at row "row", oolumn "col" of "mat".
|
|
*/
|
|
__isl_give isl_val *isl_mat_get_element_val(__isl_keep isl_mat *mat,
|
|
int row, int col)
|
|
{
|
|
isl_ctx *ctx;
|
|
|
|
if (check_row(mat, row) < 0)
|
|
return NULL;
|
|
if (check_col(mat, col) < 0)
|
|
return NULL;
|
|
ctx = isl_mat_get_ctx(mat);
|
|
return isl_val_int_from_isl_int(ctx, mat->row[row][col]);
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,
|
|
int row, int col, isl_int v)
|
|
{
|
|
mat = isl_mat_cow(mat);
|
|
if (check_row(mat, row) < 0)
|
|
return isl_mat_free(mat);
|
|
if (check_col(mat, col) < 0)
|
|
return isl_mat_free(mat);
|
|
isl_int_set(mat->row[row][col], v);
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat,
|
|
int row, int col, int v)
|
|
{
|
|
mat = isl_mat_cow(mat);
|
|
if (check_row(mat, row) < 0)
|
|
return isl_mat_free(mat);
|
|
if (check_col(mat, col) < 0)
|
|
return isl_mat_free(mat);
|
|
isl_int_set_si(mat->row[row][col], v);
|
|
return mat;
|
|
}
|
|
|
|
/* Replace the element at row "row", column "col" of "mat" by "v".
|
|
*/
|
|
__isl_give isl_mat *isl_mat_set_element_val(__isl_take isl_mat *mat,
|
|
int row, int col, __isl_take isl_val *v)
|
|
{
|
|
if (!v)
|
|
return isl_mat_free(mat);
|
|
if (!isl_val_is_int(v))
|
|
isl_die(isl_val_get_ctx(v), isl_error_invalid,
|
|
"expecting integer value", goto error);
|
|
mat = isl_mat_set_element(mat, row, col, v->n);
|
|
isl_val_free(v);
|
|
return mat;
|
|
error:
|
|
isl_val_free(v);
|
|
return isl_mat_free(mat);
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_diag(isl_ctx *ctx, unsigned n_row, isl_int d)
|
|
{
|
|
int i;
|
|
struct isl_mat *mat;
|
|
|
|
mat = isl_mat_alloc(ctx, n_row, n_row);
|
|
if (!mat)
|
|
return NULL;
|
|
for (i = 0; i < n_row; ++i) {
|
|
isl_seq_clr(mat->row[i], i);
|
|
isl_int_set(mat->row[i][i], d);
|
|
isl_seq_clr(mat->row[i]+i+1, n_row-(i+1));
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Create an "n_row" by "n_col" matrix with zero elements.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_zero(isl_ctx *ctx, unsigned n_row, unsigned n_col)
|
|
{
|
|
int i;
|
|
isl_mat *mat;
|
|
|
|
mat = isl_mat_alloc(ctx, n_row, n_col);
|
|
if (!mat)
|
|
return NULL;
|
|
for (i = 0; i < n_row; ++i)
|
|
isl_seq_clr(mat->row[i], n_col);
|
|
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_identity(isl_ctx *ctx, unsigned n_row)
|
|
{
|
|
if (!ctx)
|
|
return NULL;
|
|
return isl_mat_diag(ctx, n_row, ctx->one);
|
|
}
|
|
|
|
/* Is "mat" a (possibly scaled) identity matrix?
|
|
*/
|
|
isl_bool isl_mat_is_scaled_identity(__isl_keep isl_mat *mat)
|
|
{
|
|
int i;
|
|
|
|
if (!mat)
|
|
return isl_bool_error;
|
|
if (mat->n_row != mat->n_col)
|
|
return isl_bool_false;
|
|
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
if (isl_seq_first_non_zero(mat->row[i], i) != -1)
|
|
return isl_bool_false;
|
|
if (isl_int_ne(mat->row[0][0], mat->row[i][i]))
|
|
return isl_bool_false;
|
|
if (isl_seq_first_non_zero(mat->row[i] + i + 1,
|
|
mat->n_col - (i + 1)) != -1)
|
|
return isl_bool_false;
|
|
}
|
|
|
|
return isl_bool_true;
|
|
}
|
|
|
|
__isl_give isl_vec *isl_mat_vec_product(__isl_take isl_mat *mat,
|
|
__isl_take isl_vec *vec)
|
|
{
|
|
int i;
|
|
struct isl_vec *prod;
|
|
|
|
if (!mat || !vec)
|
|
goto error;
|
|
|
|
isl_assert(mat->ctx, mat->n_col == vec->size, goto error);
|
|
|
|
prod = isl_vec_alloc(mat->ctx, mat->n_row);
|
|
if (!prod)
|
|
goto error;
|
|
|
|
for (i = 0; i < prod->size; ++i)
|
|
isl_seq_inner_product(mat->row[i], vec->el, vec->size,
|
|
&prod->block.data[i]);
|
|
isl_mat_free(mat);
|
|
isl_vec_free(vec);
|
|
return prod;
|
|
error:
|
|
isl_mat_free(mat);
|
|
isl_vec_free(vec);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_vec *isl_mat_vec_inverse_product(__isl_take isl_mat *mat,
|
|
__isl_take isl_vec *vec)
|
|
{
|
|
struct isl_mat *vec_mat;
|
|
int i;
|
|
|
|
if (!mat || !vec)
|
|
goto error;
|
|
vec_mat = isl_mat_alloc(vec->ctx, vec->size, 1);
|
|
if (!vec_mat)
|
|
goto error;
|
|
for (i = 0; i < vec->size; ++i)
|
|
isl_int_set(vec_mat->row[i][0], vec->el[i]);
|
|
vec_mat = isl_mat_inverse_product(mat, vec_mat);
|
|
isl_vec_free(vec);
|
|
if (!vec_mat)
|
|
return NULL;
|
|
vec = isl_vec_alloc(vec_mat->ctx, vec_mat->n_row);
|
|
if (vec)
|
|
for (i = 0; i < vec->size; ++i)
|
|
isl_int_set(vec->el[i], vec_mat->row[i][0]);
|
|
isl_mat_free(vec_mat);
|
|
return vec;
|
|
error:
|
|
isl_mat_free(mat);
|
|
isl_vec_free(vec);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_vec *isl_vec_mat_product(__isl_take isl_vec *vec,
|
|
__isl_take isl_mat *mat)
|
|
{
|
|
int i, j;
|
|
struct isl_vec *prod;
|
|
|
|
if (!mat || !vec)
|
|
goto error;
|
|
|
|
isl_assert(mat->ctx, mat->n_row == vec->size, goto error);
|
|
|
|
prod = isl_vec_alloc(mat->ctx, mat->n_col);
|
|
if (!prod)
|
|
goto error;
|
|
|
|
for (i = 0; i < prod->size; ++i) {
|
|
isl_int_set_si(prod->el[i], 0);
|
|
for (j = 0; j < vec->size; ++j)
|
|
isl_int_addmul(prod->el[i], vec->el[j], mat->row[j][i]);
|
|
}
|
|
isl_mat_free(mat);
|
|
isl_vec_free(vec);
|
|
return prod;
|
|
error:
|
|
isl_mat_free(mat);
|
|
isl_vec_free(vec);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_aff_direct_sum(__isl_take isl_mat *left,
|
|
__isl_take isl_mat *right)
|
|
{
|
|
int i;
|
|
struct isl_mat *sum;
|
|
|
|
if (!left || !right)
|
|
goto error;
|
|
|
|
isl_assert(left->ctx, left->n_row == right->n_row, goto error);
|
|
isl_assert(left->ctx, left->n_row >= 1, goto error);
|
|
isl_assert(left->ctx, left->n_col >= 1, goto error);
|
|
isl_assert(left->ctx, right->n_col >= 1, goto error);
|
|
isl_assert(left->ctx,
|
|
isl_seq_first_non_zero(left->row[0]+1, left->n_col-1) == -1,
|
|
goto error);
|
|
isl_assert(left->ctx,
|
|
isl_seq_first_non_zero(right->row[0]+1, right->n_col-1) == -1,
|
|
goto error);
|
|
|
|
sum = isl_mat_alloc(left->ctx, left->n_row, left->n_col + right->n_col - 1);
|
|
if (!sum)
|
|
goto error;
|
|
isl_int_lcm(sum->row[0][0], left->row[0][0], right->row[0][0]);
|
|
isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]);
|
|
isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]);
|
|
|
|
isl_seq_clr(sum->row[0]+1, sum->n_col-1);
|
|
for (i = 1; i < sum->n_row; ++i) {
|
|
isl_int_mul(sum->row[i][0], left->row[0][0], left->row[i][0]);
|
|
isl_int_addmul(sum->row[i][0],
|
|
right->row[0][0], right->row[i][0]);
|
|
isl_seq_scale(sum->row[i]+1, left->row[i]+1, left->row[0][0],
|
|
left->n_col-1);
|
|
isl_seq_scale(sum->row[i]+left->n_col,
|
|
right->row[i]+1, right->row[0][0],
|
|
right->n_col-1);
|
|
}
|
|
|
|
isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]);
|
|
isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]);
|
|
isl_mat_free(left);
|
|
isl_mat_free(right);
|
|
return sum;
|
|
error:
|
|
isl_mat_free(left);
|
|
isl_mat_free(right);
|
|
return NULL;
|
|
}
|
|
|
|
static void exchange(__isl_keep isl_mat *M, __isl_keep isl_mat **U,
|
|
__isl_keep isl_mat **Q, unsigned row, unsigned i, unsigned j)
|
|
{
|
|
int r;
|
|
for (r = row; r < M->n_row; ++r)
|
|
isl_int_swap(M->row[r][i], M->row[r][j]);
|
|
if (U) {
|
|
for (r = 0; r < (*U)->n_row; ++r)
|
|
isl_int_swap((*U)->row[r][i], (*U)->row[r][j]);
|
|
}
|
|
if (Q)
|
|
isl_mat_swap_rows(*Q, i, j);
|
|
}
|
|
|
|
static void subtract(__isl_keep isl_mat *M, __isl_keep isl_mat **U,
|
|
__isl_keep isl_mat **Q, unsigned row, unsigned i, unsigned j, isl_int m)
|
|
{
|
|
int r;
|
|
for (r = row; r < M->n_row; ++r)
|
|
isl_int_submul(M->row[r][j], m, M->row[r][i]);
|
|
if (U) {
|
|
for (r = 0; r < (*U)->n_row; ++r)
|
|
isl_int_submul((*U)->row[r][j], m, (*U)->row[r][i]);
|
|
}
|
|
if (Q) {
|
|
for (r = 0; r < (*Q)->n_col; ++r)
|
|
isl_int_addmul((*Q)->row[i][r], m, (*Q)->row[j][r]);
|
|
}
|
|
}
|
|
|
|
static void oppose(__isl_keep isl_mat *M, __isl_keep isl_mat **U,
|
|
__isl_keep isl_mat **Q, unsigned row, unsigned col)
|
|
{
|
|
int r;
|
|
for (r = row; r < M->n_row; ++r)
|
|
isl_int_neg(M->row[r][col], M->row[r][col]);
|
|
if (U) {
|
|
for (r = 0; r < (*U)->n_row; ++r)
|
|
isl_int_neg((*U)->row[r][col], (*U)->row[r][col]);
|
|
}
|
|
if (Q)
|
|
isl_seq_neg((*Q)->row[col], (*Q)->row[col], (*Q)->n_col);
|
|
}
|
|
|
|
/* Given matrix M, compute
|
|
*
|
|
* M U = H
|
|
* M = H Q
|
|
*
|
|
* with U and Q unimodular matrices and H a matrix in column echelon form
|
|
* such that on each echelon row the entries in the non-echelon column
|
|
* are non-negative (if neg == 0) or non-positive (if neg == 1)
|
|
* and strictly smaller (in absolute value) than the entries in the echelon
|
|
* column.
|
|
* If U or Q are NULL, then these matrices are not computed.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_left_hermite(__isl_take isl_mat *M, int neg,
|
|
__isl_give isl_mat **U, __isl_give isl_mat **Q)
|
|
{
|
|
isl_int c;
|
|
int row, col;
|
|
|
|
if (U)
|
|
*U = NULL;
|
|
if (Q)
|
|
*Q = NULL;
|
|
if (!M)
|
|
goto error;
|
|
if (U) {
|
|
*U = isl_mat_identity(M->ctx, M->n_col);
|
|
if (!*U)
|
|
goto error;
|
|
}
|
|
if (Q) {
|
|
*Q = isl_mat_identity(M->ctx, M->n_col);
|
|
if (!*Q)
|
|
goto error;
|
|
}
|
|
|
|
if (M->n_col == 0)
|
|
return M;
|
|
|
|
M = isl_mat_cow(M);
|
|
if (!M)
|
|
goto error;
|
|
|
|
col = 0;
|
|
isl_int_init(c);
|
|
for (row = 0; row < M->n_row; ++row) {
|
|
int first, i, off;
|
|
first = isl_seq_abs_min_non_zero(M->row[row]+col, M->n_col-col);
|
|
if (first == -1)
|
|
continue;
|
|
first += col;
|
|
if (first != col)
|
|
exchange(M, U, Q, row, first, col);
|
|
if (isl_int_is_neg(M->row[row][col]))
|
|
oppose(M, U, Q, row, col);
|
|
first = col+1;
|
|
while ((off = isl_seq_first_non_zero(M->row[row]+first,
|
|
M->n_col-first)) != -1) {
|
|
first += off;
|
|
isl_int_fdiv_q(c, M->row[row][first], M->row[row][col]);
|
|
subtract(M, U, Q, row, col, first, c);
|
|
if (!isl_int_is_zero(M->row[row][first]))
|
|
exchange(M, U, Q, row, first, col);
|
|
else
|
|
++first;
|
|
}
|
|
for (i = 0; i < col; ++i) {
|
|
if (isl_int_is_zero(M->row[row][i]))
|
|
continue;
|
|
if (neg)
|
|
isl_int_cdiv_q(c, M->row[row][i], M->row[row][col]);
|
|
else
|
|
isl_int_fdiv_q(c, M->row[row][i], M->row[row][col]);
|
|
if (isl_int_is_zero(c))
|
|
continue;
|
|
subtract(M, U, Q, row, col, i, c);
|
|
}
|
|
++col;
|
|
}
|
|
isl_int_clear(c);
|
|
|
|
return M;
|
|
error:
|
|
if (Q) {
|
|
isl_mat_free(*Q);
|
|
*Q = NULL;
|
|
}
|
|
if (U) {
|
|
isl_mat_free(*U);
|
|
*U = NULL;
|
|
}
|
|
isl_mat_free(M);
|
|
return NULL;
|
|
}
|
|
|
|
/* Use row "row" of "mat" to eliminate column "col" from all other rows.
|
|
*/
|
|
static __isl_give isl_mat *eliminate(__isl_take isl_mat *mat, int row, int col)
|
|
{
|
|
int k;
|
|
isl_size nr, nc;
|
|
isl_ctx *ctx;
|
|
|
|
nr = isl_mat_rows(mat);
|
|
nc = isl_mat_cols(mat);
|
|
if (nr < 0 || nc < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
ctx = isl_mat_get_ctx(mat);
|
|
|
|
for (k = 0; k < nr; ++k) {
|
|
if (k == row)
|
|
continue;
|
|
if (isl_int_is_zero(mat->row[k][col]))
|
|
continue;
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
isl_seq_elim(mat->row[k], mat->row[row], col, nc, NULL);
|
|
isl_seq_normalize(ctx, mat->row[k], nc);
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Perform Gaussian elimination on the rows of "mat", but start
|
|
* from the final row and the final column.
|
|
* Any zero rows that result from the elimination are removed.
|
|
*
|
|
* In particular, for each column from last to first,
|
|
* look for the last row with a non-zero coefficient in that column,
|
|
* move it last (but before other rows moved last in previous steps) and
|
|
* use it to eliminate the column from the other rows.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_reverse_gauss(__isl_take isl_mat *mat)
|
|
{
|
|
int k, row, last;
|
|
isl_size nr, nc;
|
|
|
|
nr = isl_mat_rows(mat);
|
|
nc = isl_mat_cols(mat);
|
|
if (nr < 0 || nc < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
last = nc - 1;
|
|
for (row = nr - 1; row >= 0; --row) {
|
|
for (; last >= 0; --last) {
|
|
for (k = row; k >= 0; --k)
|
|
if (!isl_int_is_zero(mat->row[k][last]))
|
|
break;
|
|
if (k >= 0)
|
|
break;
|
|
}
|
|
if (last < 0)
|
|
break;
|
|
if (k != row)
|
|
mat = isl_mat_swap_rows(mat, k, row);
|
|
if (!mat)
|
|
return NULL;
|
|
if (isl_int_is_neg(mat->row[row][last]))
|
|
mat = isl_mat_row_neg(mat, row);
|
|
mat = eliminate(mat, row, last);
|
|
if (!mat)
|
|
return NULL;
|
|
}
|
|
mat = isl_mat_drop_rows(mat, 0, row + 1);
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Negate the lexicographically negative rows of "mat" such that
|
|
* all rows in the result are lexicographically non-negative.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_lexnonneg_rows(__isl_take isl_mat *mat)
|
|
{
|
|
int i;
|
|
isl_size nr, nc;
|
|
|
|
nr = isl_mat_rows(mat);
|
|
nc = isl_mat_cols(mat);
|
|
if (nr < 0 || nc < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
for (i = 0; i < nr; ++i) {
|
|
int pos;
|
|
|
|
pos = isl_seq_first_non_zero(mat->row[i], nc);
|
|
if (pos < 0)
|
|
continue;
|
|
if (isl_int_is_nonneg(mat->row[i][pos]))
|
|
continue;
|
|
mat = isl_mat_row_neg(mat, i);
|
|
if (!mat)
|
|
return NULL;
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Given a matrix "H" is column echelon form, what is the first
|
|
* zero column? That is how many initial columns are non-zero?
|
|
* Start looking at column "first_col" and only consider
|
|
* the columns to be of size "n_row".
|
|
* "H" is assumed to be non-NULL.
|
|
*
|
|
* Since "H" is in column echelon form, the first non-zero entry
|
|
* in a column is always in a later position compared to the previous column.
|
|
*/
|
|
static int hermite_first_zero_col(__isl_keep isl_mat *H, int first_col,
|
|
int n_row)
|
|
{
|
|
int row, col;
|
|
|
|
for (col = first_col, row = 0; col < H->n_col; ++col) {
|
|
for (; row < n_row; ++row)
|
|
if (!isl_int_is_zero(H->row[row][col]))
|
|
break;
|
|
if (row == n_row)
|
|
return col;
|
|
}
|
|
|
|
return H->n_col;
|
|
}
|
|
|
|
/* Return the rank of "mat", or isl_size_error in case of error.
|
|
*/
|
|
isl_size isl_mat_rank(__isl_keep isl_mat *mat)
|
|
{
|
|
int rank;
|
|
isl_mat *H;
|
|
|
|
H = isl_mat_left_hermite(isl_mat_copy(mat), 0, NULL, NULL);
|
|
if (!H)
|
|
return isl_size_error;
|
|
|
|
rank = hermite_first_zero_col(H, 0, H->n_row);
|
|
isl_mat_free(H);
|
|
|
|
return rank;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat)
|
|
{
|
|
int rank;
|
|
struct isl_mat *U = NULL;
|
|
struct isl_mat *K;
|
|
|
|
mat = isl_mat_left_hermite(mat, 0, &U, NULL);
|
|
if (!mat || !U)
|
|
goto error;
|
|
|
|
rank = hermite_first_zero_col(mat, 0, mat->n_row);
|
|
K = isl_mat_alloc(U->ctx, U->n_row, U->n_col - rank);
|
|
if (!K)
|
|
goto error;
|
|
isl_mat_sub_copy(K->ctx, K->row, U->row, U->n_row, 0, rank, U->n_col-rank);
|
|
isl_mat_free(mat);
|
|
isl_mat_free(U);
|
|
return K;
|
|
error:
|
|
isl_mat_free(mat);
|
|
isl_mat_free(U);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_lin_to_aff(__isl_take isl_mat *mat)
|
|
{
|
|
int i;
|
|
struct isl_mat *mat2;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
mat2 = isl_mat_alloc(mat->ctx, 1+mat->n_row, 1+mat->n_col);
|
|
if (!mat2)
|
|
goto error;
|
|
isl_int_set_si(mat2->row[0][0], 1);
|
|
isl_seq_clr(mat2->row[0]+1, mat->n_col);
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
isl_int_set_si(mat2->row[1+i][0], 0);
|
|
isl_seq_cpy(mat2->row[1+i]+1, mat->row[i], mat->n_col);
|
|
}
|
|
isl_mat_free(mat);
|
|
return mat2;
|
|
error:
|
|
isl_mat_free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given two matrices M1 and M2, return the block matrix
|
|
*
|
|
* [ M1 0 ]
|
|
* [ 0 M2 ]
|
|
*/
|
|
__isl_give isl_mat *isl_mat_diagonal(__isl_take isl_mat *mat1,
|
|
__isl_take isl_mat *mat2)
|
|
{
|
|
int i;
|
|
isl_mat *mat;
|
|
|
|
if (!mat1 || !mat2)
|
|
goto error;
|
|
|
|
mat = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
|
|
mat1->n_col + mat2->n_col);
|
|
if (!mat)
|
|
goto error;
|
|
for (i = 0; i < mat1->n_row; ++i) {
|
|
isl_seq_cpy(mat->row[i], mat1->row[i], mat1->n_col);
|
|
isl_seq_clr(mat->row[i] + mat1->n_col, mat2->n_col);
|
|
}
|
|
for (i = 0; i < mat2->n_row; ++i) {
|
|
isl_seq_clr(mat->row[mat1->n_row + i], mat1->n_col);
|
|
isl_seq_cpy(mat->row[mat1->n_row + i] + mat1->n_col,
|
|
mat2->row[i], mat2->n_col);
|
|
}
|
|
isl_mat_free(mat1);
|
|
isl_mat_free(mat2);
|
|
return mat;
|
|
error:
|
|
isl_mat_free(mat1);
|
|
isl_mat_free(mat2);
|
|
return NULL;
|
|
}
|
|
|
|
static int row_first_non_zero(isl_int **row, unsigned n_row, unsigned col)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n_row; ++i)
|
|
if (!isl_int_is_zero(row[i][col]))
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
static int row_abs_min_non_zero(isl_int **row, unsigned n_row, unsigned col)
|
|
{
|
|
int i, min = row_first_non_zero(row, n_row, col);
|
|
if (min < 0)
|
|
return -1;
|
|
for (i = min + 1; i < n_row; ++i) {
|
|
if (isl_int_is_zero(row[i][col]))
|
|
continue;
|
|
if (isl_int_abs_lt(row[i][col], row[min][col]))
|
|
min = i;
|
|
}
|
|
return min;
|
|
}
|
|
|
|
static isl_stat inv_exchange(__isl_keep isl_mat **left,
|
|
__isl_keep isl_mat **right, unsigned i, unsigned j)
|
|
{
|
|
*left = isl_mat_swap_rows(*left, i, j);
|
|
*right = isl_mat_swap_rows(*right, i, j);
|
|
|
|
if (!*left || !*right)
|
|
return isl_stat_error;
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
static void inv_oppose(
|
|
__isl_keep isl_mat *left, __isl_keep isl_mat *right, unsigned row)
|
|
{
|
|
isl_seq_neg(left->row[row]+row, left->row[row]+row, left->n_col-row);
|
|
isl_seq_neg(right->row[row], right->row[row], right->n_col);
|
|
}
|
|
|
|
static void inv_subtract(__isl_keep isl_mat *left, __isl_keep isl_mat *right,
|
|
unsigned row, unsigned i, isl_int m)
|
|
{
|
|
isl_int_neg(m, m);
|
|
isl_seq_combine(left->row[i]+row,
|
|
left->ctx->one, left->row[i]+row,
|
|
m, left->row[row]+row,
|
|
left->n_col-row);
|
|
isl_seq_combine(right->row[i], right->ctx->one, right->row[i],
|
|
m, right->row[row], right->n_col);
|
|
}
|
|
|
|
/* Compute inv(left)*right
|
|
*/
|
|
__isl_give isl_mat *isl_mat_inverse_product(__isl_take isl_mat *left,
|
|
__isl_take isl_mat *right)
|
|
{
|
|
int row;
|
|
isl_int a, b;
|
|
|
|
if (!left || !right)
|
|
goto error;
|
|
|
|
isl_assert(left->ctx, left->n_row == left->n_col, goto error);
|
|
isl_assert(left->ctx, left->n_row == right->n_row, goto error);
|
|
|
|
if (left->n_row == 0) {
|
|
isl_mat_free(left);
|
|
return right;
|
|
}
|
|
|
|
left = isl_mat_cow(left);
|
|
right = isl_mat_cow(right);
|
|
if (!left || !right)
|
|
goto error;
|
|
|
|
isl_int_init(a);
|
|
isl_int_init(b);
|
|
for (row = 0; row < left->n_row; ++row) {
|
|
int pivot, first, i, off;
|
|
pivot = row_abs_min_non_zero(left->row+row, left->n_row-row, row);
|
|
if (pivot < 0) {
|
|
isl_int_clear(a);
|
|
isl_int_clear(b);
|
|
isl_assert(left->ctx, pivot >= 0, goto error);
|
|
}
|
|
pivot += row;
|
|
if (pivot != row)
|
|
if (inv_exchange(&left, &right, pivot, row) < 0)
|
|
goto error;
|
|
if (isl_int_is_neg(left->row[row][row]))
|
|
inv_oppose(left, right, row);
|
|
first = row+1;
|
|
while ((off = row_first_non_zero(left->row+first,
|
|
left->n_row-first, row)) != -1) {
|
|
first += off;
|
|
isl_int_fdiv_q(a, left->row[first][row],
|
|
left->row[row][row]);
|
|
inv_subtract(left, right, row, first, a);
|
|
if (!isl_int_is_zero(left->row[first][row])) {
|
|
if (inv_exchange(&left, &right, row, first) < 0)
|
|
goto error;
|
|
} else {
|
|
++first;
|
|
}
|
|
}
|
|
for (i = 0; i < row; ++i) {
|
|
if (isl_int_is_zero(left->row[i][row]))
|
|
continue;
|
|
isl_int_gcd(a, left->row[row][row], left->row[i][row]);
|
|
isl_int_divexact(b, left->row[i][row], a);
|
|
isl_int_divexact(a, left->row[row][row], a);
|
|
isl_int_neg(b, b);
|
|
isl_seq_combine(left->row[i] + i,
|
|
a, left->row[i] + i,
|
|
b, left->row[row] + i,
|
|
left->n_col - i);
|
|
isl_seq_combine(right->row[i], a, right->row[i],
|
|
b, right->row[row], right->n_col);
|
|
}
|
|
}
|
|
isl_int_clear(b);
|
|
|
|
isl_int_set(a, left->row[0][0]);
|
|
for (row = 1; row < left->n_row; ++row)
|
|
isl_int_lcm(a, a, left->row[row][row]);
|
|
if (isl_int_is_zero(a)){
|
|
isl_int_clear(a);
|
|
isl_assert(left->ctx, 0, goto error);
|
|
}
|
|
for (row = 0; row < left->n_row; ++row) {
|
|
isl_int_divexact(left->row[row][row], a, left->row[row][row]);
|
|
if (isl_int_is_one(left->row[row][row]))
|
|
continue;
|
|
isl_seq_scale(right->row[row], right->row[row],
|
|
left->row[row][row], right->n_col);
|
|
}
|
|
isl_int_clear(a);
|
|
|
|
isl_mat_free(left);
|
|
return right;
|
|
error:
|
|
isl_mat_free(left);
|
|
isl_mat_free(right);
|
|
return NULL;
|
|
}
|
|
|
|
void isl_mat_col_scale(__isl_keep isl_mat *mat, unsigned col, isl_int m)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_int_mul(mat->row[i][col], mat->row[i][col], m);
|
|
}
|
|
|
|
void isl_mat_col_combine(__isl_keep isl_mat *mat, unsigned dst,
|
|
isl_int m1, unsigned src1, isl_int m2, unsigned src2)
|
|
{
|
|
int i;
|
|
isl_int tmp;
|
|
|
|
isl_int_init(tmp);
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
isl_int_mul(tmp, m1, mat->row[i][src1]);
|
|
isl_int_addmul(tmp, m2, mat->row[i][src2]);
|
|
isl_int_set(mat->row[i][dst], tmp);
|
|
}
|
|
isl_int_clear(tmp);
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat)
|
|
{
|
|
struct isl_mat *inv;
|
|
int row;
|
|
isl_int a, b;
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
inv = isl_mat_identity(mat->ctx, mat->n_col);
|
|
inv = isl_mat_cow(inv);
|
|
if (!inv)
|
|
goto error;
|
|
|
|
isl_int_init(a);
|
|
isl_int_init(b);
|
|
for (row = 0; row < mat->n_row; ++row) {
|
|
int pivot, first, i, off;
|
|
pivot = isl_seq_abs_min_non_zero(mat->row[row]+row, mat->n_col-row);
|
|
if (pivot < 0) {
|
|
isl_int_clear(a);
|
|
isl_int_clear(b);
|
|
isl_assert(mat->ctx, pivot >= 0, goto error);
|
|
}
|
|
pivot += row;
|
|
if (pivot != row)
|
|
exchange(mat, &inv, NULL, row, pivot, row);
|
|
if (isl_int_is_neg(mat->row[row][row]))
|
|
oppose(mat, &inv, NULL, row, row);
|
|
first = row+1;
|
|
while ((off = isl_seq_first_non_zero(mat->row[row]+first,
|
|
mat->n_col-first)) != -1) {
|
|
first += off;
|
|
isl_int_fdiv_q(a, mat->row[row][first],
|
|
mat->row[row][row]);
|
|
subtract(mat, &inv, NULL, row, row, first, a);
|
|
if (!isl_int_is_zero(mat->row[row][first]))
|
|
exchange(mat, &inv, NULL, row, row, first);
|
|
else
|
|
++first;
|
|
}
|
|
for (i = 0; i < row; ++i) {
|
|
if (isl_int_is_zero(mat->row[row][i]))
|
|
continue;
|
|
isl_int_gcd(a, mat->row[row][row], mat->row[row][i]);
|
|
isl_int_divexact(b, mat->row[row][i], a);
|
|
isl_int_divexact(a, mat->row[row][row], a);
|
|
isl_int_neg(a, a);
|
|
isl_mat_col_combine(mat, i, a, i, b, row);
|
|
isl_mat_col_combine(inv, i, a, i, b, row);
|
|
}
|
|
}
|
|
isl_int_clear(b);
|
|
|
|
isl_int_set(a, mat->row[0][0]);
|
|
for (row = 1; row < mat->n_row; ++row)
|
|
isl_int_lcm(a, a, mat->row[row][row]);
|
|
if (isl_int_is_zero(a)){
|
|
isl_int_clear(a);
|
|
goto error;
|
|
}
|
|
for (row = 0; row < mat->n_row; ++row) {
|
|
isl_int_divexact(mat->row[row][row], a, mat->row[row][row]);
|
|
if (isl_int_is_one(mat->row[row][row]))
|
|
continue;
|
|
isl_mat_col_scale(inv, row, mat->row[row][row]);
|
|
}
|
|
isl_int_clear(a);
|
|
|
|
isl_mat_free(mat);
|
|
|
|
return inv;
|
|
error:
|
|
isl_mat_free(mat);
|
|
isl_mat_free(inv);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_transpose(__isl_take isl_mat *mat)
|
|
{
|
|
struct isl_mat *transpose = NULL;
|
|
int i, j;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
if (mat->n_col == mat->n_row) {
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
for (j = i + 1; j < mat->n_col; ++j)
|
|
isl_int_swap(mat->row[i][j], mat->row[j][i]);
|
|
return mat;
|
|
}
|
|
transpose = isl_mat_alloc(mat->ctx, mat->n_col, mat->n_row);
|
|
if (!transpose)
|
|
goto error;
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
for (j = 0; j < mat->n_col; ++j)
|
|
isl_int_set(transpose->row[j][i], mat->row[i][j]);
|
|
isl_mat_free(mat);
|
|
return transpose;
|
|
error:
|
|
isl_mat_free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_swap_cols(__isl_take isl_mat *mat,
|
|
unsigned i, unsigned j)
|
|
{
|
|
int r;
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (check_col_range(mat, i, 1) < 0 ||
|
|
check_col_range(mat, j, 1) < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
for (r = 0; r < mat->n_row; ++r)
|
|
isl_int_swap(mat->row[r][i], mat->row[r][j]);
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_swap_rows(__isl_take isl_mat *mat,
|
|
unsigned i, unsigned j)
|
|
{
|
|
isl_int *t;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
mat = isl_mat_cow(mat);
|
|
if (check_row_range(mat, i, 1) < 0 ||
|
|
check_row_range(mat, j, 1) < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
t = mat->row[i];
|
|
mat->row[i] = mat->row[j];
|
|
mat->row[j] = t;
|
|
return mat;
|
|
}
|
|
|
|
/* Calculate the product of two matrices.
|
|
*
|
|
* This function is optimized for operand matrices that contain many zeros and
|
|
* skips multiplications where we know one of the operands is zero.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_product(__isl_take isl_mat *left,
|
|
__isl_take isl_mat *right)
|
|
{
|
|
int i, j, k;
|
|
struct isl_mat *prod;
|
|
|
|
if (!left || !right)
|
|
goto error;
|
|
isl_assert(left->ctx, left->n_col == right->n_row, goto error);
|
|
prod = isl_mat_alloc(left->ctx, left->n_row, right->n_col);
|
|
if (!prod)
|
|
goto error;
|
|
if (left->n_col == 0) {
|
|
for (i = 0; i < prod->n_row; ++i)
|
|
isl_seq_clr(prod->row[i], prod->n_col);
|
|
isl_mat_free(left);
|
|
isl_mat_free(right);
|
|
return prod;
|
|
}
|
|
for (i = 0; i < prod->n_row; ++i) {
|
|
for (j = 0; j < prod->n_col; ++j)
|
|
isl_int_mul(prod->row[i][j],
|
|
left->row[i][0], right->row[0][j]);
|
|
for (k = 1; k < left->n_col; ++k) {
|
|
if (isl_int_is_zero(left->row[i][k]))
|
|
continue;
|
|
for (j = 0; j < prod->n_col; ++j)
|
|
isl_int_addmul(prod->row[i][j],
|
|
left->row[i][k], right->row[k][j]);
|
|
}
|
|
}
|
|
isl_mat_free(left);
|
|
isl_mat_free(right);
|
|
return prod;
|
|
error:
|
|
isl_mat_free(left);
|
|
isl_mat_free(right);
|
|
return NULL;
|
|
}
|
|
|
|
/* Replace the variables x in the rows q by x' given by x = M x',
|
|
* with M the matrix mat.
|
|
*
|
|
* If the number of new variables is greater than the original
|
|
* number of variables, then the rows q have already been
|
|
* preextended. If the new number is smaller, then the coefficients
|
|
* of the divs, which are not changed, need to be shifted down.
|
|
* The row q may be the equalities, the inequalities or the
|
|
* div expressions. In the latter case, has_div is true and
|
|
* we need to take into account the extra denominator column.
|
|
*/
|
|
static int preimage(struct isl_ctx *ctx, isl_int **q, unsigned n,
|
|
unsigned n_div, int has_div, struct isl_mat *mat)
|
|
{
|
|
int i;
|
|
struct isl_mat *t;
|
|
int e;
|
|
|
|
if (mat->n_col >= mat->n_row)
|
|
e = 0;
|
|
else
|
|
e = mat->n_row - mat->n_col;
|
|
if (has_div)
|
|
for (i = 0; i < n; ++i)
|
|
isl_int_mul(q[i][0], q[i][0], mat->row[0][0]);
|
|
t = isl_mat_sub_alloc6(mat->ctx, q, 0, n, has_div, mat->n_row);
|
|
t = isl_mat_product(t, mat);
|
|
if (!t)
|
|
return -1;
|
|
for (i = 0; i < n; ++i) {
|
|
isl_seq_swp_or_cpy(q[i] + has_div, t->row[i], t->n_col);
|
|
isl_seq_cpy(q[i] + has_div + t->n_col,
|
|
q[i] + has_div + t->n_col + e, n_div);
|
|
isl_seq_clr(q[i] + has_div + t->n_col + n_div, e);
|
|
}
|
|
isl_mat_free(t);
|
|
return 0;
|
|
}
|
|
|
|
/* Replace the variables x in bset by x' given by x = M x', with
|
|
* M the matrix mat.
|
|
*
|
|
* If there are fewer variables x' then there are x, then we perform
|
|
* the transformation in place, which means that, in principle,
|
|
* this frees up some extra variables as the number
|
|
* of columns remains constant, but we would have to extend
|
|
* the div array too as the number of rows in this array is assumed
|
|
* to be equal to extra.
|
|
*/
|
|
__isl_give isl_basic_set *isl_basic_set_preimage(
|
|
__isl_take isl_basic_set *bset, __isl_take isl_mat *mat)
|
|
{
|
|
struct isl_ctx *ctx;
|
|
|
|
if (!bset || !mat)
|
|
goto error;
|
|
|
|
ctx = bset->ctx;
|
|
bset = isl_basic_set_cow(bset);
|
|
if (isl_basic_set_check_no_params(bset) < 0)
|
|
goto error;
|
|
|
|
isl_assert(ctx, 1+bset->dim->n_out == mat->n_row, goto error);
|
|
isl_assert(ctx, mat->n_col > 0, goto error);
|
|
|
|
if (mat->n_col > mat->n_row) {
|
|
bset = isl_basic_set_add_dims(bset, isl_dim_set,
|
|
mat->n_col - mat->n_row);
|
|
if (!bset)
|
|
goto error;
|
|
} else if (mat->n_col < mat->n_row) {
|
|
bset->dim = isl_space_cow(bset->dim);
|
|
if (!bset->dim)
|
|
goto error;
|
|
bset->dim->n_out -= mat->n_row - mat->n_col;
|
|
}
|
|
|
|
if (preimage(ctx, bset->eq, bset->n_eq, bset->n_div, 0,
|
|
isl_mat_copy(mat)) < 0)
|
|
goto error;
|
|
|
|
if (preimage(ctx, bset->ineq, bset->n_ineq, bset->n_div, 0,
|
|
isl_mat_copy(mat)) < 0)
|
|
goto error;
|
|
|
|
if (preimage(ctx, bset->div, bset->n_div, bset->n_div, 1, mat) < 0)
|
|
goto error2;
|
|
|
|
ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
|
|
ISL_F_CLR(bset, ISL_BASIC_SET_NO_REDUNDANT);
|
|
ISL_F_CLR(bset, ISL_BASIC_SET_SORTED);
|
|
ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED_DIVS);
|
|
ISL_F_CLR(bset, ISL_BASIC_SET_ALL_EQUALITIES);
|
|
|
|
bset = isl_basic_set_simplify(bset);
|
|
bset = isl_basic_set_finalize(bset);
|
|
|
|
return bset;
|
|
error:
|
|
isl_mat_free(mat);
|
|
error2:
|
|
isl_basic_set_free(bset);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_set *isl_set_preimage(
|
|
__isl_take isl_set *set, __isl_take isl_mat *mat)
|
|
{
|
|
int i;
|
|
|
|
set = isl_set_cow(set);
|
|
if (!set)
|
|
goto error;
|
|
|
|
for (i = 0; i < set->n; ++i) {
|
|
set->p[i] = isl_basic_set_preimage(set->p[i],
|
|
isl_mat_copy(mat));
|
|
if (!set->p[i])
|
|
goto error;
|
|
}
|
|
if (mat->n_col != mat->n_row) {
|
|
set->dim = isl_space_cow(set->dim);
|
|
if (!set->dim)
|
|
goto error;
|
|
set->dim->n_out += mat->n_col;
|
|
set->dim->n_out -= mat->n_row;
|
|
}
|
|
isl_mat_free(mat);
|
|
ISL_F_CLR(set, ISL_SET_NORMALIZED);
|
|
return set;
|
|
error:
|
|
isl_set_free(set);
|
|
isl_mat_free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
/* Replace the variables x starting at "first_col" in the rows "rows"
|
|
* of some coefficient matrix by x' with x = M x' with M the matrix mat.
|
|
* That is, replace the corresponding coefficients c by c M.
|
|
*/
|
|
isl_stat isl_mat_sub_transform(isl_int **row, unsigned n_row,
|
|
unsigned first_col, __isl_take isl_mat *mat)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
isl_mat *t;
|
|
|
|
if (!mat)
|
|
return isl_stat_error;
|
|
ctx = isl_mat_get_ctx(mat);
|
|
t = isl_mat_sub_alloc6(ctx, row, 0, n_row, first_col, mat->n_row);
|
|
t = isl_mat_product(t, mat);
|
|
if (!t)
|
|
return isl_stat_error;
|
|
for (i = 0; i < n_row; ++i)
|
|
isl_seq_swp_or_cpy(row[i] + first_col, t->row[i], t->n_col);
|
|
isl_mat_free(t);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
void isl_mat_print_internal(__isl_keep isl_mat *mat, FILE *out, int indent)
|
|
{
|
|
int i, j;
|
|
|
|
if (!mat) {
|
|
fprintf(out, "%*snull mat\n", indent, "");
|
|
return;
|
|
}
|
|
|
|
if (mat->n_row == 0)
|
|
fprintf(out, "%*s[]\n", indent, "");
|
|
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
if (!i)
|
|
fprintf(out, "%*s[[", indent, "");
|
|
else
|
|
fprintf(out, "%*s[", indent+1, "");
|
|
for (j = 0; j < mat->n_col; ++j) {
|
|
if (j)
|
|
fprintf(out, ",");
|
|
isl_int_print(out, mat->row[i][j], 0);
|
|
}
|
|
if (i == mat->n_row-1)
|
|
fprintf(out, "]]\n");
|
|
else
|
|
fprintf(out, "]\n");
|
|
}
|
|
}
|
|
|
|
void isl_mat_dump(__isl_keep isl_mat *mat)
|
|
{
|
|
isl_mat_print_internal(mat, stderr, 0);
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_drop_cols(__isl_take isl_mat *mat,
|
|
unsigned col, unsigned n)
|
|
{
|
|
int r;
|
|
|
|
if (n == 0)
|
|
return mat;
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (check_col_range(mat, col, n) < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
if (col != mat->n_col-n) {
|
|
for (r = 0; r < mat->n_row; ++r)
|
|
isl_seq_cpy(mat->row[r]+col, mat->row[r]+col+n,
|
|
mat->n_col - col - n);
|
|
}
|
|
mat->n_col -= n;
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_drop_rows(__isl_take isl_mat *mat,
|
|
unsigned row, unsigned n)
|
|
{
|
|
int r;
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (check_row_range(mat, row, n) < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
for (r = row; r+n < mat->n_row; ++r)
|
|
mat->row[r] = mat->row[r+n];
|
|
|
|
mat->n_row -= n;
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_insert_cols(__isl_take isl_mat *mat,
|
|
unsigned col, unsigned n)
|
|
{
|
|
isl_mat *ext;
|
|
|
|
if (check_col_range(mat, col, 0) < 0)
|
|
return isl_mat_free(mat);
|
|
if (n == 0)
|
|
return mat;
|
|
|
|
ext = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col + n);
|
|
if (!ext)
|
|
goto error;
|
|
|
|
isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row, 0, 0, col);
|
|
isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row,
|
|
col + n, col, mat->n_col - col);
|
|
|
|
isl_mat_free(mat);
|
|
return ext;
|
|
error:
|
|
isl_mat_free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_insert_zero_cols(__isl_take isl_mat *mat,
|
|
unsigned first, unsigned n)
|
|
{
|
|
int i;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
mat = isl_mat_insert_cols(mat, first, n);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_seq_clr(mat->row[i] + first, n);
|
|
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_add_zero_cols(__isl_take isl_mat *mat, unsigned n)
|
|
{
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
return isl_mat_insert_zero_cols(mat, mat->n_col, n);
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_insert_rows(__isl_take isl_mat *mat,
|
|
unsigned row, unsigned n)
|
|
{
|
|
isl_mat *ext;
|
|
|
|
if (check_row_range(mat, row, 0) < 0)
|
|
return isl_mat_free(mat);
|
|
if (n == 0)
|
|
return mat;
|
|
|
|
ext = isl_mat_alloc(mat->ctx, mat->n_row + n, mat->n_col);
|
|
if (!ext)
|
|
goto error;
|
|
|
|
isl_mat_sub_copy(mat->ctx, ext->row, mat->row, row, 0, 0, mat->n_col);
|
|
isl_mat_sub_copy(mat->ctx, ext->row + row + n, mat->row + row,
|
|
mat->n_row - row, 0, 0, mat->n_col);
|
|
|
|
isl_mat_free(mat);
|
|
return ext;
|
|
error:
|
|
isl_mat_free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_add_rows(__isl_take isl_mat *mat, unsigned n)
|
|
{
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
return isl_mat_insert_rows(mat, mat->n_row, n);
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_insert_zero_rows(__isl_take isl_mat *mat,
|
|
unsigned row, unsigned n)
|
|
{
|
|
int i;
|
|
|
|
mat = isl_mat_insert_rows(mat, row, n);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
isl_seq_clr(mat->row[row + i], mat->n_col);
|
|
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_add_zero_rows(__isl_take isl_mat *mat, unsigned n)
|
|
{
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
return isl_mat_insert_zero_rows(mat, mat->n_row, n);
|
|
}
|
|
|
|
void isl_mat_col_submul(__isl_keep isl_mat *mat,
|
|
int dst_col, isl_int f, int src_col)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_int_submul(mat->row[i][dst_col], f, mat->row[i][src_col]);
|
|
}
|
|
|
|
void isl_mat_col_add(__isl_keep isl_mat *mat, int dst_col, int src_col)
|
|
{
|
|
int i;
|
|
|
|
if (!mat)
|
|
return;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_int_add(mat->row[i][dst_col],
|
|
mat->row[i][dst_col], mat->row[i][src_col]);
|
|
}
|
|
|
|
void isl_mat_col_mul(__isl_keep isl_mat *mat, int dst_col, isl_int f,
|
|
int src_col)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_int_mul(mat->row[i][dst_col], f, mat->row[i][src_col]);
|
|
}
|
|
|
|
/* Add "f" times column "src_col" to column "dst_col" of "mat" and
|
|
* return the result.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_col_addmul(__isl_take isl_mat *mat, int dst_col,
|
|
isl_int f, int src_col)
|
|
{
|
|
int i;
|
|
|
|
if (check_col(mat, dst_col) < 0 || check_col(mat, src_col) < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
if (isl_int_is_zero(mat->row[i][src_col]))
|
|
continue;
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
isl_int_addmul(mat->row[i][dst_col], f, mat->row[i][src_col]);
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Negate column "col" of "mat" and return the result.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_col_neg(__isl_take isl_mat *mat, int col)
|
|
{
|
|
int i;
|
|
|
|
if (check_col(mat, col) < 0)
|
|
return isl_mat_free(mat);
|
|
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
if (isl_int_is_zero(mat->row[i][col]))
|
|
continue;
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
isl_int_neg(mat->row[i][col], mat->row[i][col]);
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Negate row "row" of "mat" and return the result.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_row_neg(__isl_take isl_mat *mat, int row)
|
|
{
|
|
if (check_row(mat, row) < 0)
|
|
return isl_mat_free(mat);
|
|
if (isl_seq_first_non_zero(mat->row[row], mat->n_col) == -1)
|
|
return mat;
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
isl_seq_neg(mat->row[row], mat->row[row], mat->n_col);
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_unimodular_complete(__isl_take isl_mat *M, int row)
|
|
{
|
|
int r;
|
|
struct isl_mat *H = NULL, *Q = NULL;
|
|
|
|
if (!M)
|
|
return NULL;
|
|
|
|
isl_assert(M->ctx, M->n_row == M->n_col, goto error);
|
|
M->n_row = row;
|
|
H = isl_mat_left_hermite(isl_mat_copy(M), 0, NULL, &Q);
|
|
M->n_row = M->n_col;
|
|
if (!H)
|
|
goto error;
|
|
for (r = 0; r < row; ++r)
|
|
isl_assert(M->ctx, isl_int_is_one(H->row[r][r]), goto error);
|
|
for (r = row; r < M->n_row; ++r)
|
|
isl_seq_cpy(M->row[r], Q->row[r], M->n_col);
|
|
isl_mat_free(H);
|
|
isl_mat_free(Q);
|
|
return M;
|
|
error:
|
|
isl_mat_free(H);
|
|
isl_mat_free(Q);
|
|
isl_mat_free(M);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_concat(__isl_take isl_mat *top,
|
|
__isl_take isl_mat *bot)
|
|
{
|
|
struct isl_mat *mat;
|
|
|
|
if (!top || !bot)
|
|
goto error;
|
|
|
|
isl_assert(top->ctx, top->n_col == bot->n_col, goto error);
|
|
if (top->n_row == 0) {
|
|
isl_mat_free(top);
|
|
return bot;
|
|
}
|
|
if (bot->n_row == 0) {
|
|
isl_mat_free(bot);
|
|
return top;
|
|
}
|
|
|
|
mat = isl_mat_alloc(top->ctx, top->n_row + bot->n_row, top->n_col);
|
|
if (!mat)
|
|
goto error;
|
|
isl_mat_sub_copy(mat->ctx, mat->row, top->row, top->n_row,
|
|
0, 0, mat->n_col);
|
|
isl_mat_sub_copy(mat->ctx, mat->row + top->n_row, bot->row, bot->n_row,
|
|
0, 0, mat->n_col);
|
|
isl_mat_free(top);
|
|
isl_mat_free(bot);
|
|
return mat;
|
|
error:
|
|
isl_mat_free(top);
|
|
isl_mat_free(bot);
|
|
return NULL;
|
|
}
|
|
|
|
isl_bool isl_mat_is_equal(__isl_keep isl_mat *mat1, __isl_keep isl_mat *mat2)
|
|
{
|
|
int i;
|
|
|
|
if (!mat1 || !mat2)
|
|
return isl_bool_error;
|
|
|
|
if (mat1->n_row != mat2->n_row)
|
|
return isl_bool_false;
|
|
|
|
if (mat1->n_col != mat2->n_col)
|
|
return isl_bool_false;
|
|
|
|
for (i = 0; i < mat1->n_row; ++i)
|
|
if (!isl_seq_eq(mat1->row[i], mat2->row[i], mat1->n_col))
|
|
return isl_bool_false;
|
|
|
|
return isl_bool_true;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_from_row_vec(__isl_take isl_vec *vec)
|
|
{
|
|
struct isl_mat *mat;
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
mat = isl_mat_alloc(vec->ctx, 1, vec->size);
|
|
if (!mat)
|
|
goto error;
|
|
|
|
isl_seq_cpy(mat->row[0], vec->el, vec->size);
|
|
|
|
isl_vec_free(vec);
|
|
return mat;
|
|
error:
|
|
isl_vec_free(vec);
|
|
return NULL;
|
|
}
|
|
|
|
/* Return a copy of row "row" of "mat" as an isl_vec.
|
|
*/
|
|
__isl_give isl_vec *isl_mat_get_row(__isl_keep isl_mat *mat, unsigned row)
|
|
{
|
|
isl_vec *v;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
if (row >= mat->n_row)
|
|
isl_die(mat->ctx, isl_error_invalid, "row out of range",
|
|
return NULL);
|
|
|
|
v = isl_vec_alloc(isl_mat_get_ctx(mat), mat->n_col);
|
|
if (!v)
|
|
return NULL;
|
|
isl_seq_cpy(v->el, mat->row[row], mat->n_col);
|
|
|
|
return v;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_vec_concat(__isl_take isl_mat *top,
|
|
__isl_take isl_vec *bot)
|
|
{
|
|
return isl_mat_concat(top, isl_mat_from_row_vec(bot));
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_move_cols(__isl_take isl_mat *mat,
|
|
unsigned dst_col, unsigned src_col, unsigned n)
|
|
{
|
|
isl_mat *res;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
if (n == 0 || dst_col == src_col)
|
|
return mat;
|
|
|
|
res = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col);
|
|
if (!res)
|
|
goto error;
|
|
|
|
if (dst_col < src_col) {
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
0, 0, dst_col);
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
dst_col, src_col, n);
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
dst_col + n, dst_col, src_col - dst_col);
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
src_col + n, src_col + n,
|
|
res->n_col - src_col - n);
|
|
} else {
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
0, 0, src_col);
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
src_col, src_col + n, dst_col - src_col);
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
dst_col, src_col, n);
|
|
isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row,
|
|
dst_col + n, dst_col + n,
|
|
res->n_col - dst_col - n);
|
|
}
|
|
isl_mat_free(mat);
|
|
|
|
return res;
|
|
error:
|
|
isl_mat_free(mat);
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the gcd of the elements in row "row" of "mat" in *gcd.
|
|
* Return isl_stat_ok on success and isl_stat_error on failure.
|
|
*/
|
|
isl_stat isl_mat_row_gcd(__isl_keep isl_mat *mat, int row, isl_int *gcd)
|
|
{
|
|
if (check_row(mat, row) < 0)
|
|
return isl_stat_error;
|
|
|
|
isl_seq_gcd(mat->row[row], mat->n_col, gcd);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
void isl_mat_gcd(__isl_keep isl_mat *mat, isl_int *gcd)
|
|
{
|
|
int i;
|
|
isl_int g;
|
|
|
|
isl_int_set_si(*gcd, 0);
|
|
if (!mat)
|
|
return;
|
|
|
|
isl_int_init(g);
|
|
for (i = 0; i < mat->n_row; ++i) {
|
|
isl_seq_gcd(mat->row[i], mat->n_col, &g);
|
|
isl_int_gcd(*gcd, *gcd, g);
|
|
}
|
|
isl_int_clear(g);
|
|
}
|
|
|
|
/* Return the result of scaling "mat" by a factor of "m".
|
|
*/
|
|
__isl_give isl_mat *isl_mat_scale(__isl_take isl_mat *mat, isl_int m)
|
|
{
|
|
int i;
|
|
|
|
if (isl_int_is_one(m))
|
|
return mat;
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
|
|
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_scale_down(__isl_take isl_mat *mat, isl_int m)
|
|
{
|
|
int i;
|
|
|
|
if (isl_int_is_one(m))
|
|
return mat;
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
for (i = 0; i < mat->n_row; ++i)
|
|
isl_seq_scale_down(mat->row[i], mat->row[i], m, mat->n_col);
|
|
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_scale_down_row(__isl_take isl_mat *mat, int row,
|
|
isl_int m)
|
|
{
|
|
if (isl_int_is_one(m))
|
|
return mat;
|
|
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
isl_seq_scale_down(mat->row[row], mat->row[row], m, mat->n_col);
|
|
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_normalize(__isl_take isl_mat *mat)
|
|
{
|
|
isl_int gcd;
|
|
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
isl_int_init(gcd);
|
|
isl_mat_gcd(mat, &gcd);
|
|
mat = isl_mat_scale_down(mat, gcd);
|
|
isl_int_clear(gcd);
|
|
|
|
return mat;
|
|
}
|
|
|
|
__isl_give isl_mat *isl_mat_normalize_row(__isl_take isl_mat *mat, int row)
|
|
{
|
|
mat = isl_mat_cow(mat);
|
|
if (!mat)
|
|
return NULL;
|
|
|
|
isl_seq_normalize(mat->ctx, mat->row[row], mat->n_col);
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Number of initial non-zero columns.
|
|
*/
|
|
int isl_mat_initial_non_zero_cols(__isl_keep isl_mat *mat)
|
|
{
|
|
int i;
|
|
|
|
if (!mat)
|
|
return -1;
|
|
|
|
for (i = 0; i < mat->n_col; ++i)
|
|
if (row_first_non_zero(mat->row, mat->n_row, i) < 0)
|
|
break;
|
|
|
|
return i;
|
|
}
|
|
|
|
/* Return a basis for the space spanned by the rows of "mat".
|
|
* Any basis will do, so simply perform Gaussian elimination and
|
|
* remove the empty rows.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_row_basis(__isl_take isl_mat *mat)
|
|
{
|
|
return isl_mat_reverse_gauss(mat);
|
|
}
|
|
|
|
/* Return rows that extend a basis of "mat1" to one
|
|
* that covers both "mat1" and "mat2".
|
|
* The Hermite normal form of the concatenation of the two matrices is
|
|
*
|
|
* [ Q1 ]
|
|
* [ M1 ] = [ H1 0 0 ] [ Q2 ]
|
|
* [ M2 ] = [ H2 H3 0 ] [ Q3 ]
|
|
*
|
|
* The number of columns in H1 and H3 determine the number of rows
|
|
* in Q1 and Q2. Q1 is a basis for M1, while Q2 extends this basis
|
|
* to also cover M2.
|
|
*/
|
|
__isl_give isl_mat *isl_mat_row_basis_extension(
|
|
__isl_take isl_mat *mat1, __isl_take isl_mat *mat2)
|
|
{
|
|
isl_size n_row;
|
|
int r1, r;
|
|
isl_size n1;
|
|
isl_mat *H, *Q;
|
|
|
|
n1 = isl_mat_rows(mat1);
|
|
H = isl_mat_concat(mat1, mat2);
|
|
H = isl_mat_left_hermite(H, 0, NULL, &Q);
|
|
if (n1 < 0 || !H || !Q)
|
|
goto error;
|
|
|
|
r1 = hermite_first_zero_col(H, 0, n1);
|
|
r = hermite_first_zero_col(H, r1, H->n_row);
|
|
n_row = isl_mat_rows(Q);
|
|
if (n_row < 0)
|
|
goto error;
|
|
Q = isl_mat_drop_rows(Q, r, n_row - r);
|
|
Q = isl_mat_drop_rows(Q, 0, r1);
|
|
|
|
isl_mat_free(H);
|
|
return Q;
|
|
error:
|
|
isl_mat_free(H);
|
|
isl_mat_free(Q);
|
|
return NULL;
|
|
}
|
|
|
|
/* Are the rows of "mat1" linearly independent of those of "mat2"?
|
|
* That is, is there no linear dependence among the combined rows
|
|
* that is not already present in either "mat1" or "mat2"?
|
|
* In other words, is the rank of "mat1" and "mat2" combined equal
|
|
* to the sum of the ranks of "mat1" and "mat2"?
|
|
*/
|
|
isl_bool isl_mat_has_linearly_independent_rows(__isl_keep isl_mat *mat1,
|
|
__isl_keep isl_mat *mat2)
|
|
{
|
|
isl_size r1, r2, r;
|
|
isl_mat *mat;
|
|
|
|
r1 = isl_mat_rank(mat1);
|
|
if (r1 < 0)
|
|
return isl_bool_error;
|
|
if (r1 == 0)
|
|
return isl_bool_true;
|
|
r2 = isl_mat_rank(mat2);
|
|
if (r2 < 0)
|
|
return isl_bool_error;
|
|
if (r2 == 0)
|
|
return isl_bool_true;
|
|
|
|
mat = isl_mat_concat(isl_mat_copy(mat1), isl_mat_copy(mat2));
|
|
r = isl_mat_rank(mat);
|
|
isl_mat_free(mat);
|
|
if (r < 0)
|
|
return isl_bool_error;
|
|
return isl_bool_ok(r == r1 + r2);
|
|
}
|