mirror of
https://review.haiku-os.org/buildtools
synced 2024-11-23 07:18:49 +01:00
7662 lines
228 KiB
C
7662 lines
228 KiB
C
/*
|
|
* Copyright 2011 INRIA Saclay
|
|
* Copyright 2012-2014 Ecole Normale Superieure
|
|
* Copyright 2015-2016 Sven Verdoolaege
|
|
* Copyright 2016 INRIA Paris
|
|
* Copyright 2017 Sven Verdoolaege
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
|
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
|
* 91893 Orsay, France
|
|
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
|
|
* and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
|
|
* CS 42112, 75589 Paris Cedex 12, France
|
|
*/
|
|
|
|
#include <isl_ctx_private.h>
|
|
#include <isl_map_private.h>
|
|
#include <isl_space_private.h>
|
|
#include <isl_aff_private.h>
|
|
#include <isl/hash.h>
|
|
#include <isl/id.h>
|
|
#include <isl/constraint.h>
|
|
#include <isl/schedule.h>
|
|
#include <isl_schedule_constraints.h>
|
|
#include <isl/schedule_node.h>
|
|
#include <isl_mat_private.h>
|
|
#include <isl_vec_private.h>
|
|
#include <isl/set.h>
|
|
#include <isl_union_set_private.h>
|
|
#include <isl_seq.h>
|
|
#include <isl_tab.h>
|
|
#include <isl_dim_map.h>
|
|
#include <isl/map_to_basic_set.h>
|
|
#include <isl_sort.h>
|
|
#include <isl_options_private.h>
|
|
#include <isl_tarjan.h>
|
|
#include <isl_morph.h>
|
|
#include <isl/ilp.h>
|
|
#include <isl_val_private.h>
|
|
|
|
/*
|
|
* The scheduling algorithm implemented in this file was inspired by
|
|
* Bondhugula et al., "Automatic Transformations for Communication-Minimized
|
|
* Parallelization and Locality Optimization in the Polyhedral Model".
|
|
*
|
|
* For a detailed description of the variant implemented in isl,
|
|
* see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
|
|
*/
|
|
|
|
|
|
/* Internal information about a node that is used during the construction
|
|
* of a schedule.
|
|
* space represents the original space in which the domain lives;
|
|
* that is, the space is not affected by compression
|
|
* sched is a matrix representation of the schedule being constructed
|
|
* for this node; if compressed is set, then this schedule is
|
|
* defined over the compressed domain space
|
|
* sched_map is an isl_map representation of the same (partial) schedule
|
|
* sched_map may be NULL; if compressed is set, then this map
|
|
* is defined over the uncompressed domain space
|
|
* rank is the number of linearly independent rows in the linear part
|
|
* of sched
|
|
* the rows of "vmap" represent a change of basis for the node
|
|
* variables; the first rank rows span the linear part of
|
|
* the schedule rows; the remaining rows are linearly independent
|
|
* the rows of "indep" represent linear combinations of the schedule
|
|
* coefficients that are non-zero when the schedule coefficients are
|
|
* linearly independent of previously computed schedule rows.
|
|
* start is the first variable in the LP problem in the sequences that
|
|
* represents the schedule coefficients of this node
|
|
* nvar is the dimension of the (compressed) domain
|
|
* nparam is the number of parameters or 0 if we are not constructing
|
|
* a parametric schedule
|
|
*
|
|
* If compressed is set, then hull represents the constraints
|
|
* that were used to derive the compression, while compress and
|
|
* decompress map the original space to the compressed space and
|
|
* vice versa.
|
|
*
|
|
* scc is the index of SCC (or WCC) this node belongs to
|
|
*
|
|
* "cluster" is only used inside extract_clusters and identifies
|
|
* the cluster of SCCs that the node belongs to.
|
|
*
|
|
* coincident contains a boolean for each of the rows of the schedule,
|
|
* indicating whether the corresponding scheduling dimension satisfies
|
|
* the coincidence constraints in the sense that the corresponding
|
|
* dependence distances are zero.
|
|
*
|
|
* If the schedule_treat_coalescing option is set, then
|
|
* "sizes" contains the sizes of the (compressed) instance set
|
|
* in each direction. If there is no fixed size in a given direction,
|
|
* then the corresponding size value is set to infinity.
|
|
* If the schedule_treat_coalescing option or the schedule_max_coefficient
|
|
* option is set, then "max" contains the maximal values for
|
|
* schedule coefficients of the (compressed) variables. If no bound
|
|
* needs to be imposed on a particular variable, then the corresponding
|
|
* value is negative.
|
|
* If not NULL, then "bounds" contains a non-parametric set
|
|
* in the compressed space that is bounded by the size in each direction.
|
|
*/
|
|
struct isl_sched_node {
|
|
isl_space *space;
|
|
int compressed;
|
|
isl_set *hull;
|
|
isl_multi_aff *compress;
|
|
isl_pw_multi_aff *decompress;
|
|
isl_mat *sched;
|
|
isl_map *sched_map;
|
|
int rank;
|
|
isl_mat *indep;
|
|
isl_mat *vmap;
|
|
int start;
|
|
int nvar;
|
|
int nparam;
|
|
|
|
int scc;
|
|
int cluster;
|
|
|
|
int *coincident;
|
|
|
|
isl_multi_val *sizes;
|
|
isl_basic_set *bounds;
|
|
isl_vec *max;
|
|
};
|
|
|
|
static isl_bool node_has_tuples(const void *entry, const void *val)
|
|
{
|
|
struct isl_sched_node *node = (struct isl_sched_node *)entry;
|
|
isl_space *space = (isl_space *) val;
|
|
|
|
return isl_space_has_equal_tuples(node->space, space);
|
|
}
|
|
|
|
static int node_scc_exactly(struct isl_sched_node *node, int scc)
|
|
{
|
|
return node->scc == scc;
|
|
}
|
|
|
|
static int node_scc_at_most(struct isl_sched_node *node, int scc)
|
|
{
|
|
return node->scc <= scc;
|
|
}
|
|
|
|
static int node_scc_at_least(struct isl_sched_node *node, int scc)
|
|
{
|
|
return node->scc >= scc;
|
|
}
|
|
|
|
/* An edge in the dependence graph. An edge may be used to
|
|
* ensure validity of the generated schedule, to minimize the dependence
|
|
* distance or both
|
|
*
|
|
* map is the dependence relation, with i -> j in the map if j depends on i
|
|
* tagged_condition and tagged_validity contain the union of all tagged
|
|
* condition or conditional validity dependence relations that
|
|
* specialize the dependence relation "map"; that is,
|
|
* if (i -> a) -> (j -> b) is an element of "tagged_condition"
|
|
* or "tagged_validity", then i -> j is an element of "map".
|
|
* If these fields are NULL, then they represent the empty relation.
|
|
* src is the source node
|
|
* dst is the sink node
|
|
*
|
|
* types is a bit vector containing the types of this edge.
|
|
* validity is set if the edge is used to ensure correctness
|
|
* coincidence is used to enforce zero dependence distances
|
|
* proximity is set if the edge is used to minimize dependence distances
|
|
* condition is set if the edge represents a condition
|
|
* for a conditional validity schedule constraint
|
|
* local can only be set for condition edges and indicates that
|
|
* the dependence distance over the edge should be zero
|
|
* conditional_validity is set if the edge is used to conditionally
|
|
* ensure correctness
|
|
*
|
|
* For validity edges, start and end mark the sequence of inequality
|
|
* constraints in the LP problem that encode the validity constraint
|
|
* corresponding to this edge.
|
|
*
|
|
* During clustering, an edge may be marked "no_merge" if it should
|
|
* not be used to merge clusters.
|
|
* The weight is also only used during clustering and it is
|
|
* an indication of how many schedule dimensions on either side
|
|
* of the schedule constraints can be aligned.
|
|
* If the weight is negative, then this means that this edge was postponed
|
|
* by has_bounded_distances or any_no_merge. The original weight can
|
|
* be retrieved by adding 1 + graph->max_weight, with "graph"
|
|
* the graph containing this edge.
|
|
*/
|
|
struct isl_sched_edge {
|
|
isl_map *map;
|
|
isl_union_map *tagged_condition;
|
|
isl_union_map *tagged_validity;
|
|
|
|
struct isl_sched_node *src;
|
|
struct isl_sched_node *dst;
|
|
|
|
unsigned types;
|
|
|
|
int start;
|
|
int end;
|
|
|
|
int no_merge;
|
|
int weight;
|
|
};
|
|
|
|
/* Is "edge" marked as being of type "type"?
|
|
*/
|
|
static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
|
|
{
|
|
return ISL_FL_ISSET(edge->types, 1 << type);
|
|
}
|
|
|
|
/* Mark "edge" as being of type "type".
|
|
*/
|
|
static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
|
|
{
|
|
ISL_FL_SET(edge->types, 1 << type);
|
|
}
|
|
|
|
/* No longer mark "edge" as being of type "type"?
|
|
*/
|
|
static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
|
|
{
|
|
ISL_FL_CLR(edge->types, 1 << type);
|
|
}
|
|
|
|
/* Is "edge" marked as a validity edge?
|
|
*/
|
|
static int is_validity(struct isl_sched_edge *edge)
|
|
{
|
|
return is_type(edge, isl_edge_validity);
|
|
}
|
|
|
|
/* Mark "edge" as a validity edge.
|
|
*/
|
|
static void set_validity(struct isl_sched_edge *edge)
|
|
{
|
|
set_type(edge, isl_edge_validity);
|
|
}
|
|
|
|
/* Is "edge" marked as a proximity edge?
|
|
*/
|
|
static int is_proximity(struct isl_sched_edge *edge)
|
|
{
|
|
return is_type(edge, isl_edge_proximity);
|
|
}
|
|
|
|
/* Is "edge" marked as a local edge?
|
|
*/
|
|
static int is_local(struct isl_sched_edge *edge)
|
|
{
|
|
return is_type(edge, isl_edge_local);
|
|
}
|
|
|
|
/* Mark "edge" as a local edge.
|
|
*/
|
|
static void set_local(struct isl_sched_edge *edge)
|
|
{
|
|
set_type(edge, isl_edge_local);
|
|
}
|
|
|
|
/* No longer mark "edge" as a local edge.
|
|
*/
|
|
static void clear_local(struct isl_sched_edge *edge)
|
|
{
|
|
clear_type(edge, isl_edge_local);
|
|
}
|
|
|
|
/* Is "edge" marked as a coincidence edge?
|
|
*/
|
|
static int is_coincidence(struct isl_sched_edge *edge)
|
|
{
|
|
return is_type(edge, isl_edge_coincidence);
|
|
}
|
|
|
|
/* Is "edge" marked as a condition edge?
|
|
*/
|
|
static int is_condition(struct isl_sched_edge *edge)
|
|
{
|
|
return is_type(edge, isl_edge_condition);
|
|
}
|
|
|
|
/* Is "edge" marked as a conditional validity edge?
|
|
*/
|
|
static int is_conditional_validity(struct isl_sched_edge *edge)
|
|
{
|
|
return is_type(edge, isl_edge_conditional_validity);
|
|
}
|
|
|
|
/* Is "edge" of a type that can appear multiple times between
|
|
* the same pair of nodes?
|
|
*
|
|
* Condition edges and conditional validity edges may have tagged
|
|
* dependence relations, in which case an edge is added for each
|
|
* pair of tags.
|
|
*/
|
|
static int is_multi_edge_type(struct isl_sched_edge *edge)
|
|
{
|
|
return is_condition(edge) || is_conditional_validity(edge);
|
|
}
|
|
|
|
/* Internal information about the dependence graph used during
|
|
* the construction of the schedule.
|
|
*
|
|
* intra_hmap is a cache, mapping dependence relations to their dual,
|
|
* for dependences from a node to itself, possibly without
|
|
* coefficients for the parameters
|
|
* intra_hmap_param is a cache, mapping dependence relations to their dual,
|
|
* for dependences from a node to itself, including coefficients
|
|
* for the parameters
|
|
* inter_hmap is a cache, mapping dependence relations to their dual,
|
|
* for dependences between distinct nodes
|
|
* if compression is involved then the key for these maps
|
|
* is the original, uncompressed dependence relation, while
|
|
* the value is the dual of the compressed dependence relation.
|
|
*
|
|
* n is the number of nodes
|
|
* node is the list of nodes
|
|
* maxvar is the maximal number of variables over all nodes
|
|
* max_row is the allocated number of rows in the schedule
|
|
* n_row is the current (maximal) number of linearly independent
|
|
* rows in the node schedules
|
|
* n_total_row is the current number of rows in the node schedules
|
|
* band_start is the starting row in the node schedules of the current band
|
|
* root is set to the original dependence graph from which this graph
|
|
* is derived through splitting. If this graph is not the result of
|
|
* splitting, then the root field points to the graph itself.
|
|
*
|
|
* sorted contains a list of node indices sorted according to the
|
|
* SCC to which a node belongs
|
|
*
|
|
* n_edge is the number of edges
|
|
* edge is the list of edges
|
|
* max_edge contains the maximal number of edges of each type;
|
|
* in particular, it contains the number of edges in the inital graph.
|
|
* edge_table contains pointers into the edge array, hashed on the source
|
|
* and sink spaces; there is one such table for each type;
|
|
* a given edge may be referenced from more than one table
|
|
* if the corresponding relation appears in more than one of the
|
|
* sets of dependences; however, for each type there is only
|
|
* a single edge between a given pair of source and sink space
|
|
* in the entire graph
|
|
*
|
|
* node_table contains pointers into the node array, hashed on the space tuples
|
|
*
|
|
* region contains a list of variable sequences that should be non-trivial
|
|
*
|
|
* lp contains the (I)LP problem used to obtain new schedule rows
|
|
*
|
|
* src_scc and dst_scc are the source and sink SCCs of an edge with
|
|
* conflicting constraints
|
|
*
|
|
* scc represents the number of components
|
|
* weak is set if the components are weakly connected
|
|
*
|
|
* max_weight is used during clustering and represents the maximal
|
|
* weight of the relevant proximity edges.
|
|
*/
|
|
struct isl_sched_graph {
|
|
isl_map_to_basic_set *intra_hmap;
|
|
isl_map_to_basic_set *intra_hmap_param;
|
|
isl_map_to_basic_set *inter_hmap;
|
|
|
|
struct isl_sched_node *node;
|
|
int n;
|
|
int maxvar;
|
|
int max_row;
|
|
int n_row;
|
|
|
|
int *sorted;
|
|
|
|
int n_total_row;
|
|
int band_start;
|
|
|
|
struct isl_sched_graph *root;
|
|
|
|
struct isl_sched_edge *edge;
|
|
int n_edge;
|
|
int max_edge[isl_edge_last + 1];
|
|
struct isl_hash_table *edge_table[isl_edge_last + 1];
|
|
|
|
struct isl_hash_table *node_table;
|
|
struct isl_trivial_region *region;
|
|
|
|
isl_basic_set *lp;
|
|
|
|
int src_scc;
|
|
int dst_scc;
|
|
|
|
int scc;
|
|
int weak;
|
|
|
|
int max_weight;
|
|
};
|
|
|
|
/* Initialize node_table based on the list of nodes.
|
|
*/
|
|
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
graph->node_table = isl_hash_table_alloc(ctx, graph->n);
|
|
if (!graph->node_table)
|
|
return -1;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_hash_table_entry *entry;
|
|
uint32_t hash;
|
|
|
|
hash = isl_space_get_tuple_hash(graph->node[i].space);
|
|
entry = isl_hash_table_find(ctx, graph->node_table, hash,
|
|
&node_has_tuples,
|
|
graph->node[i].space, 1);
|
|
if (!entry)
|
|
return -1;
|
|
entry->data = &graph->node[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return a pointer to the node that lives within the given space,
|
|
* an invalid node if there is no such node, or NULL in case of error.
|
|
*/
|
|
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, __isl_keep isl_space *space)
|
|
{
|
|
struct isl_hash_table_entry *entry;
|
|
uint32_t hash;
|
|
|
|
if (!space)
|
|
return NULL;
|
|
|
|
hash = isl_space_get_tuple_hash(space);
|
|
entry = isl_hash_table_find(ctx, graph->node_table, hash,
|
|
&node_has_tuples, space, 0);
|
|
if (!entry)
|
|
return NULL;
|
|
if (entry == isl_hash_table_entry_none)
|
|
return graph->node + graph->n;
|
|
|
|
return entry->data;
|
|
}
|
|
|
|
/* Is "node" a node in "graph"?
|
|
*/
|
|
static int is_node(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *node)
|
|
{
|
|
return node && node >= &graph->node[0] && node < &graph->node[graph->n];
|
|
}
|
|
|
|
static isl_bool edge_has_src_and_dst(const void *entry, const void *val)
|
|
{
|
|
const struct isl_sched_edge *edge = entry;
|
|
const struct isl_sched_edge *temp = val;
|
|
|
|
return isl_bool_ok(edge->src == temp->src && edge->dst == temp->dst);
|
|
}
|
|
|
|
/* Add the given edge to graph->edge_table[type].
|
|
*/
|
|
static isl_stat graph_edge_table_add(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, enum isl_edge_type type,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
struct isl_hash_table_entry *entry;
|
|
uint32_t hash;
|
|
|
|
hash = isl_hash_init();
|
|
hash = isl_hash_builtin(hash, edge->src);
|
|
hash = isl_hash_builtin(hash, edge->dst);
|
|
entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
|
|
&edge_has_src_and_dst, edge, 1);
|
|
if (!entry)
|
|
return isl_stat_error;
|
|
entry->data = edge;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add "edge" to all relevant edge tables.
|
|
* That is, for every type of the edge, add it to the corresponding table.
|
|
*/
|
|
static isl_stat graph_edge_tables_add(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, struct isl_sched_edge *edge)
|
|
{
|
|
enum isl_edge_type t;
|
|
|
|
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
|
|
if (!is_type(edge, t))
|
|
continue;
|
|
if (graph_edge_table_add(ctx, graph, t, edge) < 0)
|
|
return isl_stat_error;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Allocate the edge_tables based on the maximal number of edges of
|
|
* each type.
|
|
*/
|
|
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= isl_edge_last; ++i) {
|
|
graph->edge_table[i] = isl_hash_table_alloc(ctx,
|
|
graph->max_edge[i]);
|
|
if (!graph->edge_table[i])
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If graph->edge_table[type] contains an edge from the given source
|
|
* to the given destination, then return the hash table entry of this edge.
|
|
* Otherwise, return NULL.
|
|
*/
|
|
static struct isl_hash_table_entry *graph_find_edge_entry(
|
|
struct isl_sched_graph *graph,
|
|
enum isl_edge_type type,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
isl_ctx *ctx = isl_space_get_ctx(src->space);
|
|
uint32_t hash;
|
|
struct isl_sched_edge temp = { .src = src, .dst = dst };
|
|
|
|
hash = isl_hash_init();
|
|
hash = isl_hash_builtin(hash, temp.src);
|
|
hash = isl_hash_builtin(hash, temp.dst);
|
|
return isl_hash_table_find(ctx, graph->edge_table[type], hash,
|
|
&edge_has_src_and_dst, &temp, 0);
|
|
}
|
|
|
|
|
|
/* If graph->edge_table[type] contains an edge from the given source
|
|
* to the given destination, then return this edge.
|
|
* Return "none" if no such edge can be found.
|
|
* Return NULL on error.
|
|
*/
|
|
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
|
|
enum isl_edge_type type,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst,
|
|
struct isl_sched_edge *none)
|
|
{
|
|
struct isl_hash_table_entry *entry;
|
|
|
|
entry = graph_find_edge_entry(graph, type, src, dst);
|
|
if (!entry)
|
|
return NULL;
|
|
if (entry == isl_hash_table_entry_none)
|
|
return none;
|
|
|
|
return entry->data;
|
|
}
|
|
|
|
/* Check whether the dependence graph has an edge of the given type
|
|
* between the given two nodes.
|
|
*/
|
|
static isl_bool graph_has_edge(struct isl_sched_graph *graph,
|
|
enum isl_edge_type type,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
struct isl_sched_edge dummy;
|
|
struct isl_sched_edge *edge;
|
|
isl_bool empty;
|
|
|
|
edge = graph_find_edge(graph, type, src, dst, &dummy);
|
|
if (!edge)
|
|
return isl_bool_error;
|
|
if (edge == &dummy)
|
|
return isl_bool_false;
|
|
|
|
empty = isl_map_plain_is_empty(edge->map);
|
|
|
|
return isl_bool_not(empty);
|
|
}
|
|
|
|
/* Look for any edge with the same src, dst and map fields as "model".
|
|
*
|
|
* Return the matching edge if one can be found.
|
|
* Return "model" if no matching edge is found.
|
|
* Return NULL on error.
|
|
*/
|
|
static struct isl_sched_edge *graph_find_matching_edge(
|
|
struct isl_sched_graph *graph, struct isl_sched_edge *model)
|
|
{
|
|
enum isl_edge_type i;
|
|
struct isl_sched_edge *edge;
|
|
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
int is_equal;
|
|
|
|
edge = graph_find_edge(graph, i, model->src, model->dst, model);
|
|
if (!edge)
|
|
return NULL;
|
|
if (edge == model)
|
|
continue;
|
|
is_equal = isl_map_plain_is_equal(model->map, edge->map);
|
|
if (is_equal < 0)
|
|
return NULL;
|
|
if (is_equal)
|
|
return edge;
|
|
}
|
|
|
|
return model;
|
|
}
|
|
|
|
/* Remove the given edge from all the edge_tables that refer to it.
|
|
*/
|
|
static isl_stat graph_remove_edge(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
isl_ctx *ctx = isl_map_get_ctx(edge->map);
|
|
enum isl_edge_type i;
|
|
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
struct isl_hash_table_entry *entry;
|
|
|
|
entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
|
|
if (!entry)
|
|
return isl_stat_error;
|
|
if (entry == isl_hash_table_entry_none)
|
|
continue;
|
|
if (entry->data != edge)
|
|
continue;
|
|
isl_hash_table_remove(ctx, graph->edge_table[i], entry);
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Check whether the dependence graph has any edge
|
|
* between the given two nodes.
|
|
*/
|
|
static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
enum isl_edge_type i;
|
|
isl_bool r;
|
|
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
r = graph_has_edge(graph, i, src, dst);
|
|
if (r < 0 || r)
|
|
return r;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Check whether the dependence graph has a validity edge
|
|
* between the given two nodes.
|
|
*
|
|
* Conditional validity edges are essentially validity edges that
|
|
* can be ignored if the corresponding condition edges are iteration private.
|
|
* Here, we are only checking for the presence of validity
|
|
* edges, so we need to consider the conditional validity edges too.
|
|
* In particular, this function is used during the detection
|
|
* of strongly connected components and we cannot ignore
|
|
* conditional validity edges during this detection.
|
|
*/
|
|
static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
isl_bool r;
|
|
|
|
r = graph_has_edge(graph, isl_edge_validity, src, dst);
|
|
if (r < 0 || r)
|
|
return r;
|
|
|
|
return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
|
|
}
|
|
|
|
/* Perform all the required memory allocations for a schedule graph "graph"
|
|
* with "n_node" nodes and "n_edge" edge and initialize the corresponding
|
|
* fields.
|
|
*/
|
|
static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
int n_node, int n_edge)
|
|
{
|
|
int i;
|
|
|
|
graph->n = n_node;
|
|
graph->n_edge = n_edge;
|
|
graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
|
|
graph->sorted = isl_calloc_array(ctx, int, graph->n);
|
|
graph->region = isl_alloc_array(ctx,
|
|
struct isl_trivial_region, graph->n);
|
|
graph->edge = isl_calloc_array(ctx,
|
|
struct isl_sched_edge, graph->n_edge);
|
|
|
|
graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
|
|
graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
|
|
graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
|
|
|
|
if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
|
|
!graph->sorted)
|
|
return isl_stat_error;
|
|
|
|
for(i = 0; i < graph->n; ++i)
|
|
graph->sorted[i] = i;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Free the memory associated to node "node" in "graph".
|
|
* The "coincident" field is shared by nodes in a graph and its subgraph.
|
|
* It therefore only needs to be freed for the original dependence graph,
|
|
* i.e., one that is not the result of splitting.
|
|
*/
|
|
static void clear_node(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *node)
|
|
{
|
|
isl_space_free(node->space);
|
|
isl_set_free(node->hull);
|
|
isl_multi_aff_free(node->compress);
|
|
isl_pw_multi_aff_free(node->decompress);
|
|
isl_mat_free(node->sched);
|
|
isl_map_free(node->sched_map);
|
|
isl_mat_free(node->indep);
|
|
isl_mat_free(node->vmap);
|
|
if (graph->root == graph)
|
|
free(node->coincident);
|
|
isl_multi_val_free(node->sizes);
|
|
isl_basic_set_free(node->bounds);
|
|
isl_vec_free(node->max);
|
|
}
|
|
|
|
static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
isl_map_to_basic_set_free(graph->intra_hmap);
|
|
isl_map_to_basic_set_free(graph->intra_hmap_param);
|
|
isl_map_to_basic_set_free(graph->inter_hmap);
|
|
|
|
if (graph->node)
|
|
for (i = 0; i < graph->n; ++i)
|
|
clear_node(graph, &graph->node[i]);
|
|
free(graph->node);
|
|
free(graph->sorted);
|
|
if (graph->edge)
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
isl_map_free(graph->edge[i].map);
|
|
isl_union_map_free(graph->edge[i].tagged_condition);
|
|
isl_union_map_free(graph->edge[i].tagged_validity);
|
|
}
|
|
free(graph->edge);
|
|
free(graph->region);
|
|
for (i = 0; i <= isl_edge_last; ++i)
|
|
isl_hash_table_free(ctx, graph->edge_table[i]);
|
|
isl_hash_table_free(ctx, graph->node_table);
|
|
isl_basic_set_free(graph->lp);
|
|
}
|
|
|
|
/* For each "set" on which this function is called, increment
|
|
* graph->n by one and update graph->maxvar.
|
|
*/
|
|
static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
|
|
{
|
|
struct isl_sched_graph *graph = user;
|
|
isl_size nvar = isl_set_dim(set, isl_dim_set);
|
|
|
|
graph->n++;
|
|
if (nvar > graph->maxvar)
|
|
graph->maxvar = nvar;
|
|
|
|
isl_set_free(set);
|
|
|
|
if (nvar < 0)
|
|
return isl_stat_error;
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Compute the number of rows that should be allocated for the schedule.
|
|
* In particular, we need one row for each variable or one row
|
|
* for each basic map in the dependences.
|
|
* Note that it is practically impossible to exhaust both
|
|
* the number of dependences and the number of variables.
|
|
*/
|
|
static isl_stat compute_max_row(struct isl_sched_graph *graph,
|
|
__isl_keep isl_schedule_constraints *sc)
|
|
{
|
|
int n_edge;
|
|
isl_stat r;
|
|
isl_union_set *domain;
|
|
|
|
graph->n = 0;
|
|
graph->maxvar = 0;
|
|
domain = isl_schedule_constraints_get_domain(sc);
|
|
r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
|
|
isl_union_set_free(domain);
|
|
if (r < 0)
|
|
return isl_stat_error;
|
|
n_edge = isl_schedule_constraints_n_basic_map(sc);
|
|
if (n_edge < 0)
|
|
return isl_stat_error;
|
|
graph->max_row = n_edge + graph->maxvar;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Does "bset" have any defining equalities for its set variables?
|
|
*/
|
|
static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
|
|
{
|
|
int i;
|
|
isl_size n;
|
|
|
|
n = isl_basic_set_dim(bset, isl_dim_set);
|
|
if (n < 0)
|
|
return isl_bool_error;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
isl_bool has;
|
|
|
|
has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
|
|
NULL);
|
|
if (has < 0 || has)
|
|
return has;
|
|
}
|
|
|
|
return isl_bool_false;
|
|
}
|
|
|
|
/* Set the entries of node->max to the value of the schedule_max_coefficient
|
|
* option, if set.
|
|
*/
|
|
static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
|
|
{
|
|
int max;
|
|
|
|
max = isl_options_get_schedule_max_coefficient(ctx);
|
|
if (max == -1)
|
|
return isl_stat_ok;
|
|
|
|
node->max = isl_vec_alloc(ctx, node->nvar);
|
|
node->max = isl_vec_set_si(node->max, max);
|
|
if (!node->max)
|
|
return isl_stat_error;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Set the entries of node->max to the minimum of the schedule_max_coefficient
|
|
* option (if set) and half of the minimum of the sizes in the other
|
|
* dimensions. Round up when computing the half such that
|
|
* if the minimum of the sizes is one, half of the size is taken to be one
|
|
* rather than zero.
|
|
* If the global minimum is unbounded (i.e., if both
|
|
* the schedule_max_coefficient is not set and the sizes in the other
|
|
* dimensions are unbounded), then store a negative value.
|
|
* If the schedule coefficient is close to the size of the instance set
|
|
* in another dimension, then the schedule may represent a loop
|
|
* coalescing transformation (especially if the coefficient
|
|
* in that other dimension is one). Forcing the coefficient to be
|
|
* smaller than or equal to half the minimal size should avoid this
|
|
* situation.
|
|
*/
|
|
static isl_stat compute_max_coefficient(isl_ctx *ctx,
|
|
struct isl_sched_node *node)
|
|
{
|
|
int max;
|
|
int i, j;
|
|
isl_vec *v;
|
|
|
|
max = isl_options_get_schedule_max_coefficient(ctx);
|
|
v = isl_vec_alloc(ctx, node->nvar);
|
|
if (!v)
|
|
return isl_stat_error;
|
|
|
|
for (i = 0; i < node->nvar; ++i) {
|
|
isl_int_set_si(v->el[i], max);
|
|
isl_int_mul_si(v->el[i], v->el[i], 2);
|
|
}
|
|
|
|
for (i = 0; i < node->nvar; ++i) {
|
|
isl_val *size;
|
|
|
|
size = isl_multi_val_get_val(node->sizes, i);
|
|
if (!size)
|
|
goto error;
|
|
if (!isl_val_is_int(size)) {
|
|
isl_val_free(size);
|
|
continue;
|
|
}
|
|
for (j = 0; j < node->nvar; ++j) {
|
|
if (j == i)
|
|
continue;
|
|
if (isl_int_is_neg(v->el[j]) ||
|
|
isl_int_gt(v->el[j], size->n))
|
|
isl_int_set(v->el[j], size->n);
|
|
}
|
|
isl_val_free(size);
|
|
}
|
|
|
|
for (i = 0; i < node->nvar; ++i)
|
|
isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
|
|
|
|
node->max = v;
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_vec_free(v);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Construct an identifier for node "node", which will represent "set".
|
|
* The name of the identifier is either "compressed" or
|
|
* "compressed_<name>", with <name> the name of the space of "set".
|
|
* The user pointer of the identifier points to "node".
|
|
*/
|
|
static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
|
|
struct isl_sched_node *node)
|
|
{
|
|
isl_bool has_name;
|
|
isl_ctx *ctx;
|
|
isl_id *id;
|
|
isl_printer *p;
|
|
const char *name;
|
|
char *id_name;
|
|
|
|
has_name = isl_set_has_tuple_name(set);
|
|
if (has_name < 0)
|
|
return NULL;
|
|
|
|
ctx = isl_set_get_ctx(set);
|
|
if (!has_name)
|
|
return isl_id_alloc(ctx, "compressed", node);
|
|
|
|
p = isl_printer_to_str(ctx);
|
|
name = isl_set_get_tuple_name(set);
|
|
p = isl_printer_print_str(p, "compressed_");
|
|
p = isl_printer_print_str(p, name);
|
|
id_name = isl_printer_get_str(p);
|
|
isl_printer_free(p);
|
|
|
|
id = isl_id_alloc(ctx, id_name, node);
|
|
free(id_name);
|
|
|
|
return id;
|
|
}
|
|
|
|
/* Construct a map that isolates the variable in position "pos" in "set".
|
|
*
|
|
* That is, construct
|
|
*
|
|
* [i_0, ..., i_pos-1, i_pos+1, ...] -> [i_pos]
|
|
*/
|
|
static __isl_give isl_map *isolate(__isl_take isl_set *set, int pos)
|
|
{
|
|
isl_map *map;
|
|
|
|
map = isl_set_project_onto_map(set, isl_dim_set, pos, 1);
|
|
map = isl_map_project_out(map, isl_dim_in, pos, 1);
|
|
return map;
|
|
}
|
|
|
|
/* Compute and return the size of "set" in dimension "dim".
|
|
* The size is taken to be the difference in values for that variable
|
|
* for fixed values of the other variables.
|
|
* This assumes that "set" is convex.
|
|
* In particular, the variable is first isolated from the other variables
|
|
* in the range of a map
|
|
*
|
|
* [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
|
|
*
|
|
* and then duplicated
|
|
*
|
|
* [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
|
|
*
|
|
* The shared variables are then projected out and the maximal value
|
|
* of i_dim' - i_dim is computed.
|
|
*/
|
|
static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
|
|
{
|
|
isl_map *map;
|
|
isl_local_space *ls;
|
|
isl_aff *obj;
|
|
isl_val *v;
|
|
|
|
map = isolate(set, dim);
|
|
map = isl_map_range_product(map, isl_map_copy(map));
|
|
map = isl_set_unwrap(isl_map_range(map));
|
|
set = isl_map_deltas(map);
|
|
ls = isl_local_space_from_space(isl_set_get_space(set));
|
|
obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
|
|
v = isl_set_max_val(set, obj);
|
|
isl_aff_free(obj);
|
|
isl_set_free(set);
|
|
|
|
return v;
|
|
}
|
|
|
|
/* Perform a compression on "node" where "hull" represents the constraints
|
|
* that were used to derive the compression, while "compress" and
|
|
* "decompress" map the original space to the compressed space and
|
|
* vice versa.
|
|
*
|
|
* If "node" was not compressed already, then simply store
|
|
* the compression information.
|
|
* Otherwise the "original" space is actually the result
|
|
* of a previous compression, which is then combined
|
|
* with the present compression.
|
|
*
|
|
* The dimensionality of the compressed domain is also adjusted.
|
|
* Other information, such as the sizes and the maximal coefficient values,
|
|
* has not been computed yet and therefore does not need to be adjusted.
|
|
*/
|
|
static isl_stat compress_node(struct isl_sched_node *node,
|
|
__isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
|
|
__isl_take isl_pw_multi_aff *decompress)
|
|
{
|
|
node->nvar = isl_multi_aff_dim(compress, isl_dim_out);
|
|
if (!node->compressed) {
|
|
node->compressed = 1;
|
|
node->hull = hull;
|
|
node->compress = compress;
|
|
node->decompress = decompress;
|
|
} else {
|
|
hull = isl_set_preimage_multi_aff(hull,
|
|
isl_multi_aff_copy(node->compress));
|
|
node->hull = isl_set_intersect(node->hull, hull);
|
|
node->compress = isl_multi_aff_pullback_multi_aff(
|
|
compress, node->compress);
|
|
node->decompress = isl_pw_multi_aff_pullback_pw_multi_aff(
|
|
node->decompress, decompress);
|
|
}
|
|
|
|
if (!node->hull || !node->compress || !node->decompress)
|
|
return isl_stat_error;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Given that dimension "pos" in "set" has a fixed value
|
|
* in terms of the other dimensions, (further) compress "node"
|
|
* by projecting out this dimension.
|
|
* "set" may be the result of a previous compression.
|
|
* "uncompressed" is the original domain (without compression).
|
|
*
|
|
* The compression function simply projects out the dimension.
|
|
* The decompression function adds back the dimension
|
|
* in the right position as an expression of the other dimensions
|
|
* derived from "set".
|
|
* As in extract_node, the compressed space has an identifier
|
|
* that references "node" such that each compressed space is unique and
|
|
* such that the node can be recovered from the compressed space.
|
|
*
|
|
* The constraint removed through the compression is added to the "hull"
|
|
* such that only edges that relate to the original domains
|
|
* are taken into account.
|
|
* In particular, it is obtained by composing compression and decompression and
|
|
* taking the relation among the variables in the range.
|
|
*/
|
|
static isl_stat project_out_fixed(struct isl_sched_node *node,
|
|
__isl_keep isl_set *uncompressed, __isl_take isl_set *set, int pos)
|
|
{
|
|
isl_id *id;
|
|
isl_space *space;
|
|
isl_set *domain;
|
|
isl_map *map;
|
|
isl_multi_aff *compress;
|
|
isl_pw_multi_aff *decompress, *pma;
|
|
isl_multi_pw_aff *mpa;
|
|
isl_set *hull;
|
|
|
|
map = isolate(isl_set_copy(set), pos);
|
|
pma = isl_pw_multi_aff_from_map(map);
|
|
domain = isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(pma));
|
|
pma = isl_pw_multi_aff_gist(pma, domain);
|
|
space = isl_pw_multi_aff_get_domain_space(pma);
|
|
mpa = isl_multi_pw_aff_identity(isl_space_map_from_set(space));
|
|
mpa = isl_multi_pw_aff_range_splice(mpa, pos,
|
|
isl_multi_pw_aff_from_pw_multi_aff(pma));
|
|
decompress = isl_pw_multi_aff_from_multi_pw_aff(mpa);
|
|
space = isl_set_get_space(set);
|
|
compress = isl_multi_aff_project_out_map(space, isl_dim_set, pos, 1);
|
|
id = construct_compressed_id(uncompressed, node);
|
|
compress = isl_multi_aff_set_tuple_id(compress, isl_dim_out, id);
|
|
space = isl_space_reverse(isl_multi_aff_get_space(compress));
|
|
decompress = isl_pw_multi_aff_reset_space(decompress, space);
|
|
pma = isl_pw_multi_aff_pullback_multi_aff(
|
|
isl_pw_multi_aff_copy(decompress), isl_multi_aff_copy(compress));
|
|
hull = isl_map_range(isl_map_from_pw_multi_aff(pma));
|
|
|
|
isl_set_free(set);
|
|
|
|
return compress_node(node, hull, compress, decompress);
|
|
}
|
|
|
|
/* Compute the size of the compressed domain in each dimension and
|
|
* store the results in node->sizes.
|
|
* "uncompressed" is the original domain (without compression).
|
|
*
|
|
* First compress the domain if needed and then compute the size
|
|
* in each direction.
|
|
* If the domain is not convex, then the sizes are computed
|
|
* on a convex superset in order to avoid picking up sizes
|
|
* that are valid for the individual disjuncts, but not for
|
|
* the domain as a whole.
|
|
*
|
|
* If any of the sizes turns out to be zero, then this means
|
|
* that this dimension has a fixed value in terms of
|
|
* the other dimensions. Perform an (extra) compression
|
|
* to remove this dimensions.
|
|
*/
|
|
static isl_stat compute_sizes(struct isl_sched_node *node,
|
|
__isl_keep isl_set *uncompressed)
|
|
{
|
|
int j;
|
|
isl_size n;
|
|
isl_multi_val *mv;
|
|
isl_set *set = isl_set_copy(uncompressed);
|
|
|
|
if (node->compressed)
|
|
set = isl_set_preimage_pw_multi_aff(set,
|
|
isl_pw_multi_aff_copy(node->decompress));
|
|
set = isl_set_from_basic_set(isl_set_simple_hull(set));
|
|
mv = isl_multi_val_zero(isl_set_get_space(set));
|
|
n = isl_set_dim(set, isl_dim_set);
|
|
if (n < 0)
|
|
mv = isl_multi_val_free(mv);
|
|
for (j = 0; j < n; ++j) {
|
|
isl_bool is_zero;
|
|
isl_val *v;
|
|
|
|
v = compute_size(isl_set_copy(set), j);
|
|
is_zero = isl_val_is_zero(v);
|
|
mv = isl_multi_val_set_val(mv, j, v);
|
|
if (is_zero >= 0 && is_zero) {
|
|
isl_multi_val_free(mv);
|
|
if (project_out_fixed(node, uncompressed, set, j) < 0)
|
|
return isl_stat_error;
|
|
return compute_sizes(node, uncompressed);
|
|
}
|
|
}
|
|
node->sizes = mv;
|
|
isl_set_free(set);
|
|
if (!node->sizes)
|
|
return isl_stat_error;
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Compute the size of the instance set "set" of "node", after compression,
|
|
* as well as bounds on the corresponding coefficients, if needed.
|
|
*
|
|
* The sizes are needed when the schedule_treat_coalescing option is set.
|
|
* The bounds are needed when the schedule_treat_coalescing option or
|
|
* the schedule_max_coefficient option is set.
|
|
*
|
|
* If the schedule_treat_coalescing option is not set, then at most
|
|
* the bounds need to be set and this is done in set_max_coefficient.
|
|
* Otherwise, compute the size of the compressed domain
|
|
* in each direction and store the results in node->size.
|
|
* Finally, set the bounds on the coefficients based on the sizes
|
|
* and the schedule_max_coefficient option in compute_max_coefficient.
|
|
*/
|
|
static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
|
|
__isl_take isl_set *set)
|
|
{
|
|
isl_stat r;
|
|
|
|
if (!isl_options_get_schedule_treat_coalescing(ctx)) {
|
|
isl_set_free(set);
|
|
return set_max_coefficient(ctx, node);
|
|
}
|
|
|
|
r = compute_sizes(node, set);
|
|
isl_set_free(set);
|
|
if (r < 0)
|
|
return isl_stat_error;
|
|
return compute_max_coefficient(ctx, node);
|
|
}
|
|
|
|
/* Add a new node to the graph representing the given instance set.
|
|
* "nvar" is the (possibly compressed) number of variables and
|
|
* may be smaller than then number of set variables in "set"
|
|
* if "compressed" is set.
|
|
* If "compressed" is set, then "hull" represents the constraints
|
|
* that were used to derive the compression, while "compress" and
|
|
* "decompress" map the original space to the compressed space and
|
|
* vice versa.
|
|
* If "compressed" is not set, then "hull", "compress" and "decompress"
|
|
* should be NULL.
|
|
*
|
|
* Compute the size of the instance set and bounds on the coefficients,
|
|
* if needed.
|
|
*/
|
|
static isl_stat add_node(struct isl_sched_graph *graph,
|
|
__isl_take isl_set *set, int nvar, int compressed,
|
|
__isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
|
|
__isl_take isl_pw_multi_aff *decompress)
|
|
{
|
|
isl_size nparam;
|
|
isl_ctx *ctx;
|
|
isl_mat *sched;
|
|
isl_space *space;
|
|
int *coincident;
|
|
struct isl_sched_node *node;
|
|
|
|
nparam = isl_set_dim(set, isl_dim_param);
|
|
if (nparam < 0)
|
|
goto error;
|
|
|
|
ctx = isl_set_get_ctx(set);
|
|
if (!ctx->opt->schedule_parametric)
|
|
nparam = 0;
|
|
sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
|
|
node = &graph->node[graph->n];
|
|
graph->n++;
|
|
space = isl_set_get_space(set);
|
|
node->space = space;
|
|
node->nvar = nvar;
|
|
node->nparam = nparam;
|
|
node->sched = sched;
|
|
node->sched_map = NULL;
|
|
coincident = isl_calloc_array(ctx, int, graph->max_row);
|
|
node->coincident = coincident;
|
|
node->compressed = compressed;
|
|
node->hull = hull;
|
|
node->compress = compress;
|
|
node->decompress = decompress;
|
|
if (compute_sizes_and_max(ctx, node, set) < 0)
|
|
return isl_stat_error;
|
|
|
|
if (!space || !sched || (graph->max_row && !coincident))
|
|
return isl_stat_error;
|
|
if (compressed && (!hull || !compress || !decompress))
|
|
return isl_stat_error;
|
|
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_set_free(set);
|
|
isl_set_free(hull);
|
|
isl_multi_aff_free(compress);
|
|
isl_pw_multi_aff_free(decompress);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Add a new node to the graph representing the given set.
|
|
*
|
|
* If any of the set variables is defined by an equality, then
|
|
* we perform variable compression such that we can perform
|
|
* the scheduling on the compressed domain.
|
|
* In this case, an identifier is used that references the new node
|
|
* such that each compressed space is unique and
|
|
* such that the node can be recovered from the compressed space.
|
|
*/
|
|
static isl_stat extract_node(__isl_take isl_set *set, void *user)
|
|
{
|
|
isl_size nvar;
|
|
isl_bool has_equality;
|
|
isl_id *id;
|
|
isl_basic_set *hull;
|
|
isl_set *hull_set;
|
|
isl_morph *morph;
|
|
isl_multi_aff *compress, *decompress_ma;
|
|
isl_pw_multi_aff *decompress;
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
hull = isl_set_affine_hull(isl_set_copy(set));
|
|
hull = isl_basic_set_remove_divs(hull);
|
|
nvar = isl_set_dim(set, isl_dim_set);
|
|
has_equality = has_any_defining_equality(hull);
|
|
|
|
if (nvar < 0 || has_equality < 0)
|
|
goto error;
|
|
if (!has_equality) {
|
|
isl_basic_set_free(hull);
|
|
return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
|
|
}
|
|
|
|
id = construct_compressed_id(set, &graph->node[graph->n]);
|
|
morph = isl_basic_set_variable_compression_with_id(hull, id);
|
|
isl_id_free(id);
|
|
nvar = isl_morph_ran_dim(morph, isl_dim_set);
|
|
if (nvar < 0)
|
|
set = isl_set_free(set);
|
|
compress = isl_morph_get_var_multi_aff(morph);
|
|
morph = isl_morph_inverse(morph);
|
|
decompress_ma = isl_morph_get_var_multi_aff(morph);
|
|
decompress = isl_pw_multi_aff_from_multi_aff(decompress_ma);
|
|
isl_morph_free(morph);
|
|
|
|
hull_set = isl_set_from_basic_set(hull);
|
|
return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
|
|
error:
|
|
isl_basic_set_free(hull);
|
|
isl_set_free(set);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
struct isl_extract_edge_data {
|
|
enum isl_edge_type type;
|
|
struct isl_sched_graph *graph;
|
|
};
|
|
|
|
/* Merge edge2 into edge1, freeing the contents of edge2.
|
|
* Return 0 on success and -1 on failure.
|
|
*
|
|
* edge1 and edge2 are assumed to have the same value for the map field.
|
|
*/
|
|
static int merge_edge(struct isl_sched_edge *edge1,
|
|
struct isl_sched_edge *edge2)
|
|
{
|
|
edge1->types |= edge2->types;
|
|
isl_map_free(edge2->map);
|
|
|
|
if (is_condition(edge2)) {
|
|
if (!edge1->tagged_condition)
|
|
edge1->tagged_condition = edge2->tagged_condition;
|
|
else
|
|
edge1->tagged_condition =
|
|
isl_union_map_union(edge1->tagged_condition,
|
|
edge2->tagged_condition);
|
|
}
|
|
|
|
if (is_conditional_validity(edge2)) {
|
|
if (!edge1->tagged_validity)
|
|
edge1->tagged_validity = edge2->tagged_validity;
|
|
else
|
|
edge1->tagged_validity =
|
|
isl_union_map_union(edge1->tagged_validity,
|
|
edge2->tagged_validity);
|
|
}
|
|
|
|
if (is_condition(edge2) && !edge1->tagged_condition)
|
|
return -1;
|
|
if (is_conditional_validity(edge2) && !edge1->tagged_validity)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Insert dummy tags in domain and range of "map".
|
|
*
|
|
* In particular, if "map" is of the form
|
|
*
|
|
* A -> B
|
|
*
|
|
* then return
|
|
*
|
|
* [A -> dummy_tag] -> [B -> dummy_tag]
|
|
*
|
|
* where the dummy_tags are identical and equal to any dummy tags
|
|
* introduced by any other call to this function.
|
|
*/
|
|
static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
|
|
{
|
|
static char dummy;
|
|
isl_ctx *ctx;
|
|
isl_id *id;
|
|
isl_space *space;
|
|
isl_set *domain, *range;
|
|
|
|
ctx = isl_map_get_ctx(map);
|
|
|
|
id = isl_id_alloc(ctx, NULL, &dummy);
|
|
space = isl_space_params(isl_map_get_space(map));
|
|
space = isl_space_set_from_params(space);
|
|
space = isl_space_set_tuple_id(space, isl_dim_set, id);
|
|
space = isl_space_map_from_set(space);
|
|
|
|
domain = isl_map_wrap(map);
|
|
range = isl_map_wrap(isl_map_universe(space));
|
|
map = isl_map_from_domain_and_range(domain, range);
|
|
map = isl_map_zip(map);
|
|
|
|
return map;
|
|
}
|
|
|
|
/* Given that at least one of "src" or "dst" is compressed, return
|
|
* a map between the spaces of these nodes restricted to the affine
|
|
* hull that was used in the compression.
|
|
*/
|
|
static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
|
|
struct isl_sched_node *dst)
|
|
{
|
|
isl_set *dom, *ran;
|
|
|
|
if (src->compressed)
|
|
dom = isl_set_copy(src->hull);
|
|
else
|
|
dom = isl_set_universe(isl_space_copy(src->space));
|
|
if (dst->compressed)
|
|
ran = isl_set_copy(dst->hull);
|
|
else
|
|
ran = isl_set_universe(isl_space_copy(dst->space));
|
|
|
|
return isl_map_from_domain_and_range(dom, ran);
|
|
}
|
|
|
|
/* Intersect the domains of the nested relations in domain and range
|
|
* of "tagged" with "map".
|
|
*/
|
|
static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
|
|
__isl_keep isl_map *map)
|
|
{
|
|
isl_set *set;
|
|
|
|
tagged = isl_map_zip(tagged);
|
|
set = isl_map_wrap(isl_map_copy(map));
|
|
tagged = isl_map_intersect_domain(tagged, set);
|
|
tagged = isl_map_zip(tagged);
|
|
return tagged;
|
|
}
|
|
|
|
/* Return a pointer to the node that lives in the domain space of "map",
|
|
* an invalid node if there is no such node, or NULL in case of error.
|
|
*/
|
|
static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, __isl_keep isl_map *map)
|
|
{
|
|
struct isl_sched_node *node;
|
|
isl_space *space;
|
|
|
|
space = isl_space_domain(isl_map_get_space(map));
|
|
node = graph_find_node(ctx, graph, space);
|
|
isl_space_free(space);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Return a pointer to the node that lives in the range space of "map",
|
|
* an invalid node if there is no such node, or NULL in case of error.
|
|
*/
|
|
static struct isl_sched_node *find_range_node(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, __isl_keep isl_map *map)
|
|
{
|
|
struct isl_sched_node *node;
|
|
isl_space *space;
|
|
|
|
space = isl_space_range(isl_map_get_space(map));
|
|
node = graph_find_node(ctx, graph, space);
|
|
isl_space_free(space);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Refrain from adding a new edge based on "map".
|
|
* Instead, just free the map.
|
|
* "tagged" is either a copy of "map" with additional tags or NULL.
|
|
*/
|
|
static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
|
|
{
|
|
isl_map_free(map);
|
|
isl_map_free(tagged);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add a new edge to the graph based on the given map
|
|
* and add it to data->graph->edge_table[data->type].
|
|
* If a dependence relation of a given type happens to be identical
|
|
* to one of the dependence relations of a type that was added before,
|
|
* then we don't create a new edge, but instead mark the original edge
|
|
* as also representing a dependence of the current type.
|
|
*
|
|
* Edges of type isl_edge_condition or isl_edge_conditional_validity
|
|
* may be specified as "tagged" dependence relations. That is, "map"
|
|
* may contain elements (i -> a) -> (j -> b), where i -> j denotes
|
|
* the dependence on iterations and a and b are tags.
|
|
* edge->map is set to the relation containing the elements i -> j,
|
|
* while edge->tagged_condition and edge->tagged_validity contain
|
|
* the union of all the "map" relations
|
|
* for which extract_edge is called that result in the same edge->map.
|
|
*
|
|
* If the source or the destination node is compressed, then
|
|
* intersect both "map" and "tagged" with the constraints that
|
|
* were used to construct the compression.
|
|
* This ensures that there are no schedule constraints defined
|
|
* outside of these domains, while the scheduler no longer has
|
|
* any control over those outside parts.
|
|
*/
|
|
static isl_stat extract_edge(__isl_take isl_map *map, void *user)
|
|
{
|
|
isl_bool empty;
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
struct isl_extract_edge_data *data = user;
|
|
struct isl_sched_graph *graph = data->graph;
|
|
struct isl_sched_node *src, *dst;
|
|
struct isl_sched_edge *edge;
|
|
isl_map *tagged = NULL;
|
|
|
|
if (data->type == isl_edge_condition ||
|
|
data->type == isl_edge_conditional_validity) {
|
|
if (isl_map_can_zip(map)) {
|
|
tagged = isl_map_copy(map);
|
|
map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
|
|
} else {
|
|
tagged = insert_dummy_tags(isl_map_copy(map));
|
|
}
|
|
}
|
|
|
|
src = find_domain_node(ctx, graph, map);
|
|
dst = find_range_node(ctx, graph, map);
|
|
|
|
if (!src || !dst)
|
|
goto error;
|
|
if (!is_node(graph, src) || !is_node(graph, dst))
|
|
return skip_edge(map, tagged);
|
|
|
|
if (src->compressed || dst->compressed) {
|
|
isl_map *hull;
|
|
hull = extract_hull(src, dst);
|
|
if (tagged)
|
|
tagged = map_intersect_domains(tagged, hull);
|
|
map = isl_map_intersect(map, hull);
|
|
}
|
|
|
|
empty = isl_map_plain_is_empty(map);
|
|
if (empty < 0)
|
|
goto error;
|
|
if (empty)
|
|
return skip_edge(map, tagged);
|
|
|
|
graph->edge[graph->n_edge].src = src;
|
|
graph->edge[graph->n_edge].dst = dst;
|
|
graph->edge[graph->n_edge].map = map;
|
|
graph->edge[graph->n_edge].types = 0;
|
|
graph->edge[graph->n_edge].tagged_condition = NULL;
|
|
graph->edge[graph->n_edge].tagged_validity = NULL;
|
|
set_type(&graph->edge[graph->n_edge], data->type);
|
|
if (data->type == isl_edge_condition)
|
|
graph->edge[graph->n_edge].tagged_condition =
|
|
isl_union_map_from_map(tagged);
|
|
if (data->type == isl_edge_conditional_validity)
|
|
graph->edge[graph->n_edge].tagged_validity =
|
|
isl_union_map_from_map(tagged);
|
|
|
|
edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
|
|
if (!edge) {
|
|
graph->n_edge++;
|
|
return isl_stat_error;
|
|
}
|
|
if (edge == &graph->edge[graph->n_edge])
|
|
return graph_edge_table_add(ctx, graph, data->type,
|
|
&graph->edge[graph->n_edge++]);
|
|
|
|
if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
|
|
return isl_stat_error;
|
|
|
|
return graph_edge_table_add(ctx, graph, data->type, edge);
|
|
error:
|
|
isl_map_free(map);
|
|
isl_map_free(tagged);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Initialize the schedule graph "graph" from the schedule constraints "sc".
|
|
*
|
|
* The context is included in the domain before the nodes of
|
|
* the graphs are extracted in order to be able to exploit
|
|
* any possible additional equalities.
|
|
* Note that this intersection is only performed locally here.
|
|
*/
|
|
static isl_stat graph_init(struct isl_sched_graph *graph,
|
|
__isl_keep isl_schedule_constraints *sc)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_union_set *domain;
|
|
isl_union_map *c;
|
|
struct isl_extract_edge_data data;
|
|
enum isl_edge_type i;
|
|
isl_stat r;
|
|
isl_size n;
|
|
|
|
if (!sc)
|
|
return isl_stat_error;
|
|
|
|
ctx = isl_schedule_constraints_get_ctx(sc);
|
|
|
|
domain = isl_schedule_constraints_get_domain(sc);
|
|
n = isl_union_set_n_set(domain);
|
|
graph->n = n;
|
|
isl_union_set_free(domain);
|
|
if (n < 0)
|
|
return isl_stat_error;
|
|
|
|
n = isl_schedule_constraints_n_map(sc);
|
|
if (n < 0 || graph_alloc(ctx, graph, graph->n, n) < 0)
|
|
return isl_stat_error;
|
|
|
|
if (compute_max_row(graph, sc) < 0)
|
|
return isl_stat_error;
|
|
graph->root = graph;
|
|
graph->n = 0;
|
|
domain = isl_schedule_constraints_get_domain(sc);
|
|
domain = isl_union_set_intersect_params(domain,
|
|
isl_schedule_constraints_get_context(sc));
|
|
r = isl_union_set_foreach_set(domain, &extract_node, graph);
|
|
isl_union_set_free(domain);
|
|
if (r < 0)
|
|
return isl_stat_error;
|
|
if (graph_init_table(ctx, graph) < 0)
|
|
return isl_stat_error;
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
isl_size n;
|
|
|
|
c = isl_schedule_constraints_get(sc, i);
|
|
n = isl_union_map_n_map(c);
|
|
graph->max_edge[i] = n;
|
|
isl_union_map_free(c);
|
|
if (n < 0)
|
|
return isl_stat_error;
|
|
}
|
|
if (graph_init_edge_tables(ctx, graph) < 0)
|
|
return isl_stat_error;
|
|
graph->n_edge = 0;
|
|
data.graph = graph;
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
isl_stat r;
|
|
|
|
data.type = i;
|
|
c = isl_schedule_constraints_get(sc, i);
|
|
r = isl_union_map_foreach_map(c, &extract_edge, &data);
|
|
isl_union_map_free(c);
|
|
if (r < 0)
|
|
return isl_stat_error;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Check whether there is any dependence from node[j] to node[i]
|
|
* or from node[i] to node[j].
|
|
*/
|
|
static isl_bool node_follows_weak(int i, int j, void *user)
|
|
{
|
|
isl_bool f;
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
|
|
if (f < 0 || f)
|
|
return f;
|
|
return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
|
|
}
|
|
|
|
/* Check whether there is a (conditional) validity dependence from node[j]
|
|
* to node[i], forcing node[i] to follow node[j].
|
|
*/
|
|
static isl_bool node_follows_strong(int i, int j, void *user)
|
|
{
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
|
|
}
|
|
|
|
/* Use Tarjan's algorithm for computing the strongly connected components
|
|
* in the dependence graph only considering those edges defined by "follows".
|
|
*/
|
|
static isl_stat detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
isl_bool (*follows)(int i, int j, void *user))
|
|
{
|
|
int i, n;
|
|
struct isl_tarjan_graph *g = NULL;
|
|
|
|
g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
|
|
if (!g)
|
|
return isl_stat_error;
|
|
|
|
graph->scc = 0;
|
|
i = 0;
|
|
n = graph->n;
|
|
while (n) {
|
|
while (g->order[i] != -1) {
|
|
graph->node[g->order[i]].scc = graph->scc;
|
|
--n;
|
|
++i;
|
|
}
|
|
++i;
|
|
graph->scc++;
|
|
}
|
|
|
|
isl_tarjan_graph_free(g);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Apply Tarjan's algorithm to detect the strongly connected components
|
|
* in the dependence graph.
|
|
* Only consider the (conditional) validity dependences and clear "weak".
|
|
*/
|
|
static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
graph->weak = 0;
|
|
return detect_ccs(ctx, graph, &node_follows_strong);
|
|
}
|
|
|
|
/* Apply Tarjan's algorithm to detect the (weakly) connected components
|
|
* in the dependence graph.
|
|
* Consider all dependences and set "weak".
|
|
*/
|
|
static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
graph->weak = 1;
|
|
return detect_ccs(ctx, graph, &node_follows_weak);
|
|
}
|
|
|
|
static int cmp_scc(const void *a, const void *b, void *data)
|
|
{
|
|
struct isl_sched_graph *graph = data;
|
|
const int *i1 = a;
|
|
const int *i2 = b;
|
|
|
|
return graph->node[*i1].scc - graph->node[*i2].scc;
|
|
}
|
|
|
|
/* Sort the elements of graph->sorted according to the corresponding SCCs.
|
|
*/
|
|
static int sort_sccs(struct isl_sched_graph *graph)
|
|
{
|
|
return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
|
|
}
|
|
|
|
/* Return a non-parametric set in the compressed space of "node" that is
|
|
* bounded by the size in each direction
|
|
*
|
|
* { [x] : -S_i <= x_i <= S_i }
|
|
*
|
|
* If S_i is infinity in direction i, then there are no constraints
|
|
* in that direction.
|
|
*
|
|
* Cache the result in node->bounds.
|
|
*/
|
|
static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
|
|
{
|
|
isl_space *space;
|
|
isl_basic_set *bounds;
|
|
int i;
|
|
|
|
if (node->bounds)
|
|
return isl_basic_set_copy(node->bounds);
|
|
|
|
if (node->compressed)
|
|
space = isl_pw_multi_aff_get_domain_space(node->decompress);
|
|
else
|
|
space = isl_space_copy(node->space);
|
|
space = isl_space_drop_all_params(space);
|
|
bounds = isl_basic_set_universe(space);
|
|
|
|
for (i = 0; i < node->nvar; ++i) {
|
|
isl_val *size;
|
|
|
|
size = isl_multi_val_get_val(node->sizes, i);
|
|
if (!size)
|
|
return isl_basic_set_free(bounds);
|
|
if (!isl_val_is_int(size)) {
|
|
isl_val_free(size);
|
|
continue;
|
|
}
|
|
bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
|
|
isl_val_copy(size));
|
|
bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
|
|
isl_val_neg(size));
|
|
}
|
|
|
|
node->bounds = isl_basic_set_copy(bounds);
|
|
return bounds;
|
|
}
|
|
|
|
/* Compress the dependence relation "map", if needed, i.e.,
|
|
* when the source node "src" and/or the destination node "dst"
|
|
* has been compressed.
|
|
*/
|
|
static __isl_give isl_map *compress(__isl_take isl_map *map,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
if (src->compressed)
|
|
map = isl_map_preimage_domain_pw_multi_aff(map,
|
|
isl_pw_multi_aff_copy(src->decompress));
|
|
if (dst->compressed)
|
|
map = isl_map_preimage_range_pw_multi_aff(map,
|
|
isl_pw_multi_aff_copy(dst->decompress));
|
|
return map;
|
|
}
|
|
|
|
/* Drop some constraints from "delta" that could be exploited
|
|
* to construct loop coalescing schedules.
|
|
* In particular, drop those constraint that bound the difference
|
|
* to the size of the domain.
|
|
* First project out the parameters to improve the effectiveness.
|
|
*/
|
|
static __isl_give isl_set *drop_coalescing_constraints(
|
|
__isl_take isl_set *delta, struct isl_sched_node *node)
|
|
{
|
|
isl_size nparam;
|
|
isl_basic_set *bounds;
|
|
|
|
nparam = isl_set_dim(delta, isl_dim_param);
|
|
if (nparam < 0)
|
|
return isl_set_free(delta);
|
|
|
|
bounds = get_size_bounds(node);
|
|
|
|
delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
|
|
delta = isl_set_remove_divs(delta);
|
|
delta = isl_set_plain_gist_basic_set(delta, bounds);
|
|
return delta;
|
|
}
|
|
|
|
/* Given a dependence relation R from "node" to itself,
|
|
* construct the set of coefficients of valid constraints for elements
|
|
* in that dependence relation.
|
|
* In particular, the result contains tuples of coefficients
|
|
* c_0, c_n, c_x such that
|
|
*
|
|
* c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
|
|
*
|
|
* or, equivalently,
|
|
*
|
|
* c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
|
|
*
|
|
* We choose here to compute the dual of delta R.
|
|
* Alternatively, we could have computed the dual of R, resulting
|
|
* in a set of tuples c_0, c_n, c_x, c_y, and then
|
|
* plugged in (c_0, c_n, c_x, -c_x).
|
|
*
|
|
* If "need_param" is set, then the resulting coefficients effectively
|
|
* include coefficients for the parameters c_n. Otherwise, they may
|
|
* have been projected out already.
|
|
* Since the constraints may be different for these two cases,
|
|
* they are stored in separate caches.
|
|
* In particular, if no parameter coefficients are required and
|
|
* the schedule_treat_coalescing option is set, then the parameters
|
|
* are projected out and some constraints that could be exploited
|
|
* to construct coalescing schedules are removed before the dual
|
|
* is computed.
|
|
*
|
|
* If "node" has been compressed, then the dependence relation
|
|
* is also compressed before the set of coefficients is computed.
|
|
*/
|
|
static __isl_give isl_basic_set *intra_coefficients(
|
|
struct isl_sched_graph *graph, struct isl_sched_node *node,
|
|
__isl_take isl_map *map, int need_param)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_set *delta;
|
|
isl_map *key;
|
|
isl_basic_set *coef;
|
|
isl_maybe_isl_basic_set m;
|
|
isl_map_to_basic_set **hmap = &graph->intra_hmap;
|
|
int treat;
|
|
|
|
if (!map)
|
|
return NULL;
|
|
|
|
ctx = isl_map_get_ctx(map);
|
|
treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
|
|
if (!treat)
|
|
hmap = &graph->intra_hmap_param;
|
|
m = isl_map_to_basic_set_try_get(*hmap, map);
|
|
if (m.valid < 0 || m.valid) {
|
|
isl_map_free(map);
|
|
return m.value;
|
|
}
|
|
|
|
key = isl_map_copy(map);
|
|
map = compress(map, node, node);
|
|
delta = isl_map_deltas(map);
|
|
if (treat)
|
|
delta = drop_coalescing_constraints(delta, node);
|
|
delta = isl_set_remove_divs(delta);
|
|
coef = isl_set_coefficients(delta);
|
|
*hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
|
|
|
|
return coef;
|
|
}
|
|
|
|
/* Given a dependence relation R, construct the set of coefficients
|
|
* of valid constraints for elements in that dependence relation.
|
|
* In particular, the result contains tuples of coefficients
|
|
* c_0, c_n, c_x, c_y such that
|
|
*
|
|
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
|
|
*
|
|
* If the source or destination nodes of "edge" have been compressed,
|
|
* then the dependence relation is also compressed before
|
|
* the set of coefficients is computed.
|
|
*/
|
|
static __isl_give isl_basic_set *inter_coefficients(
|
|
struct isl_sched_graph *graph, struct isl_sched_edge *edge,
|
|
__isl_take isl_map *map)
|
|
{
|
|
isl_set *set;
|
|
isl_map *key;
|
|
isl_basic_set *coef;
|
|
isl_maybe_isl_basic_set m;
|
|
|
|
m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
|
|
if (m.valid < 0 || m.valid) {
|
|
isl_map_free(map);
|
|
return m.value;
|
|
}
|
|
|
|
key = isl_map_copy(map);
|
|
map = compress(map, edge->src, edge->dst);
|
|
set = isl_map_wrap(isl_map_remove_divs(map));
|
|
coef = isl_set_coefficients(set);
|
|
graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
|
|
isl_basic_set_copy(coef));
|
|
|
|
return coef;
|
|
}
|
|
|
|
/* Return the position of the coefficients of the variables in
|
|
* the coefficients constraints "coef".
|
|
*
|
|
* The space of "coef" is of the form
|
|
*
|
|
* { coefficients[[cst, params] -> S] }
|
|
*
|
|
* Return the position of S.
|
|
*/
|
|
static isl_size coef_var_offset(__isl_keep isl_basic_set *coef)
|
|
{
|
|
isl_size offset;
|
|
isl_space *space;
|
|
|
|
space = isl_space_unwrap(isl_basic_set_get_space(coef));
|
|
offset = isl_space_dim(space, isl_dim_in);
|
|
isl_space_free(space);
|
|
|
|
return offset;
|
|
}
|
|
|
|
/* Return the offset of the coefficient of the constant term of "node"
|
|
* within the (I)LP.
|
|
*
|
|
* Within each node, the coefficients have the following order:
|
|
* - positive and negative parts of c_i_x
|
|
* - c_i_n (if parametric)
|
|
* - c_i_0
|
|
*/
|
|
static int node_cst_coef_offset(struct isl_sched_node *node)
|
|
{
|
|
return node->start + 2 * node->nvar + node->nparam;
|
|
}
|
|
|
|
/* Return the offset of the coefficients of the parameters of "node"
|
|
* within the (I)LP.
|
|
*
|
|
* Within each node, the coefficients have the following order:
|
|
* - positive and negative parts of c_i_x
|
|
* - c_i_n (if parametric)
|
|
* - c_i_0
|
|
*/
|
|
static int node_par_coef_offset(struct isl_sched_node *node)
|
|
{
|
|
return node->start + 2 * node->nvar;
|
|
}
|
|
|
|
/* Return the offset of the coefficients of the variables of "node"
|
|
* within the (I)LP.
|
|
*
|
|
* Within each node, the coefficients have the following order:
|
|
* - positive and negative parts of c_i_x
|
|
* - c_i_n (if parametric)
|
|
* - c_i_0
|
|
*/
|
|
static int node_var_coef_offset(struct isl_sched_node *node)
|
|
{
|
|
return node->start;
|
|
}
|
|
|
|
/* Return the position of the pair of variables encoding
|
|
* coefficient "i" of "node".
|
|
*
|
|
* The order of these variable pairs is the opposite of
|
|
* that of the coefficients, with 2 variables per coefficient.
|
|
*/
|
|
static int node_var_coef_pos(struct isl_sched_node *node, int i)
|
|
{
|
|
return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
|
|
}
|
|
|
|
/* Construct an isl_dim_map for mapping constraints on coefficients
|
|
* for "node" to the corresponding positions in graph->lp.
|
|
* "offset" is the offset of the coefficients for the variables
|
|
* in the input constraints.
|
|
* "s" is the sign of the mapping.
|
|
*
|
|
* The input constraints are given in terms of the coefficients
|
|
* (c_0, c_x) or (c_0, c_n, c_x).
|
|
* The mapping produced by this function essentially plugs in
|
|
* (0, c_i_x^+ - c_i_x^-) if s = 1 and
|
|
* (0, -c_i_x^+ + c_i_x^-) if s = -1 or
|
|
* (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
|
|
* (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
|
|
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
|
|
* Furthermore, the order of these pairs is the opposite of that
|
|
* of the corresponding coefficients.
|
|
*
|
|
* The caller can extend the mapping to also map the other coefficients
|
|
* (and therefore not plug in 0).
|
|
*/
|
|
static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, struct isl_sched_node *node,
|
|
int offset, int s)
|
|
{
|
|
int pos;
|
|
isl_size total;
|
|
isl_dim_map *dim_map;
|
|
|
|
total = isl_basic_set_dim(graph->lp, isl_dim_all);
|
|
if (!node || total < 0)
|
|
return NULL;
|
|
|
|
pos = node_var_coef_pos(node, 0);
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
|
|
isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
|
|
|
|
return dim_map;
|
|
}
|
|
|
|
/* Construct an isl_dim_map for mapping constraints on coefficients
|
|
* for "src" (node i) and "dst" (node j) to the corresponding positions
|
|
* in graph->lp.
|
|
* "offset" is the offset of the coefficients for the variables of "src"
|
|
* in the input constraints.
|
|
* "s" is the sign of the mapping.
|
|
*
|
|
* The input constraints are given in terms of the coefficients
|
|
* (c_0, c_n, c_x, c_y).
|
|
* The mapping produced by this function essentially plugs in
|
|
* (c_j_0 - c_i_0, c_j_n - c_i_n,
|
|
* -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
|
|
* (-c_j_0 + c_i_0, -c_j_n + c_i_n,
|
|
* c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
|
|
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
|
|
* Furthermore, the order of these pairs is the opposite of that
|
|
* of the corresponding coefficients.
|
|
*
|
|
* The caller can further extend the mapping.
|
|
*/
|
|
static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, struct isl_sched_node *src,
|
|
struct isl_sched_node *dst, int offset, int s)
|
|
{
|
|
int pos;
|
|
isl_size total;
|
|
isl_dim_map *dim_map;
|
|
|
|
total = isl_basic_set_dim(graph->lp, isl_dim_all);
|
|
if (!src || !dst || total < 0)
|
|
return NULL;
|
|
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
|
|
pos = node_cst_coef_offset(dst);
|
|
isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
|
|
pos = node_par_coef_offset(dst);
|
|
isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
|
|
pos = node_var_coef_pos(dst, 0);
|
|
isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
|
|
dst->nvar, -s);
|
|
isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
|
|
dst->nvar, s);
|
|
|
|
pos = node_cst_coef_offset(src);
|
|
isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
|
|
pos = node_par_coef_offset(src);
|
|
isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
|
|
pos = node_var_coef_pos(src, 0);
|
|
isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
|
|
isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
|
|
|
|
return dim_map;
|
|
}
|
|
|
|
/* Add the constraints from "src" to "dst" using "dim_map",
|
|
* after making sure there is enough room in "dst" for the extra constraints.
|
|
*/
|
|
static __isl_give isl_basic_set *add_constraints_dim_map(
|
|
__isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
|
|
__isl_take isl_dim_map *dim_map)
|
|
{
|
|
isl_size n_eq, n_ineq;
|
|
|
|
n_eq = isl_basic_set_n_equality(src);
|
|
n_ineq = isl_basic_set_n_inequality(src);
|
|
if (n_eq < 0 || n_ineq < 0)
|
|
dst = isl_basic_set_free(dst);
|
|
dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
|
|
dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
|
|
return dst;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force validity for the given
|
|
* dependence from a node i to itself.
|
|
* That is, add constraints that enforce
|
|
*
|
|
* (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
|
|
* = c_i_x (y - x) >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_x)
|
|
* of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
|
|
* where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
|
|
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
|
|
* Note that the result of intra_coefficients may also contain
|
|
* parameter coefficients c_n, in which case 0 is plugged in for them as well.
|
|
*/
|
|
static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
isl_size offset;
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *node = edge->src;
|
|
|
|
coef = intra_coefficients(graph, node, map, 0);
|
|
|
|
offset = coef_var_offset(coef);
|
|
if (offset < 0)
|
|
coef = isl_basic_set_free(coef);
|
|
if (!coef)
|
|
return isl_stat_error;
|
|
|
|
dim_map = intra_dim_map(ctx, graph, node, offset, 1);
|
|
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force validity for the given
|
|
* dependence from node i to node j.
|
|
* That is, add constraints that enforce
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
|
|
* of valid constraints for R and then plug in
|
|
* (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
|
|
* where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
|
|
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
|
|
*/
|
|
static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
isl_size offset;
|
|
isl_map *map;
|
|
isl_ctx *ctx;
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *src = edge->src;
|
|
struct isl_sched_node *dst = edge->dst;
|
|
|
|
if (!graph->lp)
|
|
return isl_stat_error;
|
|
|
|
map = isl_map_copy(edge->map);
|
|
ctx = isl_map_get_ctx(map);
|
|
coef = inter_coefficients(graph, edge, map);
|
|
|
|
offset = coef_var_offset(coef);
|
|
if (offset < 0)
|
|
coef = isl_basic_set_free(coef);
|
|
if (!coef)
|
|
return isl_stat_error;
|
|
|
|
dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
|
|
|
|
edge->start = graph->lp->n_ineq;
|
|
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
|
|
if (!graph->lp)
|
|
return isl_stat_error;
|
|
edge->end = graph->lp->n_ineq;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that bound the dependence distance for the given
|
|
* dependence from a node i to itself.
|
|
* If s = 1, we add the constraint
|
|
*
|
|
* c_i_x (y - x) <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* -c_i_x (y - x) + m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* If s = -1, we add the constraint
|
|
*
|
|
* -c_i_x (y - x) <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* c_i_x (y - x) + m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
|
* of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
|
|
* with each coefficient (except m_0) represented as a pair of non-negative
|
|
* coefficients.
|
|
*
|
|
*
|
|
* If "local" is set, then we add constraints
|
|
*
|
|
* c_i_x (y - x) <= 0
|
|
*
|
|
* or
|
|
*
|
|
* -c_i_x (y - x) <= 0
|
|
*
|
|
* instead, forcing the dependence distance to be (less than or) equal to 0.
|
|
* That is, we plug in (0, 0, -s * c_i_x),
|
|
* intra_coefficients is not required to have c_n in its result when
|
|
* "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
|
|
* Note that dependences marked local are treated as validity constraints
|
|
* by add_all_validity_constraints and therefore also have
|
|
* their distances bounded by 0 from below.
|
|
*/
|
|
static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, int s, int local)
|
|
{
|
|
isl_size offset;
|
|
isl_size nparam;
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *node = edge->src;
|
|
|
|
coef = intra_coefficients(graph, node, map, !local);
|
|
nparam = isl_space_dim(node->space, isl_dim_param);
|
|
|
|
offset = coef_var_offset(coef);
|
|
if (nparam < 0 || offset < 0)
|
|
coef = isl_basic_set_free(coef);
|
|
if (!coef)
|
|
return isl_stat_error;
|
|
|
|
dim_map = intra_dim_map(ctx, graph, node, offset, -s);
|
|
|
|
if (!local) {
|
|
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
|
|
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
|
|
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
|
|
}
|
|
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that bound the dependence distance for the given
|
|
* dependence from node i to node j.
|
|
* If s = 1, we add the constraint
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
|
|
* <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
|
|
* m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* If s = -1, we add the constraint
|
|
*
|
|
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
|
|
* <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
|
|
* m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
|
|
* of valid constraints for R and then plug in
|
|
* (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
|
|
* s*c_i_x, -s*c_j_x)
|
|
* with each coefficient (except m_0, c_*_0 and c_*_n)
|
|
* represented as a pair of non-negative coefficients.
|
|
*
|
|
*
|
|
* If "local" is set (and s = 1), then we add constraints
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
|
|
*
|
|
* or
|
|
*
|
|
* -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
|
|
*
|
|
* instead, forcing the dependence distance to be (less than or) equal to 0.
|
|
* That is, we plug in
|
|
* (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
|
|
* Note that dependences marked local are treated as validity constraints
|
|
* by add_all_validity_constraints and therefore also have
|
|
* their distances bounded by 0 from below.
|
|
*/
|
|
static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, int s, int local)
|
|
{
|
|
isl_size offset;
|
|
isl_size nparam;
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *src = edge->src;
|
|
struct isl_sched_node *dst = edge->dst;
|
|
|
|
coef = inter_coefficients(graph, edge, map);
|
|
nparam = isl_space_dim(src->space, isl_dim_param);
|
|
|
|
offset = coef_var_offset(coef);
|
|
if (nparam < 0 || offset < 0)
|
|
coef = isl_basic_set_free(coef);
|
|
if (!coef)
|
|
return isl_stat_error;
|
|
|
|
dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
|
|
|
|
if (!local) {
|
|
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
|
|
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
|
|
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
|
|
}
|
|
|
|
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Should the distance over "edge" be forced to zero?
|
|
* That is, is it marked as a local edge?
|
|
* If "use_coincidence" is set, then coincidence edges are treated
|
|
* as local edges.
|
|
*/
|
|
static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
|
|
{
|
|
return is_local(edge) || (use_coincidence && is_coincidence(edge));
|
|
}
|
|
|
|
/* Add all validity constraints to graph->lp.
|
|
*
|
|
* An edge that is forced to be local needs to have its dependence
|
|
* distances equal to zero. We take care of bounding them by 0 from below
|
|
* here. add_all_proximity_constraints takes care of bounding them by 0
|
|
* from above.
|
|
*
|
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
|
* Otherwise, we ignore them.
|
|
*/
|
|
static int add_all_validity_constraints(struct isl_sched_graph *graph,
|
|
int use_coincidence)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
int zero;
|
|
|
|
zero = force_zero(edge, use_coincidence);
|
|
if (!is_validity(edge) && !zero)
|
|
continue;
|
|
if (edge->src != edge->dst)
|
|
continue;
|
|
if (add_intra_validity_constraints(graph, edge) < 0)
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
int zero;
|
|
|
|
zero = force_zero(edge, use_coincidence);
|
|
if (!is_validity(edge) && !zero)
|
|
continue;
|
|
if (edge->src == edge->dst)
|
|
continue;
|
|
if (add_inter_validity_constraints(graph, edge) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that bound the dependence distance
|
|
* for all dependence relations.
|
|
* If a given proximity dependence is identical to a validity
|
|
* dependence, then the dependence distance is already bounded
|
|
* from below (by zero), so we only need to bound the distance
|
|
* from above. (This includes the case of "local" dependences
|
|
* which are treated as validity dependence by add_all_validity_constraints.)
|
|
* Otherwise, we need to bound the distance both from above and from below.
|
|
*
|
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
|
* Otherwise, we ignore them.
|
|
*/
|
|
static int add_all_proximity_constraints(struct isl_sched_graph *graph,
|
|
int use_coincidence)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
int zero;
|
|
|
|
zero = force_zero(edge, use_coincidence);
|
|
if (!is_proximity(edge) && !zero)
|
|
continue;
|
|
if (edge->src == edge->dst &&
|
|
add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
|
|
return -1;
|
|
if (edge->src != edge->dst &&
|
|
add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
|
|
return -1;
|
|
if (is_validity(edge) || zero)
|
|
continue;
|
|
if (edge->src == edge->dst &&
|
|
add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
|
|
return -1;
|
|
if (edge->src != edge->dst &&
|
|
add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Normalize the rows of "indep" such that all rows are lexicographically
|
|
* positive and such that each row contains as many final zeros as possible,
|
|
* given the choice for the previous rows.
|
|
* Do this by performing elementary row operations.
|
|
*/
|
|
static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
|
|
{
|
|
indep = isl_mat_reverse_gauss(indep);
|
|
indep = isl_mat_lexnonneg_rows(indep);
|
|
return indep;
|
|
}
|
|
|
|
/* Extract the linear part of the current schedule for node "node".
|
|
*/
|
|
static __isl_give isl_mat *extract_linear_schedule(struct isl_sched_node *node)
|
|
{
|
|
isl_size n_row = isl_mat_rows(node->sched);
|
|
|
|
if (n_row < 0)
|
|
return NULL;
|
|
return isl_mat_sub_alloc(node->sched, 0, n_row,
|
|
1 + node->nparam, node->nvar);
|
|
}
|
|
|
|
/* Compute a basis for the rows in the linear part of the schedule
|
|
* and extend this basis to a full basis. The remaining rows
|
|
* can then be used to force linear independence from the rows
|
|
* in the schedule.
|
|
*
|
|
* In particular, given the schedule rows S, we compute
|
|
*
|
|
* S = H Q
|
|
* S U = H
|
|
*
|
|
* with H the Hermite normal form of S. That is, all but the
|
|
* first rank columns of H are zero and so each row in S is
|
|
* a linear combination of the first rank rows of Q.
|
|
* The matrix Q can be used as a variable transformation
|
|
* that isolates the directions of S in the first rank rows.
|
|
* Transposing S U = H yields
|
|
*
|
|
* U^T S^T = H^T
|
|
*
|
|
* with all but the first rank rows of H^T zero.
|
|
* The last rows of U^T are therefore linear combinations
|
|
* of schedule coefficients that are all zero on schedule
|
|
* coefficients that are linearly dependent on the rows of S.
|
|
* At least one of these combinations is non-zero on
|
|
* linearly independent schedule coefficients.
|
|
* The rows are normalized to involve as few of the last
|
|
* coefficients as possible and to have a positive initial value.
|
|
*/
|
|
static int node_update_vmap(struct isl_sched_node *node)
|
|
{
|
|
isl_mat *H, *U, *Q;
|
|
|
|
H = extract_linear_schedule(node);
|
|
|
|
H = isl_mat_left_hermite(H, 0, &U, &Q);
|
|
isl_mat_free(node->indep);
|
|
isl_mat_free(node->vmap);
|
|
node->vmap = Q;
|
|
node->indep = isl_mat_transpose(U);
|
|
node->rank = isl_mat_initial_non_zero_cols(H);
|
|
node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
|
|
node->indep = normalize_independent(node->indep);
|
|
isl_mat_free(H);
|
|
|
|
if (!node->indep || !node->vmap || node->rank < 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Is "edge" marked as a validity or a conditional validity edge?
|
|
*/
|
|
static int is_any_validity(struct isl_sched_edge *edge)
|
|
{
|
|
return is_validity(edge) || is_conditional_validity(edge);
|
|
}
|
|
|
|
/* How many times should we count the constraints in "edge"?
|
|
*
|
|
* We count as follows
|
|
* validity -> 1 (>= 0)
|
|
* validity+proximity -> 2 (>= 0 and upper bound)
|
|
* proximity -> 2 (lower and upper bound)
|
|
* local(+any) -> 2 (>= 0 and <= 0)
|
|
*
|
|
* If an edge is only marked conditional_validity then it counts
|
|
* as zero since it is only checked afterwards.
|
|
*
|
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
|
* Otherwise, we ignore them.
|
|
*/
|
|
static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
|
|
{
|
|
if (is_proximity(edge) || force_zero(edge, use_coincidence))
|
|
return 2;
|
|
if (is_validity(edge))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* How many times should the constraints in "edge" be counted
|
|
* as a parametric intra-node constraint?
|
|
*
|
|
* Only proximity edges that are not forced zero need
|
|
* coefficient constraints that include coefficients for parameters.
|
|
* If the edge is also a validity edge, then only
|
|
* an upper bound is introduced. Otherwise, both lower and upper bounds
|
|
* are introduced.
|
|
*/
|
|
static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
|
|
int use_coincidence)
|
|
{
|
|
if (edge->src != edge->dst)
|
|
return 0;
|
|
if (!is_proximity(edge))
|
|
return 0;
|
|
if (force_zero(edge, use_coincidence))
|
|
return 0;
|
|
if (is_validity(edge))
|
|
return 1;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
/* Add "f" times the number of equality and inequality constraints of "bset"
|
|
* to "n_eq" and "n_ineq" and free "bset".
|
|
*/
|
|
static isl_stat update_count(__isl_take isl_basic_set *bset,
|
|
int f, int *n_eq, int *n_ineq)
|
|
{
|
|
isl_size eq, ineq;
|
|
|
|
eq = isl_basic_set_n_equality(bset);
|
|
ineq = isl_basic_set_n_inequality(bset);
|
|
isl_basic_set_free(bset);
|
|
|
|
if (eq < 0 || ineq < 0)
|
|
return isl_stat_error;
|
|
|
|
*n_eq += eq;
|
|
*n_ineq += ineq;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Count the number of equality and inequality constraints
|
|
* that will be added for the given map.
|
|
*
|
|
* The edges that require parameter coefficients are counted separately.
|
|
*
|
|
* "use_coincidence" is set if we should take into account coincidence edges.
|
|
*/
|
|
static isl_stat count_map_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, __isl_take isl_map *map,
|
|
int *n_eq, int *n_ineq, int use_coincidence)
|
|
{
|
|
isl_map *copy;
|
|
isl_basic_set *coef;
|
|
int f = edge_multiplicity(edge, use_coincidence);
|
|
int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
|
|
|
|
if (f == 0) {
|
|
isl_map_free(map);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
if (edge->src != edge->dst) {
|
|
coef = inter_coefficients(graph, edge, map);
|
|
return update_count(coef, f, n_eq, n_ineq);
|
|
}
|
|
|
|
if (fp > 0) {
|
|
copy = isl_map_copy(map);
|
|
coef = intra_coefficients(graph, edge->src, copy, 1);
|
|
if (update_count(coef, fp, n_eq, n_ineq) < 0)
|
|
goto error;
|
|
}
|
|
|
|
if (f > fp) {
|
|
copy = isl_map_copy(map);
|
|
coef = intra_coefficients(graph, edge->src, copy, 0);
|
|
if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
|
|
goto error;
|
|
}
|
|
|
|
isl_map_free(map);
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_map_free(map);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Count the number of equality and inequality constraints
|
|
* that will be added to the main lp problem.
|
|
* We count as follows
|
|
* validity -> 1 (>= 0)
|
|
* validity+proximity -> 2 (>= 0 and upper bound)
|
|
* proximity -> 2 (lower and upper bound)
|
|
* local(+any) -> 2 (>= 0 and <= 0)
|
|
*
|
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
|
* Otherwise, we ignore them.
|
|
*/
|
|
static int count_constraints(struct isl_sched_graph *graph,
|
|
int *n_eq, int *n_ineq, int use_coincidence)
|
|
{
|
|
int i;
|
|
|
|
*n_eq = *n_ineq = 0;
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
|
|
if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
|
|
use_coincidence) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Count the number of constraints that will be added by
|
|
* add_bound_constant_constraints to bound the values of the constant terms
|
|
* and increment *n_eq and *n_ineq accordingly.
|
|
*
|
|
* In practice, add_bound_constant_constraints only adds inequalities.
|
|
*/
|
|
static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
|
|
{
|
|
if (isl_options_get_schedule_max_constant_term(ctx) == -1)
|
|
return isl_stat_ok;
|
|
|
|
*n_ineq += graph->n;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add constraints to bound the values of the constant terms in the schedule,
|
|
* if requested by the user.
|
|
*
|
|
* The maximal value of the constant terms is defined by the option
|
|
* "schedule_max_constant_term".
|
|
*/
|
|
static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int i, k;
|
|
int max;
|
|
isl_size total;
|
|
|
|
max = isl_options_get_schedule_max_constant_term(ctx);
|
|
if (max == -1)
|
|
return isl_stat_ok;
|
|
|
|
total = isl_basic_set_dim(graph->lp, isl_dim_set);
|
|
if (total < 0)
|
|
return isl_stat_error;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int pos;
|
|
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
return isl_stat_error;
|
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
|
pos = node_cst_coef_offset(node);
|
|
isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
|
|
isl_int_set_si(graph->lp->ineq[k][0], max);
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Count the number of constraints that will be added by
|
|
* add_bound_coefficient_constraints and increment *n_eq and *n_ineq
|
|
* accordingly.
|
|
*
|
|
* In practice, add_bound_coefficient_constraints only adds inequalities.
|
|
*/
|
|
static int count_bound_coefficient_constraints(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
|
|
{
|
|
int i;
|
|
|
|
if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
|
|
!isl_options_get_schedule_treat_coalescing(ctx))
|
|
return 0;
|
|
|
|
for (i = 0; i < graph->n; ++i)
|
|
*n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that bound the values of
|
|
* the parameter schedule coefficients of "node" to "max" and
|
|
* the variable schedule coefficients to the corresponding entry
|
|
* in node->max.
|
|
* In either case, a negative value means that no bound needs to be imposed.
|
|
*
|
|
* For parameter coefficients, this amounts to adding a constraint
|
|
*
|
|
* c_n <= max
|
|
*
|
|
* i.e.,
|
|
*
|
|
* -c_n + max >= 0
|
|
*
|
|
* The variables coefficients are, however, not represented directly.
|
|
* Instead, the variable coefficients c_x are written as differences
|
|
* c_x = c_x^+ - c_x^-.
|
|
* That is,
|
|
*
|
|
* -max_i <= c_x_i <= max_i
|
|
*
|
|
* is encoded as
|
|
*
|
|
* -max_i <= c_x_i^+ - c_x_i^- <= max_i
|
|
*
|
|
* or
|
|
*
|
|
* -(c_x_i^+ - c_x_i^-) + max_i >= 0
|
|
* c_x_i^+ - c_x_i^- + max_i >= 0
|
|
*/
|
|
static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
|
|
{
|
|
int i, j, k;
|
|
isl_size total;
|
|
isl_vec *ineq;
|
|
|
|
total = isl_basic_set_dim(graph->lp, isl_dim_set);
|
|
if (total < 0)
|
|
return isl_stat_error;
|
|
|
|
for (j = 0; j < node->nparam; ++j) {
|
|
int dim;
|
|
|
|
if (max < 0)
|
|
continue;
|
|
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
return isl_stat_error;
|
|
dim = 1 + node_par_coef_offset(node) + j;
|
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->ineq[k][dim], -1);
|
|
isl_int_set_si(graph->lp->ineq[k][0], max);
|
|
}
|
|
|
|
ineq = isl_vec_alloc(ctx, 1 + total);
|
|
ineq = isl_vec_clr(ineq);
|
|
if (!ineq)
|
|
return isl_stat_error;
|
|
for (i = 0; i < node->nvar; ++i) {
|
|
int pos = 1 + node_var_coef_pos(node, i);
|
|
|
|
if (isl_int_is_neg(node->max->el[i]))
|
|
continue;
|
|
|
|
isl_int_set_si(ineq->el[pos], 1);
|
|
isl_int_set_si(ineq->el[pos + 1], -1);
|
|
isl_int_set(ineq->el[0], node->max->el[i]);
|
|
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
goto error;
|
|
isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
|
|
|
|
isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
goto error;
|
|
isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
|
|
|
|
isl_seq_clr(ineq->el + pos, 2);
|
|
}
|
|
isl_vec_free(ineq);
|
|
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_vec_free(ineq);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Add constraints that bound the values of the variable and parameter
|
|
* coefficients of the schedule.
|
|
*
|
|
* The maximal value of the coefficients is defined by the option
|
|
* 'schedule_max_coefficient' and the entries in node->max.
|
|
* These latter entries are only set if either the schedule_max_coefficient
|
|
* option or the schedule_treat_coalescing option is set.
|
|
*/
|
|
static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int max;
|
|
|
|
max = isl_options_get_schedule_max_coefficient(ctx);
|
|
|
|
if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
|
|
return isl_stat_ok;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
|
|
if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
|
|
return isl_stat_error;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add a constraint to graph->lp that equates the value at position
|
|
* "sum_pos" to the sum of the "n" values starting at "first".
|
|
*/
|
|
static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
|
|
int sum_pos, int first, int n)
|
|
{
|
|
int i, k;
|
|
isl_size total;
|
|
|
|
total = isl_basic_set_dim(graph->lp, isl_dim_set);
|
|
if (total < 0)
|
|
return isl_stat_error;
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return isl_stat_error;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
|
|
for (i = 0; i < n; ++i)
|
|
isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add a constraint to graph->lp that equates the value at position
|
|
* "sum_pos" to the sum of the parameter coefficients of all nodes.
|
|
*/
|
|
static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
|
|
int sum_pos)
|
|
{
|
|
int i, j, k;
|
|
isl_size total;
|
|
|
|
total = isl_basic_set_dim(graph->lp, isl_dim_set);
|
|
if (total < 0)
|
|
return isl_stat_error;
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return isl_stat_error;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
|
|
for (i = 0; i < graph->n; ++i) {
|
|
int pos = 1 + node_par_coef_offset(&graph->node[i]);
|
|
|
|
for (j = 0; j < graph->node[i].nparam; ++j)
|
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add a constraint to graph->lp that equates the value at position
|
|
* "sum_pos" to the sum of the variable coefficients of all nodes.
|
|
*/
|
|
static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
|
|
int sum_pos)
|
|
{
|
|
int i, j, k;
|
|
isl_size total;
|
|
|
|
total = isl_basic_set_dim(graph->lp, isl_dim_set);
|
|
if (total < 0)
|
|
return isl_stat_error;
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return isl_stat_error;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int pos = 1 + node_var_coef_offset(node);
|
|
|
|
for (j = 0; j < 2 * node->nvar; ++j)
|
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Construct an ILP problem for finding schedule coefficients
|
|
* that result in non-negative, but small dependence distances
|
|
* over all dependences.
|
|
* In particular, the dependence distances over proximity edges
|
|
* are bounded by m_0 + m_n n and we compute schedule coefficients
|
|
* with small values (preferably zero) of m_n and m_0.
|
|
*
|
|
* All variables of the ILP are non-negative. The actual coefficients
|
|
* may be negative, so each coefficient is represented as the difference
|
|
* of two non-negative variables. The negative part always appears
|
|
* immediately before the positive part.
|
|
* Other than that, the variables have the following order
|
|
*
|
|
* - sum of positive and negative parts of m_n coefficients
|
|
* - m_0
|
|
* - sum of all c_n coefficients
|
|
* (unconstrained when computing non-parametric schedules)
|
|
* - sum of positive and negative parts of all c_x coefficients
|
|
* - positive and negative parts of m_n coefficients
|
|
* - for each node
|
|
* - positive and negative parts of c_i_x, in opposite order
|
|
* - c_i_n (if parametric)
|
|
* - c_i_0
|
|
*
|
|
* The constraints are those from the edges plus two or three equalities
|
|
* to express the sums.
|
|
*
|
|
* If "use_coincidence" is set, then we treat coincidence edges as local edges.
|
|
* Otherwise, we ignore them.
|
|
*/
|
|
static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
int use_coincidence)
|
|
{
|
|
int i;
|
|
isl_size nparam;
|
|
unsigned total;
|
|
isl_space *space;
|
|
int parametric;
|
|
int param_pos;
|
|
int n_eq, n_ineq;
|
|
|
|
parametric = ctx->opt->schedule_parametric;
|
|
nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
|
|
if (nparam < 0)
|
|
return isl_stat_error;
|
|
param_pos = 4;
|
|
total = param_pos + 2 * nparam;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
|
|
if (node_update_vmap(node) < 0)
|
|
return isl_stat_error;
|
|
node->start = total;
|
|
total += 1 + node->nparam + 2 * node->nvar;
|
|
}
|
|
|
|
if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
|
|
return isl_stat_error;
|
|
if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
|
|
return isl_stat_error;
|
|
if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
|
|
return isl_stat_error;
|
|
|
|
space = isl_space_set_alloc(ctx, 0, total);
|
|
isl_basic_set_free(graph->lp);
|
|
n_eq += 2 + parametric;
|
|
|
|
graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
|
|
|
|
if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
|
|
return isl_stat_error;
|
|
if (parametric && add_param_sum_constraint(graph, 2) < 0)
|
|
return isl_stat_error;
|
|
if (add_var_sum_constraint(graph, 3) < 0)
|
|
return isl_stat_error;
|
|
if (add_bound_constant_constraints(ctx, graph) < 0)
|
|
return isl_stat_error;
|
|
if (add_bound_coefficient_constraints(ctx, graph) < 0)
|
|
return isl_stat_error;
|
|
if (add_all_validity_constraints(graph, use_coincidence) < 0)
|
|
return isl_stat_error;
|
|
if (add_all_proximity_constraints(graph, use_coincidence) < 0)
|
|
return isl_stat_error;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Analyze the conflicting constraint found by
|
|
* isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
|
|
* constraint of one of the edges between distinct nodes, living, moreover
|
|
* in distinct SCCs, then record the source and sink SCC as this may
|
|
* be a good place to cut between SCCs.
|
|
*/
|
|
static int check_conflict(int con, void *user)
|
|
{
|
|
int i;
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
if (graph->src_scc >= 0)
|
|
return 0;
|
|
|
|
con -= graph->lp->n_eq;
|
|
|
|
if (con >= graph->lp->n_ineq)
|
|
return 0;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
if (!is_validity(&graph->edge[i]))
|
|
continue;
|
|
if (graph->edge[i].src == graph->edge[i].dst)
|
|
continue;
|
|
if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
|
|
continue;
|
|
if (graph->edge[i].start > con)
|
|
continue;
|
|
if (graph->edge[i].end <= con)
|
|
continue;
|
|
graph->src_scc = graph->edge[i].src->scc;
|
|
graph->dst_scc = graph->edge[i].dst->scc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check whether the next schedule row of the given node needs to be
|
|
* non-trivial. Lower-dimensional domains may have some trivial rows,
|
|
* but as soon as the number of remaining required non-trivial rows
|
|
* is as large as the number or remaining rows to be computed,
|
|
* all remaining rows need to be non-trivial.
|
|
*/
|
|
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
|
|
{
|
|
return node->nvar - node->rank >= graph->maxvar - graph->n_row;
|
|
}
|
|
|
|
/* Construct a non-triviality region with triviality directions
|
|
* corresponding to the rows of "indep".
|
|
* The rows of "indep" are expressed in terms of the schedule coefficients c_i,
|
|
* while the triviality directions are expressed in terms of
|
|
* pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
|
|
* before c^+_i. Furthermore,
|
|
* the pairs of non-negative variables representing the coefficients
|
|
* are stored in the opposite order.
|
|
*/
|
|
static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_mat *mat;
|
|
int i, j;
|
|
isl_size n, n_var;
|
|
|
|
n = isl_mat_rows(indep);
|
|
n_var = isl_mat_cols(indep);
|
|
if (n < 0 || n_var < 0)
|
|
return NULL;
|
|
|
|
ctx = isl_mat_get_ctx(indep);
|
|
mat = isl_mat_alloc(ctx, n, 2 * n_var);
|
|
if (!mat)
|
|
return NULL;
|
|
for (i = 0; i < n; ++i) {
|
|
for (j = 0; j < n_var; ++j) {
|
|
int nj = n_var - 1 - j;
|
|
isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
|
|
isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
|
|
}
|
|
}
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Solve the ILP problem constructed in setup_lp.
|
|
* For each node such that all the remaining rows of its schedule
|
|
* need to be non-trivial, we construct a non-triviality region.
|
|
* This region imposes that the next row is independent of previous rows.
|
|
* In particular, the non-triviality region enforces that at least
|
|
* one of the linear combinations in the rows of node->indep is non-zero.
|
|
*/
|
|
static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
isl_vec *sol;
|
|
isl_basic_set *lp;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
isl_mat *trivial;
|
|
|
|
graph->region[i].pos = node_var_coef_offset(node);
|
|
if (needs_row(graph, node))
|
|
trivial = construct_trivial(node->indep);
|
|
else
|
|
trivial = isl_mat_zero(ctx, 0, 0);
|
|
graph->region[i].trivial = trivial;
|
|
}
|
|
lp = isl_basic_set_copy(graph->lp);
|
|
sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
|
|
graph->region, &check_conflict, graph);
|
|
for (i = 0; i < graph->n; ++i)
|
|
isl_mat_free(graph->region[i].trivial);
|
|
return sol;
|
|
}
|
|
|
|
/* Extract the coefficients for the variables of "node" from "sol".
|
|
*
|
|
* Each schedule coefficient c_i_x is represented as the difference
|
|
* between two non-negative variables c_i_x^+ - c_i_x^-.
|
|
* The c_i_x^- appear before their c_i_x^+ counterpart.
|
|
* Furthermore, the order of these pairs is the opposite of that
|
|
* of the corresponding coefficients.
|
|
*
|
|
* Return c_i_x = c_i_x^+ - c_i_x^-
|
|
*/
|
|
static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
|
|
__isl_keep isl_vec *sol)
|
|
{
|
|
int i;
|
|
int pos;
|
|
isl_vec *csol;
|
|
|
|
if (!sol)
|
|
return NULL;
|
|
csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
|
|
if (!csol)
|
|
return NULL;
|
|
|
|
pos = 1 + node_var_coef_offset(node);
|
|
for (i = 0; i < node->nvar; ++i)
|
|
isl_int_sub(csol->el[node->nvar - 1 - i],
|
|
sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
|
|
|
|
return csol;
|
|
}
|
|
|
|
/* Update the schedules of all nodes based on the given solution
|
|
* of the LP problem.
|
|
* The new row is added to the current band.
|
|
* All possibly negative coefficients are encoded as a difference
|
|
* of two non-negative variables, so we need to perform the subtraction
|
|
* here.
|
|
*
|
|
* If coincident is set, then the caller guarantees that the new
|
|
* row satisfies the coincidence constraints.
|
|
*/
|
|
static int update_schedule(struct isl_sched_graph *graph,
|
|
__isl_take isl_vec *sol, int coincident)
|
|
{
|
|
int i, j;
|
|
isl_vec *csol = NULL;
|
|
|
|
if (!sol)
|
|
goto error;
|
|
if (sol->size == 0)
|
|
isl_die(sol->ctx, isl_error_internal,
|
|
"no solution found", goto error);
|
|
if (graph->n_total_row >= graph->max_row)
|
|
isl_die(sol->ctx, isl_error_internal,
|
|
"too many schedule rows", goto error);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int pos;
|
|
isl_size row = isl_mat_rows(node->sched);
|
|
|
|
isl_vec_free(csol);
|
|
csol = extract_var_coef(node, sol);
|
|
if (row < 0 || !csol)
|
|
goto error;
|
|
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
node->sched = isl_mat_add_rows(node->sched, 1);
|
|
if (!node->sched)
|
|
goto error;
|
|
pos = node_cst_coef_offset(node);
|
|
node->sched = isl_mat_set_element(node->sched,
|
|
row, 0, sol->el[1 + pos]);
|
|
pos = node_par_coef_offset(node);
|
|
for (j = 0; j < node->nparam; ++j)
|
|
node->sched = isl_mat_set_element(node->sched,
|
|
row, 1 + j, sol->el[1 + pos + j]);
|
|
for (j = 0; j < node->nvar; ++j)
|
|
node->sched = isl_mat_set_element(node->sched,
|
|
row, 1 + node->nparam + j, csol->el[j]);
|
|
node->coincident[graph->n_total_row] = coincident;
|
|
}
|
|
isl_vec_free(sol);
|
|
isl_vec_free(csol);
|
|
|
|
graph->n_row++;
|
|
graph->n_total_row++;
|
|
|
|
return 0;
|
|
error:
|
|
isl_vec_free(sol);
|
|
isl_vec_free(csol);
|
|
return -1;
|
|
}
|
|
|
|
/* Convert row "row" of node->sched into an isl_aff living in "ls"
|
|
* and return this isl_aff.
|
|
*/
|
|
static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
|
|
struct isl_sched_node *node, int row)
|
|
{
|
|
int j;
|
|
isl_int v;
|
|
isl_aff *aff;
|
|
|
|
isl_int_init(v);
|
|
|
|
aff = isl_aff_zero_on_domain(ls);
|
|
if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
|
|
goto error;
|
|
aff = isl_aff_set_constant(aff, v);
|
|
for (j = 0; j < node->nparam; ++j) {
|
|
if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
|
|
goto error;
|
|
aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
|
|
}
|
|
for (j = 0; j < node->nvar; ++j) {
|
|
if (isl_mat_get_element(node->sched, row,
|
|
1 + node->nparam + j, &v) < 0)
|
|
goto error;
|
|
aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
|
|
}
|
|
|
|
isl_int_clear(v);
|
|
|
|
return aff;
|
|
error:
|
|
isl_int_clear(v);
|
|
isl_aff_free(aff);
|
|
return NULL;
|
|
}
|
|
|
|
/* Convert the "n" rows starting at "first" of node->sched into a multi_aff
|
|
* and return this multi_aff.
|
|
*
|
|
* The result is defined over the uncompressed node domain.
|
|
*/
|
|
static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
|
|
struct isl_sched_node *node, int first, int n)
|
|
{
|
|
int i;
|
|
isl_space *space;
|
|
isl_local_space *ls;
|
|
isl_aff *aff;
|
|
isl_multi_aff *ma;
|
|
isl_size nrow;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
nrow = isl_mat_rows(node->sched);
|
|
if (nrow < 0)
|
|
return NULL;
|
|
if (node->compressed)
|
|
space = isl_pw_multi_aff_get_domain_space(node->decompress);
|
|
else
|
|
space = isl_space_copy(node->space);
|
|
ls = isl_local_space_from_space(isl_space_copy(space));
|
|
space = isl_space_from_domain(space);
|
|
space = isl_space_add_dims(space, isl_dim_out, n);
|
|
ma = isl_multi_aff_zero(space);
|
|
|
|
for (i = first; i < first + n; ++i) {
|
|
aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
|
|
ma = isl_multi_aff_set_aff(ma, i - first, aff);
|
|
}
|
|
|
|
isl_local_space_free(ls);
|
|
|
|
if (node->compressed)
|
|
ma = isl_multi_aff_pullback_multi_aff(ma,
|
|
isl_multi_aff_copy(node->compress));
|
|
|
|
return ma;
|
|
}
|
|
|
|
/* Convert node->sched into a multi_aff and return this multi_aff.
|
|
*
|
|
* The result is defined over the uncompressed node domain.
|
|
*/
|
|
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
|
|
struct isl_sched_node *node)
|
|
{
|
|
isl_size nrow;
|
|
|
|
nrow = isl_mat_rows(node->sched);
|
|
if (nrow < 0)
|
|
return NULL;
|
|
return node_extract_partial_schedule_multi_aff(node, 0, nrow);
|
|
}
|
|
|
|
/* Convert node->sched into a map and return this map.
|
|
*
|
|
* The result is cached in node->sched_map, which needs to be released
|
|
* whenever node->sched is updated.
|
|
* It is defined over the uncompressed node domain.
|
|
*/
|
|
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
|
|
{
|
|
if (!node->sched_map) {
|
|
isl_multi_aff *ma;
|
|
|
|
ma = node_extract_schedule_multi_aff(node);
|
|
node->sched_map = isl_map_from_multi_aff(ma);
|
|
}
|
|
|
|
return isl_map_copy(node->sched_map);
|
|
}
|
|
|
|
/* Construct a map that can be used to update a dependence relation
|
|
* based on the current schedule.
|
|
* That is, construct a map expressing that source and sink
|
|
* are executed within the same iteration of the current schedule.
|
|
* This map can then be intersected with the dependence relation.
|
|
* This is not the most efficient way, but this shouldn't be a critical
|
|
* operation.
|
|
*/
|
|
static __isl_give isl_map *specializer(struct isl_sched_node *src,
|
|
struct isl_sched_node *dst)
|
|
{
|
|
isl_map *src_sched, *dst_sched;
|
|
|
|
src_sched = node_extract_schedule(src);
|
|
dst_sched = node_extract_schedule(dst);
|
|
return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
|
|
}
|
|
|
|
/* Intersect the domains of the nested relations in domain and range
|
|
* of "umap" with "map".
|
|
*/
|
|
static __isl_give isl_union_map *intersect_domains(
|
|
__isl_take isl_union_map *umap, __isl_keep isl_map *map)
|
|
{
|
|
isl_union_set *uset;
|
|
|
|
umap = isl_union_map_zip(umap);
|
|
uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
|
|
umap = isl_union_map_intersect_domain(umap, uset);
|
|
umap = isl_union_map_zip(umap);
|
|
return umap;
|
|
}
|
|
|
|
/* Update the dependence relation of the given edge based
|
|
* on the current schedule.
|
|
* If the dependence is carried completely by the current schedule, then
|
|
* it is removed from the edge_tables. It is kept in the list of edges
|
|
* as otherwise all edge_tables would have to be recomputed.
|
|
*
|
|
* If the edge is of a type that can appear multiple times
|
|
* between the same pair of nodes, then it is added to
|
|
* the edge table (again). This prevents the situation
|
|
* where none of these edges is referenced from the edge table
|
|
* because the one that was referenced turned out to be empty and
|
|
* was therefore removed from the table.
|
|
*/
|
|
static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
int empty;
|
|
isl_map *id;
|
|
|
|
id = specializer(edge->src, edge->dst);
|
|
edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
|
|
if (!edge->map)
|
|
goto error;
|
|
|
|
if (edge->tagged_condition) {
|
|
edge->tagged_condition =
|
|
intersect_domains(edge->tagged_condition, id);
|
|
if (!edge->tagged_condition)
|
|
goto error;
|
|
}
|
|
if (edge->tagged_validity) {
|
|
edge->tagged_validity =
|
|
intersect_domains(edge->tagged_validity, id);
|
|
if (!edge->tagged_validity)
|
|
goto error;
|
|
}
|
|
|
|
empty = isl_map_plain_is_empty(edge->map);
|
|
if (empty < 0)
|
|
goto error;
|
|
if (empty) {
|
|
if (graph_remove_edge(graph, edge) < 0)
|
|
goto error;
|
|
} else if (is_multi_edge_type(edge)) {
|
|
if (graph_edge_tables_add(ctx, graph, edge) < 0)
|
|
goto error;
|
|
}
|
|
|
|
isl_map_free(id);
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_map_free(id);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Does the domain of "umap" intersect "uset"?
|
|
*/
|
|
static int domain_intersects(__isl_keep isl_union_map *umap,
|
|
__isl_keep isl_union_set *uset)
|
|
{
|
|
int empty;
|
|
|
|
umap = isl_union_map_copy(umap);
|
|
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
|
|
empty = isl_union_map_is_empty(umap);
|
|
isl_union_map_free(umap);
|
|
|
|
return empty < 0 ? -1 : !empty;
|
|
}
|
|
|
|
/* Does the range of "umap" intersect "uset"?
|
|
*/
|
|
static int range_intersects(__isl_keep isl_union_map *umap,
|
|
__isl_keep isl_union_set *uset)
|
|
{
|
|
int empty;
|
|
|
|
umap = isl_union_map_copy(umap);
|
|
umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
|
|
empty = isl_union_map_is_empty(umap);
|
|
isl_union_map_free(umap);
|
|
|
|
return empty < 0 ? -1 : !empty;
|
|
}
|
|
|
|
/* Are the condition dependences of "edge" local with respect to
|
|
* the current schedule?
|
|
*
|
|
* That is, are domain and range of the condition dependences mapped
|
|
* to the same point?
|
|
*
|
|
* In other words, is the condition false?
|
|
*/
|
|
static int is_condition_false(struct isl_sched_edge *edge)
|
|
{
|
|
isl_union_map *umap;
|
|
isl_map *map, *sched, *test;
|
|
int empty, local;
|
|
|
|
empty = isl_union_map_is_empty(edge->tagged_condition);
|
|
if (empty < 0 || empty)
|
|
return empty;
|
|
|
|
umap = isl_union_map_copy(edge->tagged_condition);
|
|
umap = isl_union_map_zip(umap);
|
|
umap = isl_union_set_unwrap(isl_union_map_domain(umap));
|
|
map = isl_map_from_union_map(umap);
|
|
|
|
sched = node_extract_schedule(edge->src);
|
|
map = isl_map_apply_domain(map, sched);
|
|
sched = node_extract_schedule(edge->dst);
|
|
map = isl_map_apply_range(map, sched);
|
|
|
|
test = isl_map_identity(isl_map_get_space(map));
|
|
local = isl_map_is_subset(map, test);
|
|
isl_map_free(map);
|
|
isl_map_free(test);
|
|
|
|
return local;
|
|
}
|
|
|
|
/* For each conditional validity constraint that is adjacent
|
|
* to a condition with domain in condition_source or range in condition_sink,
|
|
* turn it into an unconditional validity constraint.
|
|
*/
|
|
static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
|
|
__isl_take isl_union_set *condition_source,
|
|
__isl_take isl_union_set *condition_sink)
|
|
{
|
|
int i;
|
|
|
|
condition_source = isl_union_set_coalesce(condition_source);
|
|
condition_sink = isl_union_set_coalesce(condition_sink);
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
int adjacent;
|
|
isl_union_map *validity;
|
|
|
|
if (!is_conditional_validity(&graph->edge[i]))
|
|
continue;
|
|
if (is_validity(&graph->edge[i]))
|
|
continue;
|
|
|
|
validity = graph->edge[i].tagged_validity;
|
|
adjacent = domain_intersects(validity, condition_sink);
|
|
if (adjacent >= 0 && !adjacent)
|
|
adjacent = range_intersects(validity, condition_source);
|
|
if (adjacent < 0)
|
|
goto error;
|
|
if (!adjacent)
|
|
continue;
|
|
|
|
set_validity(&graph->edge[i]);
|
|
}
|
|
|
|
isl_union_set_free(condition_source);
|
|
isl_union_set_free(condition_sink);
|
|
return 0;
|
|
error:
|
|
isl_union_set_free(condition_source);
|
|
isl_union_set_free(condition_sink);
|
|
return -1;
|
|
}
|
|
|
|
/* Update the dependence relations of all edges based on the current schedule
|
|
* and enforce conditional validity constraints that are adjacent
|
|
* to satisfied condition constraints.
|
|
*
|
|
* First check if any of the condition constraints are satisfied
|
|
* (i.e., not local to the outer schedule) and keep track of
|
|
* their domain and range.
|
|
* Then update all dependence relations (which removes the non-local
|
|
* constraints).
|
|
* Finally, if any condition constraints turned out to be satisfied,
|
|
* then turn all adjacent conditional validity constraints into
|
|
* unconditional validity constraints.
|
|
*/
|
|
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int any = 0;
|
|
isl_union_set *source, *sink;
|
|
|
|
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
|
|
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
int local;
|
|
isl_union_set *uset;
|
|
isl_union_map *umap;
|
|
|
|
if (!is_condition(&graph->edge[i]))
|
|
continue;
|
|
if (is_local(&graph->edge[i]))
|
|
continue;
|
|
local = is_condition_false(&graph->edge[i]);
|
|
if (local < 0)
|
|
goto error;
|
|
if (local)
|
|
continue;
|
|
|
|
any = 1;
|
|
|
|
umap = isl_union_map_copy(graph->edge[i].tagged_condition);
|
|
uset = isl_union_map_domain(umap);
|
|
source = isl_union_set_union(source, uset);
|
|
|
|
umap = isl_union_map_copy(graph->edge[i].tagged_condition);
|
|
uset = isl_union_map_range(umap);
|
|
sink = isl_union_set_union(sink, uset);
|
|
}
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
if (update_edge(ctx, graph, &graph->edge[i]) < 0)
|
|
goto error;
|
|
}
|
|
|
|
if (any)
|
|
return unconditionalize_adjacent_validity(graph, source, sink);
|
|
|
|
isl_union_set_free(source);
|
|
isl_union_set_free(sink);
|
|
return 0;
|
|
error:
|
|
isl_union_set_free(source);
|
|
isl_union_set_free(sink);
|
|
return -1;
|
|
}
|
|
|
|
static void next_band(struct isl_sched_graph *graph)
|
|
{
|
|
graph->band_start = graph->n_total_row;
|
|
}
|
|
|
|
/* Return the union of the universe domains of the nodes in "graph"
|
|
* that satisfy "pred".
|
|
*/
|
|
static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph,
|
|
int (*pred)(struct isl_sched_node *node, int data), int data)
|
|
{
|
|
int i;
|
|
isl_set *set;
|
|
isl_union_set *dom;
|
|
|
|
for (i = 0; i < graph->n; ++i)
|
|
if (pred(&graph->node[i], data))
|
|
break;
|
|
|
|
if (i >= graph->n)
|
|
isl_die(ctx, isl_error_internal,
|
|
"empty component", return NULL);
|
|
|
|
set = isl_set_universe(isl_space_copy(graph->node[i].space));
|
|
dom = isl_union_set_from_set(set);
|
|
|
|
for (i = i + 1; i < graph->n; ++i) {
|
|
if (!pred(&graph->node[i], data))
|
|
continue;
|
|
set = isl_set_universe(isl_space_copy(graph->node[i].space));
|
|
dom = isl_union_set_union(dom, isl_union_set_from_set(set));
|
|
}
|
|
|
|
return dom;
|
|
}
|
|
|
|
/* Return a list of unions of universe domains, where each element
|
|
* in the list corresponds to an SCC (or WCC) indexed by node->scc.
|
|
*/
|
|
static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
isl_union_set_list *filters;
|
|
|
|
filters = isl_union_set_list_alloc(ctx, graph->scc);
|
|
for (i = 0; i < graph->scc; ++i) {
|
|
isl_union_set *dom;
|
|
|
|
dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
|
|
filters = isl_union_set_list_add(filters, dom);
|
|
}
|
|
|
|
return filters;
|
|
}
|
|
|
|
/* Return a list of two unions of universe domains, one for the SCCs up
|
|
* to and including graph->src_scc and another for the other SCCs.
|
|
*/
|
|
static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
isl_union_set *dom;
|
|
isl_union_set_list *filters;
|
|
|
|
filters = isl_union_set_list_alloc(ctx, 2);
|
|
dom = isl_sched_graph_domain(ctx, graph,
|
|
&node_scc_at_most, graph->src_scc);
|
|
filters = isl_union_set_list_add(filters, dom);
|
|
dom = isl_sched_graph_domain(ctx, graph,
|
|
&node_scc_at_least, graph->src_scc + 1);
|
|
filters = isl_union_set_list_add(filters, dom);
|
|
|
|
return filters;
|
|
}
|
|
|
|
/* Copy nodes that satisfy node_pred from the src dependence graph
|
|
* to the dst dependence graph.
|
|
*/
|
|
static isl_stat copy_nodes(struct isl_sched_graph *dst,
|
|
struct isl_sched_graph *src,
|
|
int (*node_pred)(struct isl_sched_node *node, int data), int data)
|
|
{
|
|
int i;
|
|
|
|
dst->n = 0;
|
|
for (i = 0; i < src->n; ++i) {
|
|
int j;
|
|
|
|
if (!node_pred(&src->node[i], data))
|
|
continue;
|
|
|
|
j = dst->n;
|
|
dst->node[j].space = isl_space_copy(src->node[i].space);
|
|
dst->node[j].compressed = src->node[i].compressed;
|
|
dst->node[j].hull = isl_set_copy(src->node[i].hull);
|
|
dst->node[j].compress =
|
|
isl_multi_aff_copy(src->node[i].compress);
|
|
dst->node[j].decompress =
|
|
isl_pw_multi_aff_copy(src->node[i].decompress);
|
|
dst->node[j].nvar = src->node[i].nvar;
|
|
dst->node[j].nparam = src->node[i].nparam;
|
|
dst->node[j].sched = isl_mat_copy(src->node[i].sched);
|
|
dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
|
|
dst->node[j].coincident = src->node[i].coincident;
|
|
dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
|
|
dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
|
|
dst->node[j].max = isl_vec_copy(src->node[i].max);
|
|
dst->n++;
|
|
|
|
if (!dst->node[j].space || !dst->node[j].sched)
|
|
return isl_stat_error;
|
|
if (dst->node[j].compressed &&
|
|
(!dst->node[j].hull || !dst->node[j].compress ||
|
|
!dst->node[j].decompress))
|
|
return isl_stat_error;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
|
|
* to the dst dependence graph.
|
|
* If the source or destination node of the edge is not in the destination
|
|
* graph, then it must be a backward proximity edge and it should simply
|
|
* be ignored.
|
|
*/
|
|
static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
|
|
struct isl_sched_graph *src,
|
|
int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
|
|
{
|
|
int i;
|
|
|
|
dst->n_edge = 0;
|
|
for (i = 0; i < src->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &src->edge[i];
|
|
isl_map *map;
|
|
isl_union_map *tagged_condition;
|
|
isl_union_map *tagged_validity;
|
|
struct isl_sched_node *dst_src, *dst_dst;
|
|
|
|
if (!edge_pred(edge, data))
|
|
continue;
|
|
|
|
if (isl_map_plain_is_empty(edge->map))
|
|
continue;
|
|
|
|
dst_src = graph_find_node(ctx, dst, edge->src->space);
|
|
dst_dst = graph_find_node(ctx, dst, edge->dst->space);
|
|
if (!dst_src || !dst_dst)
|
|
return isl_stat_error;
|
|
if (!is_node(dst, dst_src) || !is_node(dst, dst_dst)) {
|
|
if (is_validity(edge) || is_conditional_validity(edge))
|
|
isl_die(ctx, isl_error_internal,
|
|
"backward (conditional) validity edge",
|
|
return isl_stat_error);
|
|
continue;
|
|
}
|
|
|
|
map = isl_map_copy(edge->map);
|
|
tagged_condition = isl_union_map_copy(edge->tagged_condition);
|
|
tagged_validity = isl_union_map_copy(edge->tagged_validity);
|
|
|
|
dst->edge[dst->n_edge].src = dst_src;
|
|
dst->edge[dst->n_edge].dst = dst_dst;
|
|
dst->edge[dst->n_edge].map = map;
|
|
dst->edge[dst->n_edge].tagged_condition = tagged_condition;
|
|
dst->edge[dst->n_edge].tagged_validity = tagged_validity;
|
|
dst->edge[dst->n_edge].types = edge->types;
|
|
dst->n_edge++;
|
|
|
|
if (edge->tagged_condition && !tagged_condition)
|
|
return isl_stat_error;
|
|
if (edge->tagged_validity && !tagged_validity)
|
|
return isl_stat_error;
|
|
|
|
if (graph_edge_tables_add(ctx, dst,
|
|
&dst->edge[dst->n_edge - 1]) < 0)
|
|
return isl_stat_error;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Compute the maximal number of variables over all nodes.
|
|
* This is the maximal number of linearly independent schedule
|
|
* rows that we need to compute.
|
|
* Just in case we end up in a part of the dependence graph
|
|
* with only lower-dimensional domains, we make sure we will
|
|
* compute the required amount of extra linearly independent rows.
|
|
*/
|
|
static int compute_maxvar(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
graph->maxvar = 0;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int nvar;
|
|
|
|
if (node_update_vmap(node) < 0)
|
|
return -1;
|
|
nvar = node->nvar + graph->n_row - node->rank;
|
|
if (nvar > graph->maxvar)
|
|
graph->maxvar = nvar;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Extract the subgraph of "graph" that consists of the nodes satisfying
|
|
* "node_pred" and the edges satisfying "edge_pred" and store
|
|
* the result in "sub".
|
|
*/
|
|
static isl_stat extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
int (*node_pred)(struct isl_sched_node *node, int data),
|
|
int (*edge_pred)(struct isl_sched_edge *edge, int data),
|
|
int data, struct isl_sched_graph *sub)
|
|
{
|
|
int i, n = 0, n_edge = 0;
|
|
int t;
|
|
|
|
for (i = 0; i < graph->n; ++i)
|
|
if (node_pred(&graph->node[i], data))
|
|
++n;
|
|
for (i = 0; i < graph->n_edge; ++i)
|
|
if (edge_pred(&graph->edge[i], data))
|
|
++n_edge;
|
|
if (graph_alloc(ctx, sub, n, n_edge) < 0)
|
|
return isl_stat_error;
|
|
sub->root = graph->root;
|
|
if (copy_nodes(sub, graph, node_pred, data) < 0)
|
|
return isl_stat_error;
|
|
if (graph_init_table(ctx, sub) < 0)
|
|
return isl_stat_error;
|
|
for (t = 0; t <= isl_edge_last; ++t)
|
|
sub->max_edge[t] = graph->max_edge[t];
|
|
if (graph_init_edge_tables(ctx, sub) < 0)
|
|
return isl_stat_error;
|
|
if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
|
|
return isl_stat_error;
|
|
sub->n_row = graph->n_row;
|
|
sub->max_row = graph->max_row;
|
|
sub->n_total_row = graph->n_total_row;
|
|
sub->band_start = graph->band_start;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
|
|
struct isl_sched_graph *graph);
|
|
static __isl_give isl_schedule_node *compute_schedule_wcc(
|
|
isl_schedule_node *node, struct isl_sched_graph *graph);
|
|
|
|
/* Compute a schedule for a subgraph of "graph". In particular, for
|
|
* the graph composed of nodes that satisfy node_pred and edges that
|
|
* that satisfy edge_pred.
|
|
* If the subgraph is known to consist of a single component, then wcc should
|
|
* be set and then we call compute_schedule_wcc on the constructed subgraph.
|
|
* Otherwise, we call compute_schedule, which will check whether the subgraph
|
|
* is connected.
|
|
*
|
|
* The schedule is inserted at "node" and the updated schedule node
|
|
* is returned.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_sub_schedule(
|
|
__isl_take isl_schedule_node *node, isl_ctx *ctx,
|
|
struct isl_sched_graph *graph,
|
|
int (*node_pred)(struct isl_sched_node *node, int data),
|
|
int (*edge_pred)(struct isl_sched_edge *edge, int data),
|
|
int data, int wcc)
|
|
{
|
|
struct isl_sched_graph split = { 0 };
|
|
|
|
if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
|
|
&split) < 0)
|
|
goto error;
|
|
|
|
if (wcc)
|
|
node = compute_schedule_wcc(node, &split);
|
|
else
|
|
node = compute_schedule(node, &split);
|
|
|
|
graph_free(ctx, &split);
|
|
return node;
|
|
error:
|
|
graph_free(ctx, &split);
|
|
return isl_schedule_node_free(node);
|
|
}
|
|
|
|
static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
|
|
{
|
|
return edge->src->scc == scc && edge->dst->scc == scc;
|
|
}
|
|
|
|
static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
|
|
{
|
|
return edge->dst->scc <= scc;
|
|
}
|
|
|
|
static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
|
|
{
|
|
return edge->src->scc >= scc;
|
|
}
|
|
|
|
/* Reset the current band by dropping all its schedule rows.
|
|
*/
|
|
static isl_stat reset_band(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int drop;
|
|
|
|
drop = graph->n_total_row - graph->band_start;
|
|
graph->n_total_row -= drop;
|
|
graph->n_row -= drop;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
|
|
node->sched = isl_mat_drop_rows(node->sched,
|
|
graph->band_start, drop);
|
|
|
|
if (!node->sched)
|
|
return isl_stat_error;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Split the current graph into two parts and compute a schedule for each
|
|
* part individually. In particular, one part consists of all SCCs up
|
|
* to and including graph->src_scc, while the other part contains the other
|
|
* SCCs. The split is enforced by a sequence node inserted at position "node"
|
|
* in the schedule tree. Return the updated schedule node.
|
|
* If either of these two parts consists of a sequence, then it is spliced
|
|
* into the sequence containing the two parts.
|
|
*
|
|
* The current band is reset. It would be possible to reuse
|
|
* the previously computed rows as the first rows in the next
|
|
* band, but recomputing them may result in better rows as we are looking
|
|
* at a smaller part of the dependence graph.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_split_schedule(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
int is_seq;
|
|
isl_ctx *ctx;
|
|
isl_union_set_list *filters;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
if (reset_band(graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
|
|
next_band(graph);
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
filters = extract_split(ctx, graph);
|
|
node = isl_schedule_node_insert_sequence(node, filters);
|
|
node = isl_schedule_node_child(node, 1);
|
|
node = isl_schedule_node_child(node, 0);
|
|
|
|
node = compute_sub_schedule(node, ctx, graph,
|
|
&node_scc_at_least, &edge_src_scc_at_least,
|
|
graph->src_scc + 1, 0);
|
|
is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
|
|
node = isl_schedule_node_parent(node);
|
|
node = isl_schedule_node_parent(node);
|
|
if (is_seq)
|
|
node = isl_schedule_node_sequence_splice_child(node, 1);
|
|
node = isl_schedule_node_child(node, 0);
|
|
node = isl_schedule_node_child(node, 0);
|
|
node = compute_sub_schedule(node, ctx, graph,
|
|
&node_scc_at_most, &edge_dst_scc_at_most,
|
|
graph->src_scc, 0);
|
|
is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
|
|
node = isl_schedule_node_parent(node);
|
|
node = isl_schedule_node_parent(node);
|
|
if (is_seq)
|
|
node = isl_schedule_node_sequence_splice_child(node, 0);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Insert a band node at position "node" in the schedule tree corresponding
|
|
* to the current band in "graph". Mark the band node permutable
|
|
* if "permutable" is set.
|
|
* The partial schedules and the coincidence property are extracted
|
|
* from the graph nodes.
|
|
* Return the updated schedule node.
|
|
*/
|
|
static __isl_give isl_schedule_node *insert_current_band(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
|
|
int permutable)
|
|
{
|
|
int i;
|
|
int start, end, n;
|
|
isl_multi_aff *ma;
|
|
isl_multi_pw_aff *mpa;
|
|
isl_multi_union_pw_aff *mupa;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
if (graph->n < 1)
|
|
isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
|
|
"graph should have at least one node",
|
|
return isl_schedule_node_free(node));
|
|
|
|
start = graph->band_start;
|
|
end = graph->n_total_row;
|
|
n = end - start;
|
|
|
|
ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
|
|
mpa = isl_multi_pw_aff_from_multi_aff(ma);
|
|
mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
|
|
|
|
for (i = 1; i < graph->n; ++i) {
|
|
isl_multi_union_pw_aff *mupa_i;
|
|
|
|
ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
|
|
start, n);
|
|
mpa = isl_multi_pw_aff_from_multi_aff(ma);
|
|
mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
|
|
mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
|
|
}
|
|
node = isl_schedule_node_insert_partial_schedule(node, mupa);
|
|
|
|
for (i = 0; i < n; ++i)
|
|
node = isl_schedule_node_band_member_set_coincident(node, i,
|
|
graph->node[0].coincident[start + i]);
|
|
node = isl_schedule_node_band_set_permutable(node, permutable);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Update the dependence relations based on the current schedule,
|
|
* add the current band to "node" and then continue with the computation
|
|
* of the next band.
|
|
* Return the updated schedule node.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_next_band(
|
|
__isl_take isl_schedule_node *node,
|
|
struct isl_sched_graph *graph, int permutable)
|
|
{
|
|
isl_ctx *ctx;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
if (update_edges(ctx, graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
node = insert_current_band(node, graph, permutable);
|
|
next_band(graph);
|
|
|
|
node = isl_schedule_node_child(node, 0);
|
|
node = compute_schedule(node, graph);
|
|
node = isl_schedule_node_parent(node);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Add the constraints "coef" derived from an edge from "node" to itself
|
|
* to graph->lp in order to respect the dependences and to try and carry them.
|
|
* "pos" is the sequence number of the edge that needs to be carried.
|
|
* "coef" represents general constraints on coefficients (c_0, c_x)
|
|
* of valid constraints for (y - x) with x and y instances of the node.
|
|
*
|
|
* The constraints added to graph->lp need to enforce
|
|
*
|
|
* (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
|
|
* = c_j_x (y - x) >= e_i
|
|
*
|
|
* for each (x,y) in the dependence relation of the edge.
|
|
* That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
|
|
* taking into account that each coefficient in c_j_x is represented
|
|
* as a pair of non-negative coefficients.
|
|
*/
|
|
static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
|
|
{
|
|
isl_size offset;
|
|
isl_ctx *ctx;
|
|
isl_dim_map *dim_map;
|
|
|
|
offset = coef_var_offset(coef);
|
|
if (offset < 0)
|
|
coef = isl_basic_set_free(coef);
|
|
if (!coef)
|
|
return isl_stat_error;
|
|
|
|
ctx = isl_basic_set_get_ctx(coef);
|
|
dim_map = intra_dim_map(ctx, graph, node, offset, 1);
|
|
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
|
|
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Add the constraints "coef" derived from an edge from "src" to "dst"
|
|
* to graph->lp in order to respect the dependences and to try and carry them.
|
|
* "pos" is the sequence number of the edge that needs to be carried or
|
|
* -1 if no attempt should be made to carry the dependences.
|
|
* "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
|
|
* of valid constraints for (x, y) with x and y instances of "src" and "dst".
|
|
*
|
|
* The constraints added to graph->lp need to enforce
|
|
*
|
|
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
|
|
*
|
|
* for each (x,y) in the dependence relation of the edge or
|
|
*
|
|
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
|
|
*
|
|
* if pos is -1.
|
|
* That is,
|
|
* (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
|
|
* or
|
|
* (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
|
|
* needs to be plugged in for (c_0, c_n, c_x, c_y),
|
|
* taking into account that each coefficient in c_j_x and c_k_x is represented
|
|
* as a pair of non-negative coefficients.
|
|
*/
|
|
static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst,
|
|
__isl_take isl_basic_set *coef, int pos)
|
|
{
|
|
isl_size offset;
|
|
isl_ctx *ctx;
|
|
isl_dim_map *dim_map;
|
|
|
|
offset = coef_var_offset(coef);
|
|
if (offset < 0)
|
|
coef = isl_basic_set_free(coef);
|
|
if (!coef)
|
|
return isl_stat_error;
|
|
|
|
ctx = isl_basic_set_get_ctx(coef);
|
|
dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
|
|
if (pos >= 0)
|
|
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
|
|
graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Data structure for keeping track of the data needed
|
|
* to exploit non-trivial lineality spaces.
|
|
*
|
|
* "any_non_trivial" is true if there are any non-trivial lineality spaces.
|
|
* If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
|
|
* "equivalent" connects instances to other instances on the same line(s).
|
|
* "mask" contains the domain spaces of "equivalent".
|
|
* Any instance set not in "mask" does not have a non-trivial lineality space.
|
|
*/
|
|
struct isl_exploit_lineality_data {
|
|
isl_bool any_non_trivial;
|
|
isl_union_map *equivalent;
|
|
isl_union_set *mask;
|
|
};
|
|
|
|
/* Data structure collecting information used during the construction
|
|
* of an LP for carrying dependences.
|
|
*
|
|
* "intra" is a sequence of coefficient constraints for intra-node edges.
|
|
* "inter" is a sequence of coefficient constraints for inter-node edges.
|
|
* "lineality" contains data used to exploit non-trivial lineality spaces.
|
|
*/
|
|
struct isl_carry {
|
|
isl_basic_set_list *intra;
|
|
isl_basic_set_list *inter;
|
|
struct isl_exploit_lineality_data lineality;
|
|
};
|
|
|
|
/* Free all the data stored in "carry".
|
|
*/
|
|
static void isl_carry_clear(struct isl_carry *carry)
|
|
{
|
|
isl_basic_set_list_free(carry->intra);
|
|
isl_basic_set_list_free(carry->inter);
|
|
isl_union_map_free(carry->lineality.equivalent);
|
|
isl_union_set_free(carry->lineality.mask);
|
|
}
|
|
|
|
/* Return a pointer to the node in "graph" that lives in "space".
|
|
* If the requested node has been compressed, then "space"
|
|
* corresponds to the compressed space.
|
|
* The graph is assumed to have such a node.
|
|
* Return NULL in case of error.
|
|
*
|
|
* First try and see if "space" is the space of an uncompressed node.
|
|
* If so, return that node.
|
|
* Otherwise, "space" was constructed by construct_compressed_id and
|
|
* contains a user pointer pointing to the node in the tuple id.
|
|
* However, this node belongs to the original dependence graph.
|
|
* If "graph" is a subgraph of this original dependence graph,
|
|
* then the node with the same space still needs to be looked up
|
|
* in the current graph.
|
|
*/
|
|
static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, __isl_keep isl_space *space)
|
|
{
|
|
isl_id *id;
|
|
struct isl_sched_node *node;
|
|
|
|
if (!space)
|
|
return NULL;
|
|
|
|
node = graph_find_node(ctx, graph, space);
|
|
if (!node)
|
|
return NULL;
|
|
if (is_node(graph, node))
|
|
return node;
|
|
|
|
id = isl_space_get_tuple_id(space, isl_dim_set);
|
|
node = isl_id_get_user(id);
|
|
isl_id_free(id);
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
if (!is_node(graph->root, node))
|
|
isl_die(ctx, isl_error_internal,
|
|
"space points to invalid node", return NULL);
|
|
if (graph != graph->root)
|
|
node = graph_find_node(ctx, graph, node->space);
|
|
if (!is_node(graph, node))
|
|
isl_die(ctx, isl_error_internal,
|
|
"unable to find node", return NULL);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Internal data structure for add_all_constraints.
|
|
*
|
|
* "graph" is the schedule constraint graph for which an LP problem
|
|
* is being constructed.
|
|
* "carry_inter" indicates whether inter-node edges should be carried.
|
|
* "pos" is the position of the next edge that needs to be carried.
|
|
*/
|
|
struct isl_add_all_constraints_data {
|
|
isl_ctx *ctx;
|
|
struct isl_sched_graph *graph;
|
|
int carry_inter;
|
|
int pos;
|
|
};
|
|
|
|
/* Add the constraints "coef" derived from an edge from a node to itself
|
|
* to data->graph->lp in order to respect the dependences and
|
|
* to try and carry them.
|
|
*
|
|
* The space of "coef" is of the form
|
|
*
|
|
* coefficients[[c_cst] -> S[c_x]]
|
|
*
|
|
* with S[c_x] the (compressed) space of the node.
|
|
* Extract the node from the space and call add_intra_constraints.
|
|
*/
|
|
static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
|
|
{
|
|
struct isl_add_all_constraints_data *data = user;
|
|
isl_space *space;
|
|
struct isl_sched_node *node;
|
|
|
|
space = isl_basic_set_get_space(coef);
|
|
space = isl_space_range(isl_space_unwrap(space));
|
|
node = graph_find_compressed_node(data->ctx, data->graph, space);
|
|
isl_space_free(space);
|
|
return add_intra_constraints(data->graph, node, coef, data->pos++);
|
|
}
|
|
|
|
/* Add the constraints "coef" derived from an edge from a node j
|
|
* to a node k to data->graph->lp in order to respect the dependences and
|
|
* to try and carry them (provided data->carry_inter is set).
|
|
*
|
|
* The space of "coef" is of the form
|
|
*
|
|
* coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
|
|
*
|
|
* with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
|
|
* Extract the nodes from the space and call add_inter_constraints.
|
|
*/
|
|
static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
|
|
{
|
|
struct isl_add_all_constraints_data *data = user;
|
|
isl_space *space, *dom;
|
|
struct isl_sched_node *src, *dst;
|
|
int pos;
|
|
|
|
space = isl_basic_set_get_space(coef);
|
|
space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
|
|
dom = isl_space_domain(isl_space_copy(space));
|
|
src = graph_find_compressed_node(data->ctx, data->graph, dom);
|
|
isl_space_free(dom);
|
|
space = isl_space_range(space);
|
|
dst = graph_find_compressed_node(data->ctx, data->graph, space);
|
|
isl_space_free(space);
|
|
|
|
pos = data->carry_inter ? data->pos++ : -1;
|
|
return add_inter_constraints(data->graph, src, dst, coef, pos);
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force all (conditional) validity
|
|
* dependences to be respected and attempt to carry them.
|
|
* "intra" is the sequence of coefficient constraints for intra-node edges.
|
|
* "inter" is the sequence of coefficient constraints for inter-node edges.
|
|
* "carry_inter" indicates whether inter-node edges should be carried or
|
|
* only respected.
|
|
*/
|
|
static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
__isl_keep isl_basic_set_list *intra,
|
|
__isl_keep isl_basic_set_list *inter, int carry_inter)
|
|
{
|
|
struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
|
|
|
|
data.pos = 0;
|
|
if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
|
|
return isl_stat_error;
|
|
if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
|
|
return isl_stat_error;
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Internal data structure for count_all_constraints
|
|
* for keeping track of the number of equality and inequality constraints.
|
|
*/
|
|
struct isl_sched_count {
|
|
int n_eq;
|
|
int n_ineq;
|
|
};
|
|
|
|
/* Add the number of equality and inequality constraints of "bset"
|
|
* to data->n_eq and data->n_ineq.
|
|
*/
|
|
static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
|
|
{
|
|
struct isl_sched_count *data = user;
|
|
|
|
return update_count(bset, 1, &data->n_eq, &data->n_ineq);
|
|
}
|
|
|
|
/* Count the number of equality and inequality constraints
|
|
* that will be added to the carry_lp problem.
|
|
* We count each edge exactly once.
|
|
* "intra" is the sequence of coefficient constraints for intra-node edges.
|
|
* "inter" is the sequence of coefficient constraints for inter-node edges.
|
|
*/
|
|
static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
|
|
__isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
|
|
{
|
|
struct isl_sched_count data;
|
|
|
|
data.n_eq = data.n_ineq = 0;
|
|
if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
|
|
return isl_stat_error;
|
|
if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
|
|
return isl_stat_error;
|
|
|
|
*n_eq = data.n_eq;
|
|
*n_ineq = data.n_ineq;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Construct an LP problem for finding schedule coefficients
|
|
* such that the schedule carries as many validity dependences as possible.
|
|
* In particular, for each dependence i, we bound the dependence distance
|
|
* from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
|
|
* of all e_i's. Dependences with e_i = 0 in the solution are simply
|
|
* respected, while those with e_i > 0 (in practice e_i = 1) are carried.
|
|
* "intra" is the sequence of coefficient constraints for intra-node edges.
|
|
* "inter" is the sequence of coefficient constraints for inter-node edges.
|
|
* "n_edge" is the total number of edges.
|
|
* "carry_inter" indicates whether inter-node edges should be carried or
|
|
* only respected. That is, if "carry_inter" is not set, then
|
|
* no e_i variables are introduced for the inter-node edges.
|
|
*
|
|
* All variables of the LP are non-negative. The actual coefficients
|
|
* may be negative, so each coefficient is represented as the difference
|
|
* of two non-negative variables. The negative part always appears
|
|
* immediately before the positive part.
|
|
* Other than that, the variables have the following order
|
|
*
|
|
* - sum of (1 - e_i) over all edges
|
|
* - sum of all c_n coefficients
|
|
* (unconstrained when computing non-parametric schedules)
|
|
* - sum of positive and negative parts of all c_x coefficients
|
|
* - for each edge
|
|
* - e_i
|
|
* - for each node
|
|
* - positive and negative parts of c_i_x, in opposite order
|
|
* - c_i_n (if parametric)
|
|
* - c_i_0
|
|
*
|
|
* The constraints are those from the (validity) edges plus three equalities
|
|
* to express the sums and n_edge inequalities to express e_i <= 1.
|
|
*/
|
|
static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
int n_edge, __isl_keep isl_basic_set_list *intra,
|
|
__isl_keep isl_basic_set_list *inter, int carry_inter)
|
|
{
|
|
int i;
|
|
int k;
|
|
isl_space *space;
|
|
unsigned total;
|
|
int n_eq, n_ineq;
|
|
|
|
total = 3 + n_edge;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
|
|
node->start = total;
|
|
total += 1 + node->nparam + 2 * node->nvar;
|
|
}
|
|
|
|
if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
|
|
return isl_stat_error;
|
|
|
|
space = isl_space_set_alloc(ctx, 0, total);
|
|
isl_basic_set_free(graph->lp);
|
|
n_eq += 3;
|
|
n_ineq += n_edge;
|
|
graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
|
|
graph->lp = isl_basic_set_set_rational(graph->lp);
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return isl_stat_error;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][0], -n_edge);
|
|
isl_int_set_si(graph->lp->eq[k][1], 1);
|
|
for (i = 0; i < n_edge; ++i)
|
|
isl_int_set_si(graph->lp->eq[k][4 + i], 1);
|
|
|
|
if (add_param_sum_constraint(graph, 1) < 0)
|
|
return isl_stat_error;
|
|
if (add_var_sum_constraint(graph, 2) < 0)
|
|
return isl_stat_error;
|
|
|
|
for (i = 0; i < n_edge; ++i) {
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
return isl_stat_error;
|
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
|
|
isl_int_set_si(graph->lp->ineq[k][0], 1);
|
|
}
|
|
|
|
if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
|
|
return isl_stat_error;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
static __isl_give isl_schedule_node *compute_component_schedule(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
|
|
int wcc);
|
|
|
|
/* If the schedule_split_scaled option is set and if the linear
|
|
* parts of the scheduling rows for all nodes in the graphs have
|
|
* a non-trivial common divisor, then remove this
|
|
* common divisor from the linear part.
|
|
* Otherwise, insert a band node directly and continue with
|
|
* the construction of the schedule.
|
|
*
|
|
* If a non-trivial common divisor is found, then
|
|
* the linear part is reduced and the remainder is ignored.
|
|
* The pieces of the graph that are assigned different remainders
|
|
* form (groups of) strongly connected components within
|
|
* the scaled down band. If needed, they can therefore
|
|
* be ordered along this remainder in a sequence node.
|
|
* However, this ordering is not enforced here in order to allow
|
|
* the scheduler to combine some of the strongly connected components.
|
|
*/
|
|
static __isl_give isl_schedule_node *split_scaled(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int row;
|
|
isl_ctx *ctx;
|
|
isl_int gcd, gcd_i;
|
|
isl_size n_row;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
if (!ctx->opt->schedule_split_scaled)
|
|
return compute_next_band(node, graph, 0);
|
|
if (graph->n <= 1)
|
|
return compute_next_band(node, graph, 0);
|
|
n_row = isl_mat_rows(graph->node[0].sched);
|
|
if (n_row < 0)
|
|
return isl_schedule_node_free(node);
|
|
|
|
isl_int_init(gcd);
|
|
isl_int_init(gcd_i);
|
|
|
|
isl_int_set_si(gcd, 0);
|
|
|
|
row = n_row - 1;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
isl_size cols = isl_mat_cols(node->sched);
|
|
|
|
if (cols < 0)
|
|
break;
|
|
isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
|
|
isl_int_gcd(gcd, gcd, gcd_i);
|
|
}
|
|
|
|
isl_int_clear(gcd_i);
|
|
if (i < graph->n)
|
|
goto error;
|
|
|
|
if (isl_int_cmp_si(gcd, 1) <= 0) {
|
|
isl_int_clear(gcd);
|
|
return compute_next_band(node, graph, 0);
|
|
}
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
|
|
isl_int_fdiv_q(node->sched->row[row][0],
|
|
node->sched->row[row][0], gcd);
|
|
isl_int_mul(node->sched->row[row][0],
|
|
node->sched->row[row][0], gcd);
|
|
node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
|
|
if (!node->sched)
|
|
goto error;
|
|
}
|
|
|
|
isl_int_clear(gcd);
|
|
|
|
return compute_next_band(node, graph, 0);
|
|
error:
|
|
isl_int_clear(gcd);
|
|
return isl_schedule_node_free(node);
|
|
}
|
|
|
|
/* Is the schedule row "sol" trivial on node "node"?
|
|
* That is, is the solution zero on the dimensions linearly independent of
|
|
* the previously found solutions?
|
|
* Return 1 if the solution is trivial, 0 if it is not and -1 on error.
|
|
*
|
|
* Each coefficient is represented as the difference between
|
|
* two non-negative values in "sol".
|
|
* We construct the schedule row s and check if it is linearly
|
|
* independent of previously computed schedule rows
|
|
* by computing T s, with T the linear combinations that are zero
|
|
* on linearly dependent schedule rows.
|
|
* If the result consists of all zeros, then the solution is trivial.
|
|
*/
|
|
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
|
|
{
|
|
int trivial;
|
|
isl_vec *node_sol;
|
|
|
|
if (!sol)
|
|
return -1;
|
|
if (node->nvar == node->rank)
|
|
return 0;
|
|
|
|
node_sol = extract_var_coef(node, sol);
|
|
node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
|
|
if (!node_sol)
|
|
return -1;
|
|
|
|
trivial = isl_seq_first_non_zero(node_sol->el,
|
|
node->nvar - node->rank) == -1;
|
|
|
|
isl_vec_free(node_sol);
|
|
|
|
return trivial;
|
|
}
|
|
|
|
/* Is the schedule row "sol" trivial on any node where it should
|
|
* not be trivial?
|
|
* Return 1 if any solution is trivial, 0 if they are not and -1 on error.
|
|
*/
|
|
static int is_any_trivial(struct isl_sched_graph *graph,
|
|
__isl_keep isl_vec *sol)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int trivial;
|
|
|
|
if (!needs_row(graph, node))
|
|
continue;
|
|
trivial = is_trivial(node, sol);
|
|
if (trivial < 0 || trivial)
|
|
return trivial;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Does the schedule represented by "sol" perform loop coalescing on "node"?
|
|
* If so, return the position of the coalesced dimension.
|
|
* Otherwise, return node->nvar or -1 on error.
|
|
*
|
|
* In particular, look for pairs of coefficients c_i and c_j such that
|
|
* |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
|
|
* If any such pair is found, then return i.
|
|
* If size_i is infinity, then no check on c_i needs to be performed.
|
|
*/
|
|
static int find_node_coalescing(struct isl_sched_node *node,
|
|
__isl_keep isl_vec *sol)
|
|
{
|
|
int i, j;
|
|
isl_int max;
|
|
isl_vec *csol;
|
|
|
|
if (node->nvar <= 1)
|
|
return node->nvar;
|
|
|
|
csol = extract_var_coef(node, sol);
|
|
if (!csol)
|
|
return -1;
|
|
isl_int_init(max);
|
|
for (i = 0; i < node->nvar; ++i) {
|
|
isl_val *v;
|
|
|
|
if (isl_int_is_zero(csol->el[i]))
|
|
continue;
|
|
v = isl_multi_val_get_val(node->sizes, i);
|
|
if (!v)
|
|
goto error;
|
|
if (!isl_val_is_int(v)) {
|
|
isl_val_free(v);
|
|
continue;
|
|
}
|
|
v = isl_val_div_ui(v, 2);
|
|
v = isl_val_ceil(v);
|
|
if (!v)
|
|
goto error;
|
|
isl_int_mul(max, v->n, csol->el[i]);
|
|
isl_val_free(v);
|
|
|
|
for (j = 0; j < node->nvar; ++j) {
|
|
if (j == i)
|
|
continue;
|
|
if (isl_int_abs_gt(csol->el[j], max))
|
|
break;
|
|
}
|
|
if (j < node->nvar)
|
|
break;
|
|
}
|
|
|
|
isl_int_clear(max);
|
|
isl_vec_free(csol);
|
|
return i;
|
|
error:
|
|
isl_int_clear(max);
|
|
isl_vec_free(csol);
|
|
return -1;
|
|
}
|
|
|
|
/* Force the schedule coefficient at position "pos" of "node" to be zero
|
|
* in "tl".
|
|
* The coefficient is encoded as the difference between two non-negative
|
|
* variables. Force these two variables to have the same value.
|
|
*/
|
|
static __isl_give isl_tab_lexmin *zero_out_node_coef(
|
|
__isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
|
|
{
|
|
int dim;
|
|
isl_ctx *ctx;
|
|
isl_vec *eq;
|
|
|
|
ctx = isl_space_get_ctx(node->space);
|
|
dim = isl_tab_lexmin_dim(tl);
|
|
if (dim < 0)
|
|
return isl_tab_lexmin_free(tl);
|
|
eq = isl_vec_alloc(ctx, 1 + dim);
|
|
eq = isl_vec_clr(eq);
|
|
if (!eq)
|
|
return isl_tab_lexmin_free(tl);
|
|
|
|
pos = 1 + node_var_coef_pos(node, pos);
|
|
isl_int_set_si(eq->el[pos], 1);
|
|
isl_int_set_si(eq->el[pos + 1], -1);
|
|
tl = isl_tab_lexmin_add_eq(tl, eq->el);
|
|
isl_vec_free(eq);
|
|
|
|
return tl;
|
|
}
|
|
|
|
/* Return the lexicographically smallest rational point in the basic set
|
|
* from which "tl" was constructed, double checking that this input set
|
|
* was not empty.
|
|
*/
|
|
static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
|
|
{
|
|
isl_vec *sol;
|
|
|
|
sol = isl_tab_lexmin_get_solution(tl);
|
|
if (!sol)
|
|
return NULL;
|
|
if (sol->size == 0)
|
|
isl_die(isl_vec_get_ctx(sol), isl_error_internal,
|
|
"error in schedule construction",
|
|
return isl_vec_free(sol));
|
|
return sol;
|
|
}
|
|
|
|
/* Does the solution "sol" of the LP problem constructed by setup_carry_lp
|
|
* carry any of the "n_edge" groups of dependences?
|
|
* The value in the first position is the sum of (1 - e_i) over all "n_edge"
|
|
* edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
|
|
* by the edge are carried by the solution.
|
|
* If the sum of the (1 - e_i) is smaller than "n_edge" then at least
|
|
* one of those is carried.
|
|
*
|
|
* Note that despite the fact that the problem is solved using a rational
|
|
* solver, the solution is guaranteed to be integral.
|
|
* Specifically, the dependence distance lower bounds e_i (and therefore
|
|
* also their sum) are integers. See Lemma 5 of [1].
|
|
*
|
|
* Any potential denominator of the sum is cleared by this function.
|
|
* The denominator is not relevant for any of the other elements
|
|
* in the solution.
|
|
*
|
|
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
|
|
* Problem, Part II: Multi-Dimensional Time.
|
|
* In Intl. Journal of Parallel Programming, 1992.
|
|
*/
|
|
static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
|
|
{
|
|
isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
|
|
isl_int_set_si(sol->el[0], 1);
|
|
return isl_int_cmp_si(sol->el[1], n_edge) < 0;
|
|
}
|
|
|
|
/* Return the lexicographically smallest rational point in "lp",
|
|
* assuming that all variables are non-negative and performing some
|
|
* additional sanity checks.
|
|
* If "want_integral" is set, then compute the lexicographically smallest
|
|
* integer point instead.
|
|
* In particular, "lp" should not be empty by construction.
|
|
* Double check that this is the case.
|
|
* If dependences are not carried for any of the "n_edge" edges,
|
|
* then return an empty vector.
|
|
*
|
|
* If the schedule_treat_coalescing option is set and
|
|
* if the computed schedule performs loop coalescing on a given node,
|
|
* i.e., if it is of the form
|
|
*
|
|
* c_i i + c_j j + ...
|
|
*
|
|
* with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
|
|
* to cut out this solution. Repeat this process until no more loop
|
|
* coalescing occurs or until no more dependences can be carried.
|
|
* In the latter case, revert to the previously computed solution.
|
|
*
|
|
* If the caller requests an integral solution and if coalescing should
|
|
* be treated, then perform the coalescing treatment first as
|
|
* an integral solution computed before coalescing treatment
|
|
* would carry the same number of edges and would therefore probably
|
|
* also be coalescing.
|
|
*
|
|
* To allow the coalescing treatment to be performed first,
|
|
* the initial solution is allowed to be rational and it is only
|
|
* cut out (if needed) in the next iteration, if no coalescing measures
|
|
* were taken.
|
|
*/
|
|
static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
|
|
__isl_take isl_basic_set *lp, int n_edge, int want_integral)
|
|
{
|
|
int i, pos, cut;
|
|
isl_ctx *ctx;
|
|
isl_tab_lexmin *tl;
|
|
isl_vec *sol = NULL, *prev;
|
|
int treat_coalescing;
|
|
int try_again;
|
|
|
|
if (!lp)
|
|
return NULL;
|
|
ctx = isl_basic_set_get_ctx(lp);
|
|
treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
|
|
tl = isl_tab_lexmin_from_basic_set(lp);
|
|
|
|
cut = 0;
|
|
do {
|
|
int integral;
|
|
|
|
try_again = 0;
|
|
if (cut)
|
|
tl = isl_tab_lexmin_cut_to_integer(tl);
|
|
prev = sol;
|
|
sol = non_empty_solution(tl);
|
|
if (!sol)
|
|
goto error;
|
|
|
|
integral = isl_int_is_one(sol->el[0]);
|
|
if (!carries_dependences(sol, n_edge)) {
|
|
if (!prev)
|
|
prev = isl_vec_alloc(ctx, 0);
|
|
isl_vec_free(sol);
|
|
sol = prev;
|
|
break;
|
|
}
|
|
prev = isl_vec_free(prev);
|
|
cut = want_integral && !integral;
|
|
if (cut)
|
|
try_again = 1;
|
|
if (!treat_coalescing)
|
|
continue;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
|
|
pos = find_node_coalescing(node, sol);
|
|
if (pos < 0)
|
|
goto error;
|
|
if (pos < node->nvar)
|
|
break;
|
|
}
|
|
if (i < graph->n) {
|
|
try_again = 1;
|
|
tl = zero_out_node_coef(tl, &graph->node[i], pos);
|
|
cut = 0;
|
|
}
|
|
} while (try_again);
|
|
|
|
isl_tab_lexmin_free(tl);
|
|
|
|
return sol;
|
|
error:
|
|
isl_tab_lexmin_free(tl);
|
|
isl_vec_free(prev);
|
|
isl_vec_free(sol);
|
|
return NULL;
|
|
}
|
|
|
|
/* If "edge" is an edge from a node to itself, then add the corresponding
|
|
* dependence relation to "umap".
|
|
* If "node" has been compressed, then the dependence relation
|
|
* is also compressed first.
|
|
*/
|
|
static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
isl_map *map;
|
|
struct isl_sched_node *node = edge->src;
|
|
|
|
if (edge->src != edge->dst)
|
|
return umap;
|
|
|
|
map = isl_map_copy(edge->map);
|
|
map = compress(map, node, node);
|
|
umap = isl_union_map_add_map(umap, map);
|
|
return umap;
|
|
}
|
|
|
|
/* If "edge" is an edge from a node to another node, then add the corresponding
|
|
* dependence relation to "umap".
|
|
* If the source or destination nodes of "edge" have been compressed,
|
|
* then the dependence relation is also compressed first.
|
|
*/
|
|
static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
isl_map *map;
|
|
|
|
if (edge->src == edge->dst)
|
|
return umap;
|
|
|
|
map = isl_map_copy(edge->map);
|
|
map = compress(map, edge->src, edge->dst);
|
|
umap = isl_union_map_add_map(umap, map);
|
|
return umap;
|
|
}
|
|
|
|
/* Internal data structure used by union_drop_coalescing_constraints
|
|
* to collect bounds on all relevant statements.
|
|
*
|
|
* "graph" is the schedule constraint graph for which an LP problem
|
|
* is being constructed.
|
|
* "bounds" collects the bounds.
|
|
*/
|
|
struct isl_collect_bounds_data {
|
|
isl_ctx *ctx;
|
|
struct isl_sched_graph *graph;
|
|
isl_union_set *bounds;
|
|
};
|
|
|
|
/* Add the size bounds for the node with instance deltas in "set"
|
|
* to data->bounds.
|
|
*/
|
|
static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
|
|
{
|
|
struct isl_collect_bounds_data *data = user;
|
|
struct isl_sched_node *node;
|
|
isl_space *space;
|
|
isl_set *bounds;
|
|
|
|
space = isl_set_get_space(set);
|
|
isl_set_free(set);
|
|
|
|
node = graph_find_compressed_node(data->ctx, data->graph, space);
|
|
isl_space_free(space);
|
|
|
|
bounds = isl_set_from_basic_set(get_size_bounds(node));
|
|
data->bounds = isl_union_set_add_set(data->bounds, bounds);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Drop some constraints from "delta" that could be exploited
|
|
* to construct loop coalescing schedules.
|
|
* In particular, drop those constraint that bound the difference
|
|
* to the size of the domain.
|
|
* Do this for each set/node in "delta" separately.
|
|
* The parameters are assumed to have been projected out by the caller.
|
|
*/
|
|
static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
|
|
{
|
|
struct isl_collect_bounds_data data = { ctx, graph };
|
|
|
|
data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
|
|
if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
|
|
data.bounds = isl_union_set_free(data.bounds);
|
|
delta = isl_union_set_plain_gist(delta, data.bounds);
|
|
|
|
return delta;
|
|
}
|
|
|
|
/* Given a non-trivial lineality space "lineality", add the corresponding
|
|
* universe set to data->mask and add a map from elements to
|
|
* other elements along the lines in "lineality" to data->equivalent.
|
|
* If this is the first time this function gets called
|
|
* (data->any_non_trivial is still false), then set data->any_non_trivial and
|
|
* initialize data->mask and data->equivalent.
|
|
*
|
|
* In particular, if the lineality space is defined by equality constraints
|
|
*
|
|
* E x = 0
|
|
*
|
|
* then construct an affine mapping
|
|
*
|
|
* f : x -> E x
|
|
*
|
|
* and compute the equivalence relation of having the same image under f:
|
|
*
|
|
* { x -> x' : E x = E x' }
|
|
*/
|
|
static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
|
|
struct isl_exploit_lineality_data *data)
|
|
{
|
|
isl_mat *eq;
|
|
isl_space *space;
|
|
isl_set *univ;
|
|
isl_multi_aff *ma;
|
|
isl_multi_pw_aff *mpa;
|
|
isl_map *map;
|
|
isl_size n;
|
|
|
|
if (isl_basic_set_check_no_locals(lineality) < 0)
|
|
goto error;
|
|
|
|
space = isl_basic_set_get_space(lineality);
|
|
if (!data->any_non_trivial) {
|
|
data->equivalent = isl_union_map_empty(isl_space_copy(space));
|
|
data->mask = isl_union_set_empty(isl_space_copy(space));
|
|
}
|
|
data->any_non_trivial = isl_bool_true;
|
|
|
|
univ = isl_set_universe(isl_space_copy(space));
|
|
data->mask = isl_union_set_add_set(data->mask, univ);
|
|
|
|
eq = isl_basic_set_extract_equalities(lineality);
|
|
n = isl_mat_rows(eq);
|
|
if (n < 0)
|
|
space = isl_space_free(space);
|
|
eq = isl_mat_insert_zero_rows(eq, 0, 1);
|
|
eq = isl_mat_set_element_si(eq, 0, 0, 1);
|
|
space = isl_space_from_domain(space);
|
|
space = isl_space_add_dims(space, isl_dim_out, n);
|
|
ma = isl_multi_aff_from_aff_mat(space, eq);
|
|
mpa = isl_multi_pw_aff_from_multi_aff(ma);
|
|
map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
|
|
data->equivalent = isl_union_map_add_map(data->equivalent, map);
|
|
|
|
isl_basic_set_free(lineality);
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_basic_set_free(lineality);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Check if the lineality space "set" is non-trivial (i.e., is not just
|
|
* the origin or, in other words, satisfies a number of equality constraints
|
|
* that is smaller than the dimension of the set).
|
|
* If so, extend data->mask and data->equivalent accordingly.
|
|
*
|
|
* The input should not have any local variables already, but
|
|
* isl_set_remove_divs is called to make sure it does not.
|
|
*/
|
|
static isl_stat add_lineality(__isl_take isl_set *set, void *user)
|
|
{
|
|
struct isl_exploit_lineality_data *data = user;
|
|
isl_basic_set *hull;
|
|
isl_size dim;
|
|
isl_size n_eq;
|
|
|
|
set = isl_set_remove_divs(set);
|
|
hull = isl_set_unshifted_simple_hull(set);
|
|
dim = isl_basic_set_dim(hull, isl_dim_set);
|
|
n_eq = isl_basic_set_n_equality(hull);
|
|
if (dim < 0 || n_eq < 0)
|
|
goto error;
|
|
if (dim != n_eq)
|
|
return add_non_trivial_lineality(hull, data);
|
|
isl_basic_set_free(hull);
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_basic_set_free(hull);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Check if the difference set on intra-node schedule constraints "intra"
|
|
* has any non-trivial lineality space.
|
|
* If so, then extend the difference set to a difference set
|
|
* on equivalent elements. That is, if "intra" is
|
|
*
|
|
* { y - x : (x,y) \in V }
|
|
*
|
|
* and elements are equivalent if they have the same image under f,
|
|
* then return
|
|
*
|
|
* { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
|
|
*
|
|
* or, since f is linear,
|
|
*
|
|
* { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
|
|
*
|
|
* The results of the search for non-trivial lineality spaces is stored
|
|
* in "data".
|
|
*/
|
|
static __isl_give isl_union_set *exploit_intra_lineality(
|
|
__isl_take isl_union_set *intra,
|
|
struct isl_exploit_lineality_data *data)
|
|
{
|
|
isl_union_set *lineality;
|
|
isl_union_set *uset;
|
|
|
|
data->any_non_trivial = isl_bool_false;
|
|
lineality = isl_union_set_copy(intra);
|
|
lineality = isl_union_set_combined_lineality_space(lineality);
|
|
if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
|
|
data->any_non_trivial = isl_bool_error;
|
|
isl_union_set_free(lineality);
|
|
|
|
if (data->any_non_trivial < 0)
|
|
return isl_union_set_free(intra);
|
|
if (!data->any_non_trivial)
|
|
return intra;
|
|
|
|
uset = isl_union_set_copy(intra);
|
|
intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
|
|
uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
|
|
intra = isl_union_set_union(intra, uset);
|
|
|
|
intra = isl_union_set_remove_divs(intra);
|
|
|
|
return intra;
|
|
}
|
|
|
|
/* If the difference set on intra-node schedule constraints was found to have
|
|
* any non-trivial lineality space by exploit_intra_lineality,
|
|
* as recorded in "data", then extend the inter-node
|
|
* schedule constraints "inter" to schedule constraints on equivalent elements.
|
|
* That is, if "inter" is V and
|
|
* elements are equivalent if they have the same image under f, then return
|
|
*
|
|
* { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
|
|
*/
|
|
static __isl_give isl_union_map *exploit_inter_lineality(
|
|
__isl_take isl_union_map *inter,
|
|
struct isl_exploit_lineality_data *data)
|
|
{
|
|
isl_union_map *umap;
|
|
|
|
if (data->any_non_trivial < 0)
|
|
return isl_union_map_free(inter);
|
|
if (!data->any_non_trivial)
|
|
return inter;
|
|
|
|
umap = isl_union_map_copy(inter);
|
|
inter = isl_union_map_subtract_range(inter,
|
|
isl_union_set_copy(data->mask));
|
|
umap = isl_union_map_apply_range(umap,
|
|
isl_union_map_copy(data->equivalent));
|
|
inter = isl_union_map_union(inter, umap);
|
|
umap = isl_union_map_copy(inter);
|
|
inter = isl_union_map_subtract_domain(inter,
|
|
isl_union_set_copy(data->mask));
|
|
umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
|
|
umap);
|
|
inter = isl_union_map_union(inter, umap);
|
|
|
|
inter = isl_union_map_remove_divs(inter);
|
|
|
|
return inter;
|
|
}
|
|
|
|
/* For each (conditional) validity edge in "graph",
|
|
* add the corresponding dependence relation using "add"
|
|
* to a collection of dependence relations and return the result.
|
|
* If "coincidence" is set, then coincidence edges are considered as well.
|
|
*/
|
|
static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
|
|
__isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
|
|
struct isl_sched_edge *edge), int coincidence)
|
|
{
|
|
int i;
|
|
isl_space *space;
|
|
isl_union_map *umap;
|
|
|
|
space = isl_space_copy(graph->node[0].space);
|
|
umap = isl_union_map_empty(space);
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
|
|
if (!is_any_validity(edge) &&
|
|
(!coincidence || !is_coincidence(edge)))
|
|
continue;
|
|
|
|
umap = add(umap, edge);
|
|
}
|
|
|
|
return umap;
|
|
}
|
|
|
|
/* For each dependence relation on a (conditional) validity edge
|
|
* from a node to itself,
|
|
* construct the set of coefficients of valid constraints for elements
|
|
* in that dependence relation and collect the results.
|
|
* If "coincidence" is set, then coincidence edges are considered as well.
|
|
*
|
|
* In particular, for each dependence relation R, constraints
|
|
* on coefficients (c_0, c_x) are constructed such that
|
|
*
|
|
* c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
|
|
*
|
|
* If the schedule_treat_coalescing option is set, then some constraints
|
|
* that could be exploited to construct coalescing schedules
|
|
* are removed before the dual is computed, but after the parameters
|
|
* have been projected out.
|
|
* The entire computation is essentially the same as that performed
|
|
* by intra_coefficients, except that it operates on multiple
|
|
* edges together and that the parameters are always projected out.
|
|
*
|
|
* Additionally, exploit any non-trivial lineality space
|
|
* in the difference set after removing coalescing constraints and
|
|
* store the results of the non-trivial lineality space detection in "data".
|
|
* The procedure is currently run unconditionally, but it is unlikely
|
|
* to find any non-trivial lineality spaces if no coalescing constraints
|
|
* have been removed.
|
|
*
|
|
* Note that if a dependence relation is a union of basic maps,
|
|
* then each basic map needs to be treated individually as it may only
|
|
* be possible to carry the dependences expressed by some of those
|
|
* basic maps and not all of them.
|
|
* The collected validity constraints are therefore not coalesced and
|
|
* it is assumed that they are not coalesced automatically.
|
|
* Duplicate basic maps can be removed, however.
|
|
* In particular, if the same basic map appears as a disjunct
|
|
* in multiple edges, then it only needs to be carried once.
|
|
*/
|
|
static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, int coincidence,
|
|
struct isl_exploit_lineality_data *data)
|
|
{
|
|
isl_union_map *intra;
|
|
isl_union_set *delta;
|
|
isl_basic_set_list *list;
|
|
|
|
intra = collect_validity(graph, &add_intra, coincidence);
|
|
delta = isl_union_map_deltas(intra);
|
|
delta = isl_union_set_project_out_all_params(delta);
|
|
delta = isl_union_set_remove_divs(delta);
|
|
if (isl_options_get_schedule_treat_coalescing(ctx))
|
|
delta = union_drop_coalescing_constraints(ctx, graph, delta);
|
|
delta = exploit_intra_lineality(delta, data);
|
|
list = isl_union_set_get_basic_set_list(delta);
|
|
isl_union_set_free(delta);
|
|
|
|
return isl_basic_set_list_coefficients(list);
|
|
}
|
|
|
|
/* For each dependence relation on a (conditional) validity edge
|
|
* from a node to some other node,
|
|
* construct the set of coefficients of valid constraints for elements
|
|
* in that dependence relation and collect the results.
|
|
* If "coincidence" is set, then coincidence edges are considered as well.
|
|
*
|
|
* In particular, for each dependence relation R, constraints
|
|
* on coefficients (c_0, c_n, c_x, c_y) are constructed such that
|
|
*
|
|
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
|
|
*
|
|
* This computation is essentially the same as that performed
|
|
* by inter_coefficients, except that it operates on multiple
|
|
* edges together.
|
|
*
|
|
* Additionally, exploit any non-trivial lineality space
|
|
* that may have been discovered by collect_intra_validity
|
|
* (as stored in "data").
|
|
*
|
|
* Note that if a dependence relation is a union of basic maps,
|
|
* then each basic map needs to be treated individually as it may only
|
|
* be possible to carry the dependences expressed by some of those
|
|
* basic maps and not all of them.
|
|
* The collected validity constraints are therefore not coalesced and
|
|
* it is assumed that they are not coalesced automatically.
|
|
* Duplicate basic maps can be removed, however.
|
|
* In particular, if the same basic map appears as a disjunct
|
|
* in multiple edges, then it only needs to be carried once.
|
|
*/
|
|
static __isl_give isl_basic_set_list *collect_inter_validity(
|
|
struct isl_sched_graph *graph, int coincidence,
|
|
struct isl_exploit_lineality_data *data)
|
|
{
|
|
isl_union_map *inter;
|
|
isl_union_set *wrap;
|
|
isl_basic_set_list *list;
|
|
|
|
inter = collect_validity(graph, &add_inter, coincidence);
|
|
inter = exploit_inter_lineality(inter, data);
|
|
inter = isl_union_map_remove_divs(inter);
|
|
wrap = isl_union_map_wrap(inter);
|
|
list = isl_union_set_get_basic_set_list(wrap);
|
|
isl_union_set_free(wrap);
|
|
return isl_basic_set_list_coefficients(list);
|
|
}
|
|
|
|
/* Construct an LP problem for finding schedule coefficients
|
|
* such that the schedule carries as many of the "n_edge" groups of
|
|
* dependences as possible based on the corresponding coefficient
|
|
* constraints and return the lexicographically smallest non-trivial solution.
|
|
* "intra" is the sequence of coefficient constraints for intra-node edges.
|
|
* "inter" is the sequence of coefficient constraints for inter-node edges.
|
|
* If "want_integral" is set, then compute an integral solution
|
|
* for the coefficients rather than using the numerators
|
|
* of a rational solution.
|
|
* "carry_inter" indicates whether inter-node edges should be carried or
|
|
* only respected.
|
|
*
|
|
* If none of the "n_edge" groups can be carried
|
|
* then return an empty vector.
|
|
*/
|
|
static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, int n_edge,
|
|
__isl_keep isl_basic_set_list *intra,
|
|
__isl_keep isl_basic_set_list *inter, int want_integral,
|
|
int carry_inter)
|
|
{
|
|
isl_basic_set *lp;
|
|
|
|
if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
|
|
return NULL;
|
|
|
|
lp = isl_basic_set_copy(graph->lp);
|
|
return non_neg_lexmin(graph, lp, n_edge, want_integral);
|
|
}
|
|
|
|
/* Construct an LP problem for finding schedule coefficients
|
|
* such that the schedule carries as many of the validity dependences
|
|
* as possible and
|
|
* return the lexicographically smallest non-trivial solution.
|
|
* If "fallback" is set, then the carrying is performed as a fallback
|
|
* for the Pluto-like scheduler.
|
|
* If "coincidence" is set, then try and carry coincidence edges as well.
|
|
*
|
|
* The variable "n_edge" stores the number of groups that should be carried.
|
|
* If none of the "n_edge" groups can be carried
|
|
* then return an empty vector.
|
|
* If, moreover, "n_edge" is zero, then the LP problem does not even
|
|
* need to be constructed.
|
|
*
|
|
* If a fallback solution is being computed, then compute an integral solution
|
|
* for the coefficients rather than using the numerators
|
|
* of a rational solution.
|
|
*
|
|
* If a fallback solution is being computed, if there are any intra-node
|
|
* dependences, and if requested by the user, then first try
|
|
* to only carry those intra-node dependences.
|
|
* If this fails to carry any dependences, then try again
|
|
* with the inter-node dependences included.
|
|
*/
|
|
static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, int fallback, int coincidence)
|
|
{
|
|
isl_size n_intra, n_inter;
|
|
int n_edge;
|
|
struct isl_carry carry = { 0 };
|
|
isl_vec *sol;
|
|
|
|
carry.intra = collect_intra_validity(ctx, graph, coincidence,
|
|
&carry.lineality);
|
|
carry.inter = collect_inter_validity(graph, coincidence,
|
|
&carry.lineality);
|
|
n_intra = isl_basic_set_list_n_basic_set(carry.intra);
|
|
n_inter = isl_basic_set_list_n_basic_set(carry.inter);
|
|
if (n_intra < 0 || n_inter < 0)
|
|
goto error;
|
|
|
|
if (fallback && n_intra > 0 &&
|
|
isl_options_get_schedule_carry_self_first(ctx)) {
|
|
sol = compute_carrying_sol_coef(ctx, graph, n_intra,
|
|
carry.intra, carry.inter, fallback, 0);
|
|
if (!sol || sol->size != 0 || n_inter == 0) {
|
|
isl_carry_clear(&carry);
|
|
return sol;
|
|
}
|
|
isl_vec_free(sol);
|
|
}
|
|
|
|
n_edge = n_intra + n_inter;
|
|
if (n_edge == 0) {
|
|
isl_carry_clear(&carry);
|
|
return isl_vec_alloc(ctx, 0);
|
|
}
|
|
|
|
sol = compute_carrying_sol_coef(ctx, graph, n_edge,
|
|
carry.intra, carry.inter, fallback, 1);
|
|
isl_carry_clear(&carry);
|
|
return sol;
|
|
error:
|
|
isl_carry_clear(&carry);
|
|
return NULL;
|
|
}
|
|
|
|
/* Construct a schedule row for each node such that as many validity dependences
|
|
* as possible are carried and then continue with the next band.
|
|
* If "fallback" is set, then the carrying is performed as a fallback
|
|
* for the Pluto-like scheduler.
|
|
* If "coincidence" is set, then try and carry coincidence edges as well.
|
|
*
|
|
* If there are no validity dependences, then no dependence can be carried and
|
|
* the procedure is guaranteed to fail. If there is more than one component,
|
|
* then try computing a schedule on each component separately
|
|
* to prevent or at least postpone this failure.
|
|
*
|
|
* If a schedule row is computed, then check that dependences are carried
|
|
* for at least one of the edges.
|
|
*
|
|
* If the computed schedule row turns out to be trivial on one or
|
|
* more nodes where it should not be trivial, then we throw it away
|
|
* and try again on each component separately.
|
|
*
|
|
* If there is only one component, then we accept the schedule row anyway,
|
|
* but we do not consider it as a complete row and therefore do not
|
|
* increment graph->n_row. Note that the ranks of the nodes that
|
|
* do get a non-trivial schedule part will get updated regardless and
|
|
* graph->maxvar is computed based on these ranks. The test for
|
|
* whether more schedule rows are required in compute_schedule_wcc
|
|
* is therefore not affected.
|
|
*
|
|
* Insert a band corresponding to the schedule row at position "node"
|
|
* of the schedule tree and continue with the construction of the schedule.
|
|
* This insertion and the continued construction is performed by split_scaled
|
|
* after optionally checking for non-trivial common divisors.
|
|
*/
|
|
static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
|
|
struct isl_sched_graph *graph, int fallback, int coincidence)
|
|
{
|
|
int trivial;
|
|
isl_ctx *ctx;
|
|
isl_vec *sol;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
|
|
if (!sol)
|
|
return isl_schedule_node_free(node);
|
|
if (sol->size == 0) {
|
|
isl_vec_free(sol);
|
|
if (graph->scc > 1)
|
|
return compute_component_schedule(node, graph, 1);
|
|
isl_die(ctx, isl_error_unknown, "unable to carry dependences",
|
|
return isl_schedule_node_free(node));
|
|
}
|
|
|
|
trivial = is_any_trivial(graph, sol);
|
|
if (trivial < 0) {
|
|
sol = isl_vec_free(sol);
|
|
} else if (trivial && graph->scc > 1) {
|
|
isl_vec_free(sol);
|
|
return compute_component_schedule(node, graph, 1);
|
|
}
|
|
|
|
if (update_schedule(graph, sol, 0) < 0)
|
|
return isl_schedule_node_free(node);
|
|
if (trivial)
|
|
graph->n_row--;
|
|
|
|
return split_scaled(node, graph);
|
|
}
|
|
|
|
/* Construct a schedule row for each node such that as many validity dependences
|
|
* as possible are carried and then continue with the next band.
|
|
* Do so as a fallback for the Pluto-like scheduler.
|
|
* If "coincidence" is set, then try and carry coincidence edges as well.
|
|
*/
|
|
static __isl_give isl_schedule_node *carry_fallback(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
|
|
int coincidence)
|
|
{
|
|
return carry(node, graph, 1, coincidence);
|
|
}
|
|
|
|
/* Construct a schedule row for each node such that as many validity dependences
|
|
* as possible are carried and then continue with the next band.
|
|
* Do so for the case where the Feautrier scheduler was selected
|
|
* by the user.
|
|
*/
|
|
static __isl_give isl_schedule_node *carry_feautrier(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
return carry(node, graph, 0, 0);
|
|
}
|
|
|
|
/* Construct a schedule row for each node such that as many validity dependences
|
|
* as possible are carried and then continue with the next band.
|
|
* Do so as a fallback for the Pluto-like scheduler.
|
|
*/
|
|
static __isl_give isl_schedule_node *carry_dependences(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
return carry_fallback(node, graph, 0);
|
|
}
|
|
|
|
/* Construct a schedule row for each node such that as many validity or
|
|
* coincidence dependences as possible are carried and
|
|
* then continue with the next band.
|
|
* Do so as a fallback for the Pluto-like scheduler.
|
|
*/
|
|
static __isl_give isl_schedule_node *carry_coincidence(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
return carry_fallback(node, graph, 1);
|
|
}
|
|
|
|
/* Topologically sort statements mapped to the same schedule iteration
|
|
* and add insert a sequence node in front of "node"
|
|
* corresponding to this order.
|
|
* If "initialized" is set, then it may be assumed that compute_maxvar
|
|
* has been called on the current band. Otherwise, call
|
|
* compute_maxvar if and before carry_dependences gets called.
|
|
*
|
|
* If it turns out to be impossible to sort the statements apart,
|
|
* because different dependences impose different orderings
|
|
* on the statements, then we extend the schedule such that
|
|
* it carries at least one more dependence.
|
|
*/
|
|
static __isl_give isl_schedule_node *sort_statements(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
|
|
int initialized)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_union_set_list *filters;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
if (graph->n < 1)
|
|
isl_die(ctx, isl_error_internal,
|
|
"graph should have at least one node",
|
|
return isl_schedule_node_free(node));
|
|
|
|
if (graph->n == 1)
|
|
return node;
|
|
|
|
if (update_edges(ctx, graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
|
|
if (graph->n_edge == 0)
|
|
return node;
|
|
|
|
if (detect_sccs(ctx, graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
|
|
next_band(graph);
|
|
if (graph->scc < graph->n) {
|
|
if (!initialized && compute_maxvar(graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
return carry_dependences(node, graph);
|
|
}
|
|
|
|
filters = extract_sccs(ctx, graph);
|
|
node = isl_schedule_node_insert_sequence(node, filters);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Are there any (non-empty) (conditional) validity edges in the graph?
|
|
*/
|
|
static int has_validity_edges(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
int empty;
|
|
|
|
empty = isl_map_plain_is_empty(graph->edge[i].map);
|
|
if (empty < 0)
|
|
return -1;
|
|
if (empty)
|
|
continue;
|
|
if (is_any_validity(&graph->edge[i]))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Should we apply a Feautrier step?
|
|
* That is, did the user request the Feautrier algorithm and are
|
|
* there any validity dependences (left)?
|
|
*/
|
|
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
|
|
return 0;
|
|
|
|
return has_validity_edges(graph);
|
|
}
|
|
|
|
/* Compute a schedule for a connected dependence graph using Feautrier's
|
|
* multi-dimensional scheduling algorithm and return the updated schedule node.
|
|
*
|
|
* The original algorithm is described in [1].
|
|
* The main idea is to minimize the number of scheduling dimensions, by
|
|
* trying to satisfy as many dependences as possible per scheduling dimension.
|
|
*
|
|
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
|
|
* Problem, Part II: Multi-Dimensional Time.
|
|
* In Intl. Journal of Parallel Programming, 1992.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
|
|
isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
return carry_feautrier(node, graph);
|
|
}
|
|
|
|
/* Turn off the "local" bit on all (condition) edges.
|
|
*/
|
|
static void clear_local_edges(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i)
|
|
if (is_condition(&graph->edge[i]))
|
|
clear_local(&graph->edge[i]);
|
|
}
|
|
|
|
/* Does "graph" have both condition and conditional validity edges?
|
|
*/
|
|
static int need_condition_check(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int any_condition = 0;
|
|
int any_conditional_validity = 0;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
if (is_condition(&graph->edge[i]))
|
|
any_condition = 1;
|
|
if (is_conditional_validity(&graph->edge[i]))
|
|
any_conditional_validity = 1;
|
|
}
|
|
|
|
return any_condition && any_conditional_validity;
|
|
}
|
|
|
|
/* Does "graph" contain any coincidence edge?
|
|
*/
|
|
static int has_any_coincidence(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i)
|
|
if (is_coincidence(&graph->edge[i]))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Extract the final schedule row as a map with the iteration domain
|
|
* of "node" as domain.
|
|
*/
|
|
static __isl_give isl_map *final_row(struct isl_sched_node *node)
|
|
{
|
|
isl_multi_aff *ma;
|
|
isl_size n_row;
|
|
|
|
n_row = isl_mat_rows(node->sched);
|
|
if (n_row < 0)
|
|
return NULL;
|
|
ma = node_extract_partial_schedule_multi_aff(node, n_row - 1, 1);
|
|
return isl_map_from_multi_aff(ma);
|
|
}
|
|
|
|
/* Is the conditional validity dependence in the edge with index "edge_index"
|
|
* violated by the latest (i.e., final) row of the schedule?
|
|
* That is, is i scheduled after j
|
|
* for any conditional validity dependence i -> j?
|
|
*/
|
|
static int is_violated(struct isl_sched_graph *graph, int edge_index)
|
|
{
|
|
isl_map *src_sched, *dst_sched, *map;
|
|
struct isl_sched_edge *edge = &graph->edge[edge_index];
|
|
int empty;
|
|
|
|
src_sched = final_row(edge->src);
|
|
dst_sched = final_row(edge->dst);
|
|
map = isl_map_copy(edge->map);
|
|
map = isl_map_apply_domain(map, src_sched);
|
|
map = isl_map_apply_range(map, dst_sched);
|
|
map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
|
|
empty = isl_map_is_empty(map);
|
|
isl_map_free(map);
|
|
|
|
if (empty < 0)
|
|
return -1;
|
|
|
|
return !empty;
|
|
}
|
|
|
|
/* Does "graph" have any satisfied condition edges that
|
|
* are adjacent to the conditional validity constraint with
|
|
* domain "conditional_source" and range "conditional_sink"?
|
|
*
|
|
* A satisfied condition is one that is not local.
|
|
* If a condition was forced to be local already (i.e., marked as local)
|
|
* then there is no need to check if it is in fact local.
|
|
*
|
|
* Additionally, mark all adjacent condition edges found as local.
|
|
*/
|
|
static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
|
|
__isl_keep isl_union_set *conditional_source,
|
|
__isl_keep isl_union_set *conditional_sink)
|
|
{
|
|
int i;
|
|
int any = 0;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
int adjacent, local;
|
|
isl_union_map *condition;
|
|
|
|
if (!is_condition(&graph->edge[i]))
|
|
continue;
|
|
if (is_local(&graph->edge[i]))
|
|
continue;
|
|
|
|
condition = graph->edge[i].tagged_condition;
|
|
adjacent = domain_intersects(condition, conditional_sink);
|
|
if (adjacent >= 0 && !adjacent)
|
|
adjacent = range_intersects(condition,
|
|
conditional_source);
|
|
if (adjacent < 0)
|
|
return -1;
|
|
if (!adjacent)
|
|
continue;
|
|
|
|
set_local(&graph->edge[i]);
|
|
|
|
local = is_condition_false(&graph->edge[i]);
|
|
if (local < 0)
|
|
return -1;
|
|
if (!local)
|
|
any = 1;
|
|
}
|
|
|
|
return any;
|
|
}
|
|
|
|
/* Are there any violated conditional validity dependences with
|
|
* adjacent condition dependences that are not local with respect
|
|
* to the current schedule?
|
|
* That is, is the conditional validity constraint violated?
|
|
*
|
|
* Additionally, mark all those adjacent condition dependences as local.
|
|
* We also mark those adjacent condition dependences that were not marked
|
|
* as local before, but just happened to be local already. This ensures
|
|
* that they remain local if the schedule is recomputed.
|
|
*
|
|
* We first collect domain and range of all violated conditional validity
|
|
* dependences and then check if there are any adjacent non-local
|
|
* condition dependences.
|
|
*/
|
|
static int has_violated_conditional_constraint(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int any = 0;
|
|
isl_union_set *source, *sink;
|
|
|
|
source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
|
|
sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
isl_union_set *uset;
|
|
isl_union_map *umap;
|
|
int violated;
|
|
|
|
if (!is_conditional_validity(&graph->edge[i]))
|
|
continue;
|
|
|
|
violated = is_violated(graph, i);
|
|
if (violated < 0)
|
|
goto error;
|
|
if (!violated)
|
|
continue;
|
|
|
|
any = 1;
|
|
|
|
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
|
|
uset = isl_union_map_domain(umap);
|
|
source = isl_union_set_union(source, uset);
|
|
source = isl_union_set_coalesce(source);
|
|
|
|
umap = isl_union_map_copy(graph->edge[i].tagged_validity);
|
|
uset = isl_union_map_range(umap);
|
|
sink = isl_union_set_union(sink, uset);
|
|
sink = isl_union_set_coalesce(sink);
|
|
}
|
|
|
|
if (any)
|
|
any = has_adjacent_true_conditions(graph, source, sink);
|
|
|
|
isl_union_set_free(source);
|
|
isl_union_set_free(sink);
|
|
return any;
|
|
error:
|
|
isl_union_set_free(source);
|
|
isl_union_set_free(sink);
|
|
return -1;
|
|
}
|
|
|
|
/* Examine the current band (the rows between graph->band_start and
|
|
* graph->n_total_row), deciding whether to drop it or add it to "node"
|
|
* and then continue with the computation of the next band, if any.
|
|
* If "initialized" is set, then it may be assumed that compute_maxvar
|
|
* has been called on the current band. Otherwise, call
|
|
* compute_maxvar if and before carry_dependences gets called.
|
|
*
|
|
* The caller keeps looking for a new row as long as
|
|
* graph->n_row < graph->maxvar. If the latest attempt to find
|
|
* such a row failed (i.e., we still have graph->n_row < graph->maxvar),
|
|
* then we either
|
|
* - split between SCCs and start over (assuming we found an interesting
|
|
* pair of SCCs between which to split)
|
|
* - continue with the next band (assuming the current band has at least
|
|
* one row)
|
|
* - if there is more than one SCC left, then split along all SCCs
|
|
* - if outer coincidence needs to be enforced, then try to carry as many
|
|
* validity or coincidence dependences as possible and
|
|
* continue with the next band
|
|
* - try to carry as many validity dependences as possible and
|
|
* continue with the next band
|
|
* In each case, we first insert a band node in the schedule tree
|
|
* if any rows have been computed.
|
|
*
|
|
* If the caller managed to complete the schedule and the current band
|
|
* is empty, then finish off by topologically
|
|
* sorting the statements based on the remaining dependences.
|
|
* If, on the other hand, the current band has at least one row,
|
|
* then continue with the next band. Note that this next band
|
|
* will necessarily be empty, but the graph may still be split up
|
|
* into weakly connected components before arriving back here.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_schedule_finish_band(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
|
|
int initialized)
|
|
{
|
|
int empty;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
empty = graph->n_total_row == graph->band_start;
|
|
if (graph->n_row < graph->maxvar) {
|
|
isl_ctx *ctx;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
if (!ctx->opt->schedule_maximize_band_depth && !empty)
|
|
return compute_next_band(node, graph, 1);
|
|
if (graph->src_scc >= 0)
|
|
return compute_split_schedule(node, graph);
|
|
if (!empty)
|
|
return compute_next_band(node, graph, 1);
|
|
if (graph->scc > 1)
|
|
return compute_component_schedule(node, graph, 1);
|
|
if (!initialized && compute_maxvar(graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
if (isl_options_get_schedule_outer_coincidence(ctx))
|
|
return carry_coincidence(node, graph);
|
|
return carry_dependences(node, graph);
|
|
}
|
|
|
|
if (!empty)
|
|
return compute_next_band(node, graph, 1);
|
|
return sort_statements(node, graph, initialized);
|
|
}
|
|
|
|
/* Construct a band of schedule rows for a connected dependence graph.
|
|
* The caller is responsible for determining the strongly connected
|
|
* components and calling compute_maxvar first.
|
|
*
|
|
* We try to find a sequence of as many schedule rows as possible that result
|
|
* in non-negative dependence distances (independent of the previous rows
|
|
* in the sequence, i.e., such that the sequence is tilable), with as
|
|
* many of the initial rows as possible satisfying the coincidence constraints.
|
|
* The computation stops if we can't find any more rows or if we have found
|
|
* all the rows we wanted to find.
|
|
*
|
|
* If ctx->opt->schedule_outer_coincidence is set, then we force the
|
|
* outermost dimension to satisfy the coincidence constraints. If this
|
|
* turns out to be impossible, we fall back on the general scheme above
|
|
* and try to carry as many dependences as possible.
|
|
*
|
|
* If "graph" contains both condition and conditional validity dependences,
|
|
* then we need to check that that the conditional schedule constraint
|
|
* is satisfied, i.e., there are no violated conditional validity dependences
|
|
* that are adjacent to any non-local condition dependences.
|
|
* If there are, then we mark all those adjacent condition dependences
|
|
* as local and recompute the current band. Those dependences that
|
|
* are marked local will then be forced to be local.
|
|
* The initial computation is performed with no dependences marked as local.
|
|
* If we are lucky, then there will be no violated conditional validity
|
|
* dependences adjacent to any non-local condition dependences.
|
|
* Otherwise, we mark some additional condition dependences as local and
|
|
* recompute. We continue this process until there are no violations left or
|
|
* until we are no longer able to compute a schedule.
|
|
* Since there are only a finite number of dependences,
|
|
* there will only be a finite number of iterations.
|
|
*/
|
|
static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int has_coincidence;
|
|
int use_coincidence;
|
|
int force_coincidence = 0;
|
|
int check_conditional;
|
|
|
|
if (sort_sccs(graph) < 0)
|
|
return isl_stat_error;
|
|
|
|
clear_local_edges(graph);
|
|
check_conditional = need_condition_check(graph);
|
|
has_coincidence = has_any_coincidence(graph);
|
|
|
|
if (ctx->opt->schedule_outer_coincidence)
|
|
force_coincidence = 1;
|
|
|
|
use_coincidence = has_coincidence;
|
|
while (graph->n_row < graph->maxvar) {
|
|
isl_vec *sol;
|
|
int violated;
|
|
int coincident;
|
|
|
|
graph->src_scc = -1;
|
|
graph->dst_scc = -1;
|
|
|
|
if (setup_lp(ctx, graph, use_coincidence) < 0)
|
|
return isl_stat_error;
|
|
sol = solve_lp(ctx, graph);
|
|
if (!sol)
|
|
return isl_stat_error;
|
|
if (sol->size == 0) {
|
|
int empty = graph->n_total_row == graph->band_start;
|
|
|
|
isl_vec_free(sol);
|
|
if (use_coincidence && (!force_coincidence || !empty)) {
|
|
use_coincidence = 0;
|
|
continue;
|
|
}
|
|
return isl_stat_ok;
|
|
}
|
|
coincident = !has_coincidence || use_coincidence;
|
|
if (update_schedule(graph, sol, coincident) < 0)
|
|
return isl_stat_error;
|
|
|
|
if (!check_conditional)
|
|
continue;
|
|
violated = has_violated_conditional_constraint(ctx, graph);
|
|
if (violated < 0)
|
|
return isl_stat_error;
|
|
if (!violated)
|
|
continue;
|
|
if (reset_band(graph) < 0)
|
|
return isl_stat_error;
|
|
use_coincidence = has_coincidence;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Compute a schedule for a connected dependence graph by considering
|
|
* the graph as a whole and return the updated schedule node.
|
|
*
|
|
* The actual schedule rows of the current band are computed by
|
|
* compute_schedule_wcc_band. compute_schedule_finish_band takes
|
|
* care of integrating the band into "node" and continuing
|
|
* the computation.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
isl_ctx *ctx;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
if (compute_schedule_wcc_band(ctx, graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
|
|
return compute_schedule_finish_band(node, graph, 1);
|
|
}
|
|
|
|
/* Clustering information used by compute_schedule_wcc_clustering.
|
|
*
|
|
* "n" is the number of SCCs in the original dependence graph
|
|
* "scc" is an array of "n" elements, each representing an SCC
|
|
* of the original dependence graph. All entries in the same cluster
|
|
* have the same number of schedule rows.
|
|
* "scc_cluster" maps each SCC index to the cluster to which it belongs,
|
|
* where each cluster is represented by the index of the first SCC
|
|
* in the cluster. Initially, each SCC belongs to a cluster containing
|
|
* only that SCC.
|
|
*
|
|
* "scc_in_merge" is used by merge_clusters_along_edge to keep
|
|
* track of which SCCs need to be merged.
|
|
*
|
|
* "cluster" contains the merged clusters of SCCs after the clustering
|
|
* has completed.
|
|
*
|
|
* "scc_node" is a temporary data structure used inside copy_partial.
|
|
* For each SCC, it keeps track of the number of nodes in the SCC
|
|
* that have already been copied.
|
|
*/
|
|
struct isl_clustering {
|
|
int n;
|
|
struct isl_sched_graph *scc;
|
|
struct isl_sched_graph *cluster;
|
|
int *scc_cluster;
|
|
int *scc_node;
|
|
int *scc_in_merge;
|
|
};
|
|
|
|
/* Initialize the clustering data structure "c" from "graph".
|
|
*
|
|
* In particular, allocate memory, extract the SCCs from "graph"
|
|
* into c->scc, initialize scc_cluster and construct
|
|
* a band of schedule rows for each SCC.
|
|
* Within each SCC, there is only one SCC by definition.
|
|
* Each SCC initially belongs to a cluster containing only that SCC.
|
|
*/
|
|
static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
c->n = graph->scc;
|
|
c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
|
|
c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
|
|
c->scc_cluster = isl_calloc_array(ctx, int, c->n);
|
|
c->scc_node = isl_calloc_array(ctx, int, c->n);
|
|
c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
|
|
if (!c->scc || !c->cluster ||
|
|
!c->scc_cluster || !c->scc_node || !c->scc_in_merge)
|
|
return isl_stat_error;
|
|
|
|
for (i = 0; i < c->n; ++i) {
|
|
if (extract_sub_graph(ctx, graph, &node_scc_exactly,
|
|
&edge_scc_exactly, i, &c->scc[i]) < 0)
|
|
return isl_stat_error;
|
|
c->scc[i].scc = 1;
|
|
if (compute_maxvar(&c->scc[i]) < 0)
|
|
return isl_stat_error;
|
|
if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
|
|
return isl_stat_error;
|
|
c->scc_cluster[i] = i;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Free all memory allocated for "c".
|
|
*/
|
|
static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
|
|
{
|
|
int i;
|
|
|
|
if (c->scc)
|
|
for (i = 0; i < c->n; ++i)
|
|
graph_free(ctx, &c->scc[i]);
|
|
free(c->scc);
|
|
if (c->cluster)
|
|
for (i = 0; i < c->n; ++i)
|
|
graph_free(ctx, &c->cluster[i]);
|
|
free(c->cluster);
|
|
free(c->scc_cluster);
|
|
free(c->scc_node);
|
|
free(c->scc_in_merge);
|
|
}
|
|
|
|
/* Should we refrain from merging the cluster in "graph" with
|
|
* any other cluster?
|
|
* In particular, is its current schedule band empty and incomplete.
|
|
*/
|
|
static int bad_cluster(struct isl_sched_graph *graph)
|
|
{
|
|
return graph->n_row < graph->maxvar &&
|
|
graph->n_total_row == graph->band_start;
|
|
}
|
|
|
|
/* Is "edge" a proximity edge with a non-empty dependence relation?
|
|
*/
|
|
static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
|
|
{
|
|
if (!is_proximity(edge))
|
|
return isl_bool_false;
|
|
return isl_bool_not(isl_map_plain_is_empty(edge->map));
|
|
}
|
|
|
|
/* Return the index of an edge in "graph" that can be used to merge
|
|
* two clusters in "c".
|
|
* Return graph->n_edge if no such edge can be found.
|
|
* Return -1 on error.
|
|
*
|
|
* In particular, return a proximity edge between two clusters
|
|
* that is not marked "no_merge" and such that neither of the
|
|
* two clusters has an incomplete, empty band.
|
|
*
|
|
* If there are multiple such edges, then try and find the most
|
|
* appropriate edge to use for merging. In particular, pick the edge
|
|
* with the greatest weight. If there are multiple of those,
|
|
* then pick one with the shortest distance between
|
|
* the two cluster representatives.
|
|
*/
|
|
static int find_proximity(struct isl_sched_graph *graph,
|
|
struct isl_clustering *c)
|
|
{
|
|
int i, best = graph->n_edge, best_dist, best_weight;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
int dist, weight;
|
|
isl_bool prox;
|
|
|
|
prox = is_non_empty_proximity(edge);
|
|
if (prox < 0)
|
|
return -1;
|
|
if (!prox)
|
|
continue;
|
|
if (edge->no_merge)
|
|
continue;
|
|
if (bad_cluster(&c->scc[edge->src->scc]) ||
|
|
bad_cluster(&c->scc[edge->dst->scc]))
|
|
continue;
|
|
dist = c->scc_cluster[edge->dst->scc] -
|
|
c->scc_cluster[edge->src->scc];
|
|
if (dist == 0)
|
|
continue;
|
|
weight = edge->weight;
|
|
if (best < graph->n_edge) {
|
|
if (best_weight > weight)
|
|
continue;
|
|
if (best_weight == weight && best_dist <= dist)
|
|
continue;
|
|
}
|
|
best = i;
|
|
best_dist = dist;
|
|
best_weight = weight;
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
/* Internal data structure used in mark_merge_sccs.
|
|
*
|
|
* "graph" is the dependence graph in which a strongly connected
|
|
* component is constructed.
|
|
* "scc_cluster" maps each SCC index to the cluster to which it belongs.
|
|
* "src" and "dst" are the indices of the nodes that are being merged.
|
|
*/
|
|
struct isl_mark_merge_sccs_data {
|
|
struct isl_sched_graph *graph;
|
|
int *scc_cluster;
|
|
int src;
|
|
int dst;
|
|
};
|
|
|
|
/* Check whether the cluster containing node "i" depends on the cluster
|
|
* containing node "j". If "i" and "j" belong to the same cluster,
|
|
* then they are taken to depend on each other to ensure that
|
|
* the resulting strongly connected component consists of complete
|
|
* clusters. Furthermore, if "i" and "j" are the two nodes that
|
|
* are being merged, then they are taken to depend on each other as well.
|
|
* Otherwise, check if there is a (conditional) validity dependence
|
|
* from node[j] to node[i], forcing node[i] to follow node[j].
|
|
*/
|
|
static isl_bool cluster_follows(int i, int j, void *user)
|
|
{
|
|
struct isl_mark_merge_sccs_data *data = user;
|
|
struct isl_sched_graph *graph = data->graph;
|
|
int *scc_cluster = data->scc_cluster;
|
|
|
|
if (data->src == i && data->dst == j)
|
|
return isl_bool_true;
|
|
if (data->src == j && data->dst == i)
|
|
return isl_bool_true;
|
|
if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
|
|
return isl_bool_true;
|
|
|
|
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
|
|
}
|
|
|
|
/* Mark all SCCs that belong to either of the two clusters in "c"
|
|
* connected by the edge in "graph" with index "edge", or to any
|
|
* of the intermediate clusters.
|
|
* The marking is recorded in c->scc_in_merge.
|
|
*
|
|
* The given edge has been selected for merging two clusters,
|
|
* meaning that there is at least a proximity edge between the two nodes.
|
|
* However, there may also be (indirect) validity dependences
|
|
* between the two nodes. When merging the two clusters, all clusters
|
|
* containing one or more of the intermediate nodes along the
|
|
* indirect validity dependences need to be merged in as well.
|
|
*
|
|
* First collect all such nodes by computing the strongly connected
|
|
* component (SCC) containing the two nodes connected by the edge, where
|
|
* the two nodes are considered to depend on each other to make
|
|
* sure they end up in the same SCC. Similarly, each node is considered
|
|
* to depend on every other node in the same cluster to ensure
|
|
* that the SCC consists of complete clusters.
|
|
*
|
|
* Then the original SCCs that contain any of these nodes are marked
|
|
* in c->scc_in_merge.
|
|
*/
|
|
static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
int edge, struct isl_clustering *c)
|
|
{
|
|
struct isl_mark_merge_sccs_data data;
|
|
struct isl_tarjan_graph *g;
|
|
int i;
|
|
|
|
for (i = 0; i < c->n; ++i)
|
|
c->scc_in_merge[i] = 0;
|
|
|
|
data.graph = graph;
|
|
data.scc_cluster = c->scc_cluster;
|
|
data.src = graph->edge[edge].src - graph->node;
|
|
data.dst = graph->edge[edge].dst - graph->node;
|
|
|
|
g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
|
|
&cluster_follows, &data);
|
|
if (!g)
|
|
goto error;
|
|
|
|
i = g->op;
|
|
if (i < 3)
|
|
isl_die(ctx, isl_error_internal,
|
|
"expecting at least two nodes in component",
|
|
goto error);
|
|
if (g->order[--i] != -1)
|
|
isl_die(ctx, isl_error_internal,
|
|
"expecting end of component marker", goto error);
|
|
|
|
for (--i; i >= 0 && g->order[i] != -1; --i) {
|
|
int scc = graph->node[g->order[i]].scc;
|
|
c->scc_in_merge[scc] = 1;
|
|
}
|
|
|
|
isl_tarjan_graph_free(g);
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_tarjan_graph_free(g);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Construct the identifier "cluster_i".
|
|
*/
|
|
static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
|
|
{
|
|
char name[40];
|
|
|
|
snprintf(name, sizeof(name), "cluster_%d", i);
|
|
return isl_id_alloc(ctx, name, NULL);
|
|
}
|
|
|
|
/* Construct the space of the cluster with index "i" containing
|
|
* the strongly connected component "scc".
|
|
*
|
|
* In particular, construct a space called cluster_i with dimension equal
|
|
* to the number of schedule rows in the current band of "scc".
|
|
*/
|
|
static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
|
|
{
|
|
int nvar;
|
|
isl_space *space;
|
|
isl_id *id;
|
|
|
|
nvar = scc->n_total_row - scc->band_start;
|
|
space = isl_space_copy(scc->node[0].space);
|
|
space = isl_space_params(space);
|
|
space = isl_space_set_from_params(space);
|
|
space = isl_space_add_dims(space, isl_dim_set, nvar);
|
|
id = cluster_id(isl_space_get_ctx(space), i);
|
|
space = isl_space_set_tuple_id(space, isl_dim_set, id);
|
|
|
|
return space;
|
|
}
|
|
|
|
/* Collect the domain of the graph for merging clusters.
|
|
*
|
|
* In particular, for each cluster with first SCC "i", construct
|
|
* a set in the space called cluster_i with dimension equal
|
|
* to the number of schedule rows in the current band of the cluster.
|
|
*/
|
|
static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, struct isl_clustering *c)
|
|
{
|
|
int i;
|
|
isl_space *space;
|
|
isl_union_set *domain;
|
|
|
|
space = isl_space_params_alloc(ctx, 0);
|
|
domain = isl_union_set_empty(space);
|
|
|
|
for (i = 0; i < graph->scc; ++i) {
|
|
isl_space *space;
|
|
|
|
if (!c->scc_in_merge[i])
|
|
continue;
|
|
if (c->scc_cluster[i] != i)
|
|
continue;
|
|
space = cluster_space(&c->scc[i], i);
|
|
domain = isl_union_set_add_set(domain, isl_set_universe(space));
|
|
}
|
|
|
|
return domain;
|
|
}
|
|
|
|
/* Construct a map from the original instances to the corresponding
|
|
* cluster instance in the current bands of the clusters in "c".
|
|
*/
|
|
static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, struct isl_clustering *c)
|
|
{
|
|
int i, j;
|
|
isl_space *space;
|
|
isl_union_map *cluster_map;
|
|
|
|
space = isl_space_params_alloc(ctx, 0);
|
|
cluster_map = isl_union_map_empty(space);
|
|
for (i = 0; i < graph->scc; ++i) {
|
|
int start, n;
|
|
isl_id *id;
|
|
|
|
if (!c->scc_in_merge[i])
|
|
continue;
|
|
|
|
id = cluster_id(ctx, c->scc_cluster[i]);
|
|
start = c->scc[i].band_start;
|
|
n = c->scc[i].n_total_row - start;
|
|
for (j = 0; j < c->scc[i].n; ++j) {
|
|
isl_multi_aff *ma;
|
|
isl_map *map;
|
|
struct isl_sched_node *node = &c->scc[i].node[j];
|
|
|
|
ma = node_extract_partial_schedule_multi_aff(node,
|
|
start, n);
|
|
ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
|
|
isl_id_copy(id));
|
|
map = isl_map_from_multi_aff(ma);
|
|
cluster_map = isl_union_map_add_map(cluster_map, map);
|
|
}
|
|
isl_id_free(id);
|
|
}
|
|
|
|
return cluster_map;
|
|
}
|
|
|
|
/* Add "umap" to the schedule constraints "sc" of all types of "edge"
|
|
* that are not isl_edge_condition or isl_edge_conditional_validity.
|
|
*/
|
|
static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
|
|
struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
|
|
__isl_take isl_schedule_constraints *sc)
|
|
{
|
|
enum isl_edge_type t;
|
|
|
|
if (!sc)
|
|
return NULL;
|
|
|
|
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
|
|
if (t == isl_edge_condition ||
|
|
t == isl_edge_conditional_validity)
|
|
continue;
|
|
if (!is_type(edge, t))
|
|
continue;
|
|
sc = isl_schedule_constraints_add(sc, t,
|
|
isl_union_map_copy(umap));
|
|
}
|
|
|
|
return sc;
|
|
}
|
|
|
|
/* Add schedule constraints of types isl_edge_condition and
|
|
* isl_edge_conditional_validity to "sc" by applying "umap" to
|
|
* the domains of the wrapped relations in domain and range
|
|
* of the corresponding tagged constraints of "edge".
|
|
*/
|
|
static __isl_give isl_schedule_constraints *add_conditional_constraints(
|
|
struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
|
|
__isl_take isl_schedule_constraints *sc)
|
|
{
|
|
enum isl_edge_type t;
|
|
isl_union_map *tagged;
|
|
|
|
for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
|
|
if (!is_type(edge, t))
|
|
continue;
|
|
if (t == isl_edge_condition)
|
|
tagged = isl_union_map_copy(edge->tagged_condition);
|
|
else
|
|
tagged = isl_union_map_copy(edge->tagged_validity);
|
|
tagged = isl_union_map_zip(tagged);
|
|
tagged = isl_union_map_apply_domain(tagged,
|
|
isl_union_map_copy(umap));
|
|
tagged = isl_union_map_zip(tagged);
|
|
sc = isl_schedule_constraints_add(sc, t, tagged);
|
|
if (!sc)
|
|
return NULL;
|
|
}
|
|
|
|
return sc;
|
|
}
|
|
|
|
/* Given a mapping "cluster_map" from the original instances to
|
|
* the cluster instances, add schedule constraints on the clusters
|
|
* to "sc" corresponding to the original constraints represented by "edge".
|
|
*
|
|
* For non-tagged dependence constraints, the cluster constraints
|
|
* are obtained by applying "cluster_map" to the edge->map.
|
|
*
|
|
* For tagged dependence constraints, "cluster_map" needs to be applied
|
|
* to the domains of the wrapped relations in domain and range
|
|
* of the tagged dependence constraints. Pick out the mappings
|
|
* from these domains from "cluster_map" and construct their product.
|
|
* This mapping can then be applied to the pair of domains.
|
|
*/
|
|
static __isl_give isl_schedule_constraints *collect_edge_constraints(
|
|
struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
|
|
__isl_take isl_schedule_constraints *sc)
|
|
{
|
|
isl_union_map *umap;
|
|
isl_space *space;
|
|
isl_union_set *uset;
|
|
isl_union_map *umap1, *umap2;
|
|
|
|
if (!sc)
|
|
return NULL;
|
|
|
|
umap = isl_union_map_from_map(isl_map_copy(edge->map));
|
|
umap = isl_union_map_apply_domain(umap,
|
|
isl_union_map_copy(cluster_map));
|
|
umap = isl_union_map_apply_range(umap,
|
|
isl_union_map_copy(cluster_map));
|
|
sc = add_non_conditional_constraints(edge, umap, sc);
|
|
isl_union_map_free(umap);
|
|
|
|
if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
|
|
return sc;
|
|
|
|
space = isl_space_domain(isl_map_get_space(edge->map));
|
|
uset = isl_union_set_from_set(isl_set_universe(space));
|
|
umap1 = isl_union_map_copy(cluster_map);
|
|
umap1 = isl_union_map_intersect_domain(umap1, uset);
|
|
space = isl_space_range(isl_map_get_space(edge->map));
|
|
uset = isl_union_set_from_set(isl_set_universe(space));
|
|
umap2 = isl_union_map_copy(cluster_map);
|
|
umap2 = isl_union_map_intersect_domain(umap2, uset);
|
|
umap = isl_union_map_product(umap1, umap2);
|
|
|
|
sc = add_conditional_constraints(edge, umap, sc);
|
|
|
|
isl_union_map_free(umap);
|
|
return sc;
|
|
}
|
|
|
|
/* Given a mapping "cluster_map" from the original instances to
|
|
* the cluster instances, add schedule constraints on the clusters
|
|
* to "sc" corresponding to all edges in "graph" between nodes that
|
|
* belong to SCCs that are marked for merging in "scc_in_merge".
|
|
*/
|
|
static __isl_give isl_schedule_constraints *collect_constraints(
|
|
struct isl_sched_graph *graph, int *scc_in_merge,
|
|
__isl_keep isl_union_map *cluster_map,
|
|
__isl_take isl_schedule_constraints *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
|
|
if (!scc_in_merge[edge->src->scc])
|
|
continue;
|
|
if (!scc_in_merge[edge->dst->scc])
|
|
continue;
|
|
sc = collect_edge_constraints(edge, cluster_map, sc);
|
|
}
|
|
|
|
return sc;
|
|
}
|
|
|
|
/* Construct a dependence graph for scheduling clusters with respect
|
|
* to each other and store the result in "merge_graph".
|
|
* In particular, the nodes of the graph correspond to the schedule
|
|
* dimensions of the current bands of those clusters that have been
|
|
* marked for merging in "c".
|
|
*
|
|
* First construct an isl_schedule_constraints object for this domain
|
|
* by transforming the edges in "graph" to the domain.
|
|
* Then initialize a dependence graph for scheduling from these
|
|
* constraints.
|
|
*/
|
|
static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
struct isl_clustering *c, struct isl_sched_graph *merge_graph)
|
|
{
|
|
isl_union_set *domain;
|
|
isl_union_map *cluster_map;
|
|
isl_schedule_constraints *sc;
|
|
isl_stat r;
|
|
|
|
domain = collect_domain(ctx, graph, c);
|
|
sc = isl_schedule_constraints_on_domain(domain);
|
|
if (!sc)
|
|
return isl_stat_error;
|
|
cluster_map = collect_cluster_map(ctx, graph, c);
|
|
sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
|
|
isl_union_map_free(cluster_map);
|
|
|
|
r = graph_init(merge_graph, sc);
|
|
|
|
isl_schedule_constraints_free(sc);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Compute the maximal number of remaining schedule rows that still need
|
|
* to be computed for the nodes that belong to clusters with the maximal
|
|
* dimension for the current band (i.e., the band that is to be merged).
|
|
* Only clusters that are about to be merged are considered.
|
|
* "maxvar" is the maximal dimension for the current band.
|
|
* "c" contains information about the clusters.
|
|
*
|
|
* Return the maximal number of remaining schedule rows or -1 on error.
|
|
*/
|
|
static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
|
|
{
|
|
int i, j;
|
|
int max_slack;
|
|
|
|
max_slack = 0;
|
|
for (i = 0; i < c->n; ++i) {
|
|
int nvar;
|
|
struct isl_sched_graph *scc;
|
|
|
|
if (!c->scc_in_merge[i])
|
|
continue;
|
|
scc = &c->scc[i];
|
|
nvar = scc->n_total_row - scc->band_start;
|
|
if (nvar != maxvar)
|
|
continue;
|
|
for (j = 0; j < scc->n; ++j) {
|
|
struct isl_sched_node *node = &scc->node[j];
|
|
int slack;
|
|
|
|
if (node_update_vmap(node) < 0)
|
|
return -1;
|
|
slack = node->nvar - node->rank;
|
|
if (slack > max_slack)
|
|
max_slack = slack;
|
|
}
|
|
}
|
|
|
|
return max_slack;
|
|
}
|
|
|
|
/* If there are any clusters where the dimension of the current band
|
|
* (i.e., the band that is to be merged) is smaller than "maxvar" and
|
|
* if there are any nodes in such a cluster where the number
|
|
* of remaining schedule rows that still need to be computed
|
|
* is greater than "max_slack", then return the smallest current band
|
|
* dimension of all these clusters. Otherwise return the original value
|
|
* of "maxvar". Return -1 in case of any error.
|
|
* Only clusters that are about to be merged are considered.
|
|
* "c" contains information about the clusters.
|
|
*/
|
|
static int limit_maxvar_to_slack(int maxvar, int max_slack,
|
|
struct isl_clustering *c)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < c->n; ++i) {
|
|
int nvar;
|
|
struct isl_sched_graph *scc;
|
|
|
|
if (!c->scc_in_merge[i])
|
|
continue;
|
|
scc = &c->scc[i];
|
|
nvar = scc->n_total_row - scc->band_start;
|
|
if (nvar >= maxvar)
|
|
continue;
|
|
for (j = 0; j < scc->n; ++j) {
|
|
struct isl_sched_node *node = &scc->node[j];
|
|
int slack;
|
|
|
|
if (node_update_vmap(node) < 0)
|
|
return -1;
|
|
slack = node->nvar - node->rank;
|
|
if (slack > max_slack) {
|
|
maxvar = nvar;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return maxvar;
|
|
}
|
|
|
|
/* Adjust merge_graph->maxvar based on the number of remaining schedule rows
|
|
* that still need to be computed. In particular, if there is a node
|
|
* in a cluster where the dimension of the current band is smaller
|
|
* than merge_graph->maxvar, but the number of remaining schedule rows
|
|
* is greater than that of any node in a cluster with the maximal
|
|
* dimension for the current band (i.e., merge_graph->maxvar),
|
|
* then adjust merge_graph->maxvar to the (smallest) current band dimension
|
|
* of those clusters. Without this adjustment, the total number of
|
|
* schedule dimensions would be increased, resulting in a skewed view
|
|
* of the number of coincident dimensions.
|
|
* "c" contains information about the clusters.
|
|
*
|
|
* If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
|
|
* then there is no point in attempting any merge since it will be rejected
|
|
* anyway. Set merge_graph->maxvar to zero in such cases.
|
|
*/
|
|
static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
|
|
struct isl_sched_graph *merge_graph, struct isl_clustering *c)
|
|
{
|
|
int max_slack, maxvar;
|
|
|
|
max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
|
|
if (max_slack < 0)
|
|
return isl_stat_error;
|
|
maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
|
|
if (maxvar < 0)
|
|
return isl_stat_error;
|
|
|
|
if (maxvar < merge_graph->maxvar) {
|
|
if (isl_options_get_schedule_maximize_band_depth(ctx))
|
|
merge_graph->maxvar = 0;
|
|
else
|
|
merge_graph->maxvar = maxvar;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Return the number of coincident dimensions in the current band of "graph",
|
|
* where the nodes of "graph" are assumed to be scheduled by a single band.
|
|
*/
|
|
static int get_n_coincident(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = graph->band_start; i < graph->n_total_row; ++i)
|
|
if (!graph->node[0].coincident[i])
|
|
break;
|
|
|
|
return i - graph->band_start;
|
|
}
|
|
|
|
/* Should the clusters be merged based on the cluster schedule
|
|
* in the current (and only) band of "merge_graph", given that
|
|
* coincidence should be maximized?
|
|
*
|
|
* If the number of coincident schedule dimensions in the merged band
|
|
* would be less than the maximal number of coincident schedule dimensions
|
|
* in any of the merged clusters, then the clusters should not be merged.
|
|
*/
|
|
static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
|
|
struct isl_sched_graph *merge_graph)
|
|
{
|
|
int i;
|
|
int n_coincident;
|
|
int max_coincident;
|
|
|
|
max_coincident = 0;
|
|
for (i = 0; i < c->n; ++i) {
|
|
if (!c->scc_in_merge[i])
|
|
continue;
|
|
n_coincident = get_n_coincident(&c->scc[i]);
|
|
if (n_coincident > max_coincident)
|
|
max_coincident = n_coincident;
|
|
}
|
|
|
|
n_coincident = get_n_coincident(merge_graph);
|
|
|
|
return isl_bool_ok(n_coincident >= max_coincident);
|
|
}
|
|
|
|
/* Return the transformation on "node" expressed by the current (and only)
|
|
* band of "merge_graph" applied to the clusters in "c".
|
|
*
|
|
* First find the representation of "node" in its SCC in "c" and
|
|
* extract the transformation expressed by the current band.
|
|
* Then extract the transformation applied by "merge_graph"
|
|
* to the cluster to which this SCC belongs.
|
|
* Combine the two to obtain the complete transformation on the node.
|
|
*
|
|
* Note that the range of the first transformation is an anonymous space,
|
|
* while the domain of the second is named "cluster_X". The range
|
|
* of the former therefore needs to be adjusted before the two
|
|
* can be combined.
|
|
*/
|
|
static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
|
|
struct isl_sched_node *node, struct isl_clustering *c,
|
|
struct isl_sched_graph *merge_graph)
|
|
{
|
|
struct isl_sched_node *scc_node, *cluster_node;
|
|
int start, n;
|
|
isl_id *id;
|
|
isl_space *space;
|
|
isl_multi_aff *ma, *ma2;
|
|
|
|
scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
|
|
if (scc_node && !is_node(&c->scc[node->scc], scc_node))
|
|
isl_die(ctx, isl_error_internal, "unable to find node",
|
|
return NULL);
|
|
start = c->scc[node->scc].band_start;
|
|
n = c->scc[node->scc].n_total_row - start;
|
|
ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
|
|
space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
|
|
cluster_node = graph_find_node(ctx, merge_graph, space);
|
|
if (cluster_node && !is_node(merge_graph, cluster_node))
|
|
isl_die(ctx, isl_error_internal, "unable to find cluster",
|
|
space = isl_space_free(space));
|
|
id = isl_space_get_tuple_id(space, isl_dim_set);
|
|
ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
|
|
isl_space_free(space);
|
|
n = merge_graph->n_total_row;
|
|
ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
|
|
ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
|
|
|
|
return isl_map_from_multi_aff(ma);
|
|
}
|
|
|
|
/* Give a set of distances "set", are they bounded by a small constant
|
|
* in direction "pos"?
|
|
* In practice, check if they are bounded by 2 by checking that there
|
|
* are no elements with a value greater than or equal to 3 or
|
|
* smaller than or equal to -3.
|
|
*/
|
|
static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
|
|
{
|
|
isl_bool bounded;
|
|
isl_set *test;
|
|
|
|
if (!set)
|
|
return isl_bool_error;
|
|
|
|
test = isl_set_copy(set);
|
|
test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
|
|
bounded = isl_set_is_empty(test);
|
|
isl_set_free(test);
|
|
|
|
if (bounded < 0 || !bounded)
|
|
return bounded;
|
|
|
|
test = isl_set_copy(set);
|
|
test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
|
|
bounded = isl_set_is_empty(test);
|
|
isl_set_free(test);
|
|
|
|
return bounded;
|
|
}
|
|
|
|
/* Does the set "set" have a fixed (but possible parametric) value
|
|
* at dimension "pos"?
|
|
*/
|
|
static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
|
|
{
|
|
isl_size n;
|
|
isl_bool single;
|
|
|
|
n = isl_set_dim(set, isl_dim_set);
|
|
if (n < 0)
|
|
return isl_bool_error;
|
|
set = isl_set_copy(set);
|
|
set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
|
|
set = isl_set_project_out(set, isl_dim_set, 0, pos);
|
|
single = isl_set_is_singleton(set);
|
|
isl_set_free(set);
|
|
|
|
return single;
|
|
}
|
|
|
|
/* Does "map" have a fixed (but possible parametric) value
|
|
* at dimension "pos" of either its domain or its range?
|
|
*/
|
|
static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
|
|
{
|
|
isl_set *set;
|
|
isl_bool single;
|
|
|
|
set = isl_map_domain(isl_map_copy(map));
|
|
single = has_single_value(set, pos);
|
|
isl_set_free(set);
|
|
|
|
if (single < 0 || single)
|
|
return single;
|
|
|
|
set = isl_map_range(isl_map_copy(map));
|
|
single = has_single_value(set, pos);
|
|
isl_set_free(set);
|
|
|
|
return single;
|
|
}
|
|
|
|
/* Does the edge "edge" from "graph" have bounded dependence distances
|
|
* in the merged graph "merge_graph" of a selection of clusters in "c"?
|
|
*
|
|
* Extract the complete transformations of the source and destination
|
|
* nodes of the edge, apply them to the edge constraints and
|
|
* compute the differences. Finally, check if these differences are bounded
|
|
* in each direction.
|
|
*
|
|
* If the dimension of the band is greater than the number of
|
|
* dimensions that can be expected to be optimized by the edge
|
|
* (based on its weight), then also allow the differences to be unbounded
|
|
* in the remaining dimensions, but only if either the source or
|
|
* the destination has a fixed value in that direction.
|
|
* This allows a statement that produces values that are used by
|
|
* several instances of another statement to be merged with that
|
|
* other statement.
|
|
* However, merging such clusters will introduce an inherently
|
|
* large proximity distance inside the merged cluster, meaning
|
|
* that proximity distances will no longer be optimized in
|
|
* subsequent merges. These merges are therefore only allowed
|
|
* after all other possible merges have been tried.
|
|
* The first time such a merge is encountered, the weight of the edge
|
|
* is replaced by a negative weight. The second time (i.e., after
|
|
* all merges over edges with a non-negative weight have been tried),
|
|
* the merge is allowed.
|
|
*/
|
|
static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
|
|
struct isl_sched_graph *graph, struct isl_clustering *c,
|
|
struct isl_sched_graph *merge_graph)
|
|
{
|
|
int i, n_slack;
|
|
isl_size n;
|
|
isl_bool bounded;
|
|
isl_map *map, *t;
|
|
isl_set *dist;
|
|
|
|
map = isl_map_copy(edge->map);
|
|
t = extract_node_transformation(ctx, edge->src, c, merge_graph);
|
|
map = isl_map_apply_domain(map, t);
|
|
t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
|
|
map = isl_map_apply_range(map, t);
|
|
dist = isl_map_deltas(isl_map_copy(map));
|
|
|
|
bounded = isl_bool_true;
|
|
n = isl_set_dim(dist, isl_dim_set);
|
|
if (n < 0)
|
|
goto error;
|
|
n_slack = n - edge->weight;
|
|
if (edge->weight < 0)
|
|
n_slack -= graph->max_weight + 1;
|
|
for (i = 0; i < n; ++i) {
|
|
isl_bool bounded_i, singular_i;
|
|
|
|
bounded_i = distance_is_bounded(dist, i);
|
|
if (bounded_i < 0)
|
|
goto error;
|
|
if (bounded_i)
|
|
continue;
|
|
if (edge->weight >= 0)
|
|
bounded = isl_bool_false;
|
|
n_slack--;
|
|
if (n_slack < 0)
|
|
break;
|
|
singular_i = has_singular_src_or_dst(map, i);
|
|
if (singular_i < 0)
|
|
goto error;
|
|
if (singular_i)
|
|
continue;
|
|
bounded = isl_bool_false;
|
|
break;
|
|
}
|
|
if (!bounded && i >= n && edge->weight >= 0)
|
|
edge->weight -= graph->max_weight + 1;
|
|
isl_map_free(map);
|
|
isl_set_free(dist);
|
|
|
|
return bounded;
|
|
error:
|
|
isl_map_free(map);
|
|
isl_set_free(dist);
|
|
return isl_bool_error;
|
|
}
|
|
|
|
/* Should the clusters be merged based on the cluster schedule
|
|
* in the current (and only) band of "merge_graph"?
|
|
* "graph" is the original dependence graph, while "c" records
|
|
* which SCCs are involved in the latest merge.
|
|
*
|
|
* In particular, is there at least one proximity constraint
|
|
* that is optimized by the merge?
|
|
*
|
|
* A proximity constraint is considered to be optimized
|
|
* if the dependence distances are small.
|
|
*/
|
|
static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, struct isl_clustering *c,
|
|
struct isl_sched_graph *merge_graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
isl_bool bounded;
|
|
|
|
if (!is_proximity(edge))
|
|
continue;
|
|
if (!c->scc_in_merge[edge->src->scc])
|
|
continue;
|
|
if (!c->scc_in_merge[edge->dst->scc])
|
|
continue;
|
|
if (c->scc_cluster[edge->dst->scc] ==
|
|
c->scc_cluster[edge->src->scc])
|
|
continue;
|
|
bounded = has_bounded_distances(ctx, edge, graph, c,
|
|
merge_graph);
|
|
if (bounded < 0 || bounded)
|
|
return bounded;
|
|
}
|
|
|
|
return isl_bool_false;
|
|
}
|
|
|
|
/* Should the clusters be merged based on the cluster schedule
|
|
* in the current (and only) band of "merge_graph"?
|
|
* "graph" is the original dependence graph, while "c" records
|
|
* which SCCs are involved in the latest merge.
|
|
*
|
|
* If the current band is empty, then the clusters should not be merged.
|
|
*
|
|
* If the band depth should be maximized and the merge schedule
|
|
* is incomplete (meaning that the dimension of some of the schedule
|
|
* bands in the original schedule will be reduced), then the clusters
|
|
* should not be merged.
|
|
*
|
|
* If the schedule_maximize_coincidence option is set, then check that
|
|
* the number of coincident schedule dimensions is not reduced.
|
|
*
|
|
* Finally, only allow the merge if at least one proximity
|
|
* constraint is optimized.
|
|
*/
|
|
static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
struct isl_clustering *c, struct isl_sched_graph *merge_graph)
|
|
{
|
|
if (merge_graph->n_total_row == merge_graph->band_start)
|
|
return isl_bool_false;
|
|
|
|
if (isl_options_get_schedule_maximize_band_depth(ctx) &&
|
|
merge_graph->n_total_row < merge_graph->maxvar)
|
|
return isl_bool_false;
|
|
|
|
if (isl_options_get_schedule_maximize_coincidence(ctx)) {
|
|
isl_bool ok;
|
|
|
|
ok = ok_to_merge_coincident(c, merge_graph);
|
|
if (ok < 0 || !ok)
|
|
return ok;
|
|
}
|
|
|
|
return ok_to_merge_proximity(ctx, graph, c, merge_graph);
|
|
}
|
|
|
|
/* Apply the schedule in "t_node" to the "n" rows starting at "first"
|
|
* of the schedule in "node" and return the result.
|
|
*
|
|
* That is, essentially compute
|
|
*
|
|
* T * N(first:first+n-1)
|
|
*
|
|
* taking into account the constant term and the parameter coefficients
|
|
* in "t_node".
|
|
*/
|
|
static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
|
|
struct isl_sched_node *t_node, struct isl_sched_node *node,
|
|
int first, int n)
|
|
{
|
|
int i, j;
|
|
isl_mat *t;
|
|
isl_size n_row, n_col;
|
|
int n_param, n_var;
|
|
|
|
n_param = node->nparam;
|
|
n_var = node->nvar;
|
|
n_row = isl_mat_rows(t_node->sched);
|
|
n_col = isl_mat_cols(node->sched);
|
|
if (n_row < 0 || n_col < 0)
|
|
return NULL;
|
|
t = isl_mat_alloc(ctx, n_row, n_col);
|
|
if (!t)
|
|
return NULL;
|
|
for (i = 0; i < n_row; ++i) {
|
|
isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
|
|
isl_seq_clr(t->row[i] + 1 + n_param, n_var);
|
|
for (j = 0; j < n; ++j)
|
|
isl_seq_addmul(t->row[i],
|
|
t_node->sched->row[i][1 + n_param + j],
|
|
node->sched->row[first + j],
|
|
1 + n_param + n_var);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* Apply the cluster schedule in "t_node" to the current band
|
|
* schedule of the nodes in "graph".
|
|
*
|
|
* In particular, replace the rows starting at band_start
|
|
* by the result of applying the cluster schedule in "t_node"
|
|
* to the original rows.
|
|
*
|
|
* The coincidence of the schedule is determined by the coincidence
|
|
* of the cluster schedule.
|
|
*/
|
|
static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
struct isl_sched_node *t_node)
|
|
{
|
|
int i, j;
|
|
isl_size n_new;
|
|
int start, n;
|
|
|
|
start = graph->band_start;
|
|
n = graph->n_total_row - start;
|
|
|
|
n_new = isl_mat_rows(t_node->sched);
|
|
if (n_new < 0)
|
|
return isl_stat_error;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
isl_mat *t;
|
|
|
|
t = node_transformation(ctx, t_node, node, start, n);
|
|
node->sched = isl_mat_drop_rows(node->sched, start, n);
|
|
node->sched = isl_mat_concat(node->sched, t);
|
|
node->sched_map = isl_map_free(node->sched_map);
|
|
if (!node->sched)
|
|
return isl_stat_error;
|
|
for (j = 0; j < n_new; ++j)
|
|
node->coincident[start + j] = t_node->coincident[j];
|
|
}
|
|
graph->n_total_row -= n;
|
|
graph->n_row -= n;
|
|
graph->n_total_row += n_new;
|
|
graph->n_row += n_new;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Merge the clusters marked for merging in "c" into a single
|
|
* cluster using the cluster schedule in the current band of "merge_graph".
|
|
* The representative SCC for the new cluster is the SCC with
|
|
* the smallest index.
|
|
*
|
|
* The current band schedule of each SCC in the new cluster is obtained
|
|
* by applying the schedule of the corresponding original cluster
|
|
* to the original band schedule.
|
|
* All SCCs in the new cluster have the same number of schedule rows.
|
|
*/
|
|
static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
|
|
struct isl_sched_graph *merge_graph)
|
|
{
|
|
int i;
|
|
int cluster = -1;
|
|
isl_space *space;
|
|
|
|
for (i = 0; i < c->n; ++i) {
|
|
struct isl_sched_node *node;
|
|
|
|
if (!c->scc_in_merge[i])
|
|
continue;
|
|
if (cluster < 0)
|
|
cluster = i;
|
|
space = cluster_space(&c->scc[i], c->scc_cluster[i]);
|
|
node = graph_find_node(ctx, merge_graph, space);
|
|
isl_space_free(space);
|
|
if (!node)
|
|
return isl_stat_error;
|
|
if (!is_node(merge_graph, node))
|
|
isl_die(ctx, isl_error_internal,
|
|
"unable to find cluster",
|
|
return isl_stat_error);
|
|
if (transform(ctx, &c->scc[i], node) < 0)
|
|
return isl_stat_error;
|
|
c->scc_cluster[i] = cluster;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Try and merge the clusters of SCCs marked in c->scc_in_merge
|
|
* by scheduling the current cluster bands with respect to each other.
|
|
*
|
|
* Construct a dependence graph with a space for each cluster and
|
|
* with the coordinates of each space corresponding to the schedule
|
|
* dimensions of the current band of that cluster.
|
|
* Construct a cluster schedule in this cluster dependence graph and
|
|
* apply it to the current cluster bands if it is applicable
|
|
* according to ok_to_merge.
|
|
*
|
|
* If the number of remaining schedule dimensions in a cluster
|
|
* with a non-maximal current schedule dimension is greater than
|
|
* the number of remaining schedule dimensions in clusters
|
|
* with a maximal current schedule dimension, then restrict
|
|
* the number of rows to be computed in the cluster schedule
|
|
* to the minimal such non-maximal current schedule dimension.
|
|
* Do this by adjusting merge_graph.maxvar.
|
|
*
|
|
* Return isl_bool_true if the clusters have effectively been merged
|
|
* into a single cluster.
|
|
*
|
|
* Note that since the standard scheduling algorithm minimizes the maximal
|
|
* distance over proximity constraints, the proximity constraints between
|
|
* the merged clusters may not be optimized any further than what is
|
|
* sufficient to bring the distances within the limits of the internal
|
|
* proximity constraints inside the individual clusters.
|
|
* It may therefore make sense to perform an additional translation step
|
|
* to bring the clusters closer to each other, while maintaining
|
|
* the linear part of the merging schedule found using the standard
|
|
* scheduling algorithm.
|
|
*/
|
|
static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
struct isl_clustering *c)
|
|
{
|
|
struct isl_sched_graph merge_graph = { 0 };
|
|
isl_bool merged;
|
|
|
|
if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
|
|
goto error;
|
|
|
|
if (compute_maxvar(&merge_graph) < 0)
|
|
goto error;
|
|
if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
|
|
goto error;
|
|
if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
|
|
goto error;
|
|
merged = ok_to_merge(ctx, graph, c, &merge_graph);
|
|
if (merged && merge(ctx, c, &merge_graph) < 0)
|
|
goto error;
|
|
|
|
graph_free(ctx, &merge_graph);
|
|
return merged;
|
|
error:
|
|
graph_free(ctx, &merge_graph);
|
|
return isl_bool_error;
|
|
}
|
|
|
|
/* Is there any edge marked "no_merge" between two SCCs that are
|
|
* about to be merged (i.e., that are set in "scc_in_merge")?
|
|
* "merge_edge" is the proximity edge along which the clusters of SCCs
|
|
* are going to be merged.
|
|
*
|
|
* If there is any edge between two SCCs with a negative weight,
|
|
* while the weight of "merge_edge" is non-negative, then this
|
|
* means that the edge was postponed. "merge_edge" should then
|
|
* also be postponed since merging along the edge with negative weight should
|
|
* be postponed until all edges with non-negative weight have been tried.
|
|
* Replace the weight of "merge_edge" by a negative weight as well and
|
|
* tell the caller not to attempt a merge.
|
|
*/
|
|
static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
|
|
struct isl_sched_edge *merge_edge)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
|
|
if (!scc_in_merge[edge->src->scc])
|
|
continue;
|
|
if (!scc_in_merge[edge->dst->scc])
|
|
continue;
|
|
if (edge->no_merge)
|
|
return 1;
|
|
if (merge_edge->weight >= 0 && edge->weight < 0) {
|
|
merge_edge->weight -= graph->max_weight + 1;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Merge the two clusters in "c" connected by the edge in "graph"
|
|
* with index "edge" into a single cluster.
|
|
* If it turns out to be impossible to merge these two clusters,
|
|
* then mark the edge as "no_merge" such that it will not be
|
|
* considered again.
|
|
*
|
|
* First mark all SCCs that need to be merged. This includes the SCCs
|
|
* in the two clusters, but it may also include the SCCs
|
|
* of intermediate clusters.
|
|
* If there is already a no_merge edge between any pair of such SCCs,
|
|
* then simply mark the current edge as no_merge as well.
|
|
* Likewise, if any of those edges was postponed by has_bounded_distances,
|
|
* then postpone the current edge as well.
|
|
* Otherwise, try and merge the clusters and mark "edge" as "no_merge"
|
|
* if the clusters did not end up getting merged, unless the non-merge
|
|
* is due to the fact that the edge was postponed. This postponement
|
|
* can be recognized by a change in weight (from non-negative to negative).
|
|
*/
|
|
static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
|
|
{
|
|
isl_bool merged;
|
|
int edge_weight = graph->edge[edge].weight;
|
|
|
|
if (mark_merge_sccs(ctx, graph, edge, c) < 0)
|
|
return isl_stat_error;
|
|
|
|
if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
|
|
merged = isl_bool_false;
|
|
else
|
|
merged = try_merge(ctx, graph, c);
|
|
if (merged < 0)
|
|
return isl_stat_error;
|
|
if (!merged && edge_weight == graph->edge[edge].weight)
|
|
graph->edge[edge].no_merge = 1;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Does "node" belong to the cluster identified by "cluster"?
|
|
*/
|
|
static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
|
|
{
|
|
return node->cluster == cluster;
|
|
}
|
|
|
|
/* Does "edge" connect two nodes belonging to the cluster
|
|
* identified by "cluster"?
|
|
*/
|
|
static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
|
|
{
|
|
return edge->src->cluster == cluster && edge->dst->cluster == cluster;
|
|
}
|
|
|
|
/* Swap the schedule of "node1" and "node2".
|
|
* Both nodes have been derived from the same node in a common parent graph.
|
|
* Since the "coincident" field is shared with that node
|
|
* in the parent graph, there is no need to also swap this field.
|
|
*/
|
|
static void swap_sched(struct isl_sched_node *node1,
|
|
struct isl_sched_node *node2)
|
|
{
|
|
isl_mat *sched;
|
|
isl_map *sched_map;
|
|
|
|
sched = node1->sched;
|
|
node1->sched = node2->sched;
|
|
node2->sched = sched;
|
|
|
|
sched_map = node1->sched_map;
|
|
node1->sched_map = node2->sched_map;
|
|
node2->sched_map = sched_map;
|
|
}
|
|
|
|
/* Copy the current band schedule from the SCCs that form the cluster
|
|
* with index "pos" to the actual cluster at position "pos".
|
|
* By construction, the index of the first SCC that belongs to the cluster
|
|
* is also "pos".
|
|
*
|
|
* The order of the nodes inside both the SCCs and the cluster
|
|
* is assumed to be same as the order in the original "graph".
|
|
*
|
|
* Since the SCC graphs will no longer be used after this function,
|
|
* the schedules are actually swapped rather than copied.
|
|
*/
|
|
static isl_stat copy_partial(struct isl_sched_graph *graph,
|
|
struct isl_clustering *c, int pos)
|
|
{
|
|
int i, j;
|
|
|
|
c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
|
|
c->cluster[pos].n_row = c->scc[pos].n_row;
|
|
c->cluster[pos].maxvar = c->scc[pos].maxvar;
|
|
j = 0;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
int k;
|
|
int s;
|
|
|
|
if (graph->node[i].cluster != pos)
|
|
continue;
|
|
s = graph->node[i].scc;
|
|
k = c->scc_node[s]++;
|
|
swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
|
|
if (c->scc[s].maxvar > c->cluster[pos].maxvar)
|
|
c->cluster[pos].maxvar = c->scc[s].maxvar;
|
|
++j;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Is there a (conditional) validity dependence from node[j] to node[i],
|
|
* forcing node[i] to follow node[j] or do the nodes belong to the same
|
|
* cluster?
|
|
*/
|
|
static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
|
|
{
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
if (graph->node[i].cluster == graph->node[j].cluster)
|
|
return isl_bool_true;
|
|
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
|
|
}
|
|
|
|
/* Extract the merged clusters of SCCs in "graph", sort them, and
|
|
* store them in c->clusters. Update c->scc_cluster accordingly.
|
|
*
|
|
* First keep track of the cluster containing the SCC to which a node
|
|
* belongs in the node itself.
|
|
* Then extract the clusters into c->clusters, copying the current
|
|
* band schedule from the SCCs that belong to the cluster.
|
|
* Do this only once per cluster.
|
|
*
|
|
* Finally, topologically sort the clusters and update c->scc_cluster
|
|
* to match the new scc numbering. While the SCCs were originally
|
|
* sorted already, some SCCs that depend on some other SCCs may
|
|
* have been merged with SCCs that appear before these other SCCs.
|
|
* A reordering may therefore be required.
|
|
*/
|
|
static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
struct isl_clustering *c)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n; ++i)
|
|
graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
|
|
|
|
for (i = 0; i < graph->scc; ++i) {
|
|
if (c->scc_cluster[i] != i)
|
|
continue;
|
|
if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
|
|
&edge_cluster_exactly, i, &c->cluster[i]) < 0)
|
|
return isl_stat_error;
|
|
c->cluster[i].src_scc = -1;
|
|
c->cluster[i].dst_scc = -1;
|
|
if (copy_partial(graph, c, i) < 0)
|
|
return isl_stat_error;
|
|
}
|
|
|
|
if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
|
|
return isl_stat_error;
|
|
for (i = 0; i < graph->n; ++i)
|
|
c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Compute weights on the proximity edges of "graph" that can
|
|
* be used by find_proximity to find the most appropriate
|
|
* proximity edge to use to merge two clusters in "c".
|
|
* The weights are also used by has_bounded_distances to determine
|
|
* whether the merge should be allowed.
|
|
* Store the maximum of the computed weights in graph->max_weight.
|
|
*
|
|
* The computed weight is a measure for the number of remaining schedule
|
|
* dimensions that can still be completely aligned.
|
|
* In particular, compute the number of equalities between
|
|
* input dimensions and output dimensions in the proximity constraints.
|
|
* The directions that are already handled by outer schedule bands
|
|
* are projected out prior to determining this number.
|
|
*
|
|
* Edges that will never be considered by find_proximity are ignored.
|
|
*/
|
|
static isl_stat compute_weights(struct isl_sched_graph *graph,
|
|
struct isl_clustering *c)
|
|
{
|
|
int i;
|
|
|
|
graph->max_weight = 0;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
struct isl_sched_node *src = edge->src;
|
|
struct isl_sched_node *dst = edge->dst;
|
|
isl_basic_map *hull;
|
|
isl_bool prox;
|
|
isl_size n_in, n_out, n;
|
|
|
|
prox = is_non_empty_proximity(edge);
|
|
if (prox < 0)
|
|
return isl_stat_error;
|
|
if (!prox)
|
|
continue;
|
|
if (bad_cluster(&c->scc[edge->src->scc]) ||
|
|
bad_cluster(&c->scc[edge->dst->scc]))
|
|
continue;
|
|
if (c->scc_cluster[edge->dst->scc] ==
|
|
c->scc_cluster[edge->src->scc])
|
|
continue;
|
|
|
|
hull = isl_map_affine_hull(isl_map_copy(edge->map));
|
|
hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
|
|
isl_mat_copy(src->vmap));
|
|
hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
|
|
isl_mat_copy(dst->vmap));
|
|
hull = isl_basic_map_project_out(hull,
|
|
isl_dim_in, 0, src->rank);
|
|
hull = isl_basic_map_project_out(hull,
|
|
isl_dim_out, 0, dst->rank);
|
|
hull = isl_basic_map_remove_divs(hull);
|
|
n_in = isl_basic_map_dim(hull, isl_dim_in);
|
|
n_out = isl_basic_map_dim(hull, isl_dim_out);
|
|
if (n_in < 0 || n_out < 0)
|
|
hull = isl_basic_map_free(hull);
|
|
hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
|
|
isl_dim_in, 0, n_in);
|
|
hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
|
|
isl_dim_out, 0, n_out);
|
|
n = isl_basic_map_n_equality(hull);
|
|
isl_basic_map_free(hull);
|
|
if (n < 0)
|
|
return isl_stat_error;
|
|
edge->weight = n;
|
|
|
|
if (edge->weight > graph->max_weight)
|
|
graph->max_weight = edge->weight;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Call compute_schedule_finish_band on each of the clusters in "c"
|
|
* in their topological order. This order is determined by the scc
|
|
* fields of the nodes in "graph".
|
|
* Combine the results in a sequence expressing the topological order.
|
|
*
|
|
* If there is only one cluster left, then there is no need to introduce
|
|
* a sequence node. Also, in this case, the cluster necessarily contains
|
|
* the SCC at position 0 in the original graph and is therefore also
|
|
* stored in the first cluster of "c".
|
|
*/
|
|
static __isl_give isl_schedule_node *finish_bands_clustering(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
|
|
struct isl_clustering *c)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
isl_union_set_list *filters;
|
|
|
|
if (graph->scc == 1)
|
|
return compute_schedule_finish_band(node, &c->cluster[0], 0);
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
|
|
filters = extract_sccs(ctx, graph);
|
|
node = isl_schedule_node_insert_sequence(node, filters);
|
|
|
|
for (i = 0; i < graph->scc; ++i) {
|
|
int j = c->scc_cluster[i];
|
|
node = isl_schedule_node_child(node, i);
|
|
node = isl_schedule_node_child(node, 0);
|
|
node = compute_schedule_finish_band(node, &c->cluster[j], 0);
|
|
node = isl_schedule_node_parent(node);
|
|
node = isl_schedule_node_parent(node);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Compute a schedule for a connected dependence graph by first considering
|
|
* each strongly connected component (SCC) in the graph separately and then
|
|
* incrementally combining them into clusters.
|
|
* Return the updated schedule node.
|
|
*
|
|
* Initially, each cluster consists of a single SCC, each with its
|
|
* own band schedule. The algorithm then tries to merge pairs
|
|
* of clusters along a proximity edge until no more suitable
|
|
* proximity edges can be found. During this merging, the schedule
|
|
* is maintained in the individual SCCs.
|
|
* After the merging is completed, the full resulting clusters
|
|
* are extracted and in finish_bands_clustering,
|
|
* compute_schedule_finish_band is called on each of them to integrate
|
|
* the band into "node" and to continue the computation.
|
|
*
|
|
* compute_weights initializes the weights that are used by find_proximity.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
isl_ctx *ctx;
|
|
struct isl_clustering c;
|
|
int i;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
|
|
if (clustering_init(ctx, &c, graph) < 0)
|
|
goto error;
|
|
|
|
if (compute_weights(graph, &c) < 0)
|
|
goto error;
|
|
|
|
for (;;) {
|
|
i = find_proximity(graph, &c);
|
|
if (i < 0)
|
|
goto error;
|
|
if (i >= graph->n_edge)
|
|
break;
|
|
if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
|
|
goto error;
|
|
}
|
|
|
|
if (extract_clusters(ctx, graph, &c) < 0)
|
|
goto error;
|
|
|
|
node = finish_bands_clustering(node, graph, &c);
|
|
|
|
clustering_free(ctx, &c);
|
|
return node;
|
|
error:
|
|
clustering_free(ctx, &c);
|
|
return isl_schedule_node_free(node);
|
|
}
|
|
|
|
/* Compute a schedule for a connected dependence graph and return
|
|
* the updated schedule node.
|
|
*
|
|
* If Feautrier's algorithm is selected, we first recursively try to satisfy
|
|
* as many validity dependences as possible. When all validity dependences
|
|
* are satisfied we extend the schedule to a full-dimensional schedule.
|
|
*
|
|
* Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
|
|
* depending on whether the user has selected the option to try and
|
|
* compute a schedule for the entire (weakly connected) component first.
|
|
* If there is only a single strongly connected component (SCC), then
|
|
* there is no point in trying to combine SCCs
|
|
* in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
|
|
* is called instead.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_schedule_wcc(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
|
|
{
|
|
isl_ctx *ctx;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
if (detect_sccs(ctx, graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
|
|
if (compute_maxvar(graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
|
|
if (need_feautrier_step(ctx, graph))
|
|
return compute_schedule_wcc_feautrier(node, graph);
|
|
|
|
if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
|
|
return compute_schedule_wcc_whole(node, graph);
|
|
else
|
|
return compute_schedule_wcc_clustering(node, graph);
|
|
}
|
|
|
|
/* Compute a schedule for each group of nodes identified by node->scc
|
|
* separately and then combine them in a sequence node (or as set node
|
|
* if graph->weak is set) inserted at position "node" of the schedule tree.
|
|
* Return the updated schedule node.
|
|
*
|
|
* If "wcc" is set then each of the groups belongs to a single
|
|
* weakly connected component in the dependence graph so that
|
|
* there is no need for compute_sub_schedule to look for weakly
|
|
* connected components.
|
|
*
|
|
* If a set node would be introduced and if the number of components
|
|
* is equal to the number of nodes, then check if the schedule
|
|
* is already complete. If so, a redundant set node would be introduced
|
|
* (without any further descendants) stating that the statements
|
|
* can be executed in arbitrary order, which is also expressed
|
|
* by the absence of any node. Refrain from inserting any nodes
|
|
* in this case and simply return.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_component_schedule(
|
|
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
|
|
int wcc)
|
|
{
|
|
int component;
|
|
isl_ctx *ctx;
|
|
isl_union_set_list *filters;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
if (graph->weak && graph->scc == graph->n) {
|
|
if (compute_maxvar(graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
if (graph->n_row >= graph->maxvar)
|
|
return node;
|
|
}
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
filters = extract_sccs(ctx, graph);
|
|
if (graph->weak)
|
|
node = isl_schedule_node_insert_set(node, filters);
|
|
else
|
|
node = isl_schedule_node_insert_sequence(node, filters);
|
|
|
|
for (component = 0; component < graph->scc; ++component) {
|
|
node = isl_schedule_node_child(node, component);
|
|
node = isl_schedule_node_child(node, 0);
|
|
node = compute_sub_schedule(node, ctx, graph,
|
|
&node_scc_exactly,
|
|
&edge_scc_exactly, component, wcc);
|
|
node = isl_schedule_node_parent(node);
|
|
node = isl_schedule_node_parent(node);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Compute a schedule for the given dependence graph and insert it at "node".
|
|
* Return the updated schedule node.
|
|
*
|
|
* We first check if the graph is connected (through validity and conditional
|
|
* validity dependences) and, if not, compute a schedule
|
|
* for each component separately.
|
|
* If the schedule_serialize_sccs option is set, then we check for strongly
|
|
* connected components instead and compute a separate schedule for
|
|
* each such strongly connected component.
|
|
*/
|
|
static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
isl_ctx *ctx;
|
|
|
|
if (!node)
|
|
return NULL;
|
|
|
|
ctx = isl_schedule_node_get_ctx(node);
|
|
if (isl_options_get_schedule_serialize_sccs(ctx)) {
|
|
if (detect_sccs(ctx, graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
} else {
|
|
if (detect_wccs(ctx, graph) < 0)
|
|
return isl_schedule_node_free(node);
|
|
}
|
|
|
|
if (graph->scc > 1)
|
|
return compute_component_schedule(node, graph, 1);
|
|
|
|
return compute_schedule_wcc(node, graph);
|
|
}
|
|
|
|
/* Compute a schedule on sc->domain that respects the given schedule
|
|
* constraints.
|
|
*
|
|
* In particular, the schedule respects all the validity dependences.
|
|
* If the default isl scheduling algorithm is used, it tries to minimize
|
|
* the dependence distances over the proximity dependences.
|
|
* If Feautrier's scheduling algorithm is used, the proximity dependence
|
|
* distances are only minimized during the extension to a full-dimensional
|
|
* schedule.
|
|
*
|
|
* If there are any condition and conditional validity dependences,
|
|
* then the conditional validity dependences may be violated inside
|
|
* a tilable band, provided they have no adjacent non-local
|
|
* condition dependences.
|
|
*/
|
|
__isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
|
|
__isl_take isl_schedule_constraints *sc)
|
|
{
|
|
isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
|
|
struct isl_sched_graph graph = { 0 };
|
|
isl_schedule *sched;
|
|
isl_schedule_node *node;
|
|
isl_union_set *domain;
|
|
isl_size n;
|
|
|
|
sc = isl_schedule_constraints_align_params(sc);
|
|
|
|
domain = isl_schedule_constraints_get_domain(sc);
|
|
n = isl_union_set_n_set(domain);
|
|
if (n == 0) {
|
|
isl_schedule_constraints_free(sc);
|
|
return isl_schedule_from_domain(domain);
|
|
}
|
|
|
|
if (n < 0 || graph_init(&graph, sc) < 0)
|
|
domain = isl_union_set_free(domain);
|
|
|
|
node = isl_schedule_node_from_domain(domain);
|
|
node = isl_schedule_node_child(node, 0);
|
|
if (graph.n > 0)
|
|
node = compute_schedule(node, &graph);
|
|
sched = isl_schedule_node_get_schedule(node);
|
|
isl_schedule_node_free(node);
|
|
|
|
graph_free(ctx, &graph);
|
|
isl_schedule_constraints_free(sc);
|
|
|
|
return sched;
|
|
}
|
|
|
|
/* Compute a schedule for the given union of domains that respects
|
|
* all the validity dependences and minimizes
|
|
* the dependence distances over the proximity dependences.
|
|
*
|
|
* This function is kept for backward compatibility.
|
|
*/
|
|
__isl_give isl_schedule *isl_union_set_compute_schedule(
|
|
__isl_take isl_union_set *domain,
|
|
__isl_take isl_union_map *validity,
|
|
__isl_take isl_union_map *proximity)
|
|
{
|
|
isl_schedule_constraints *sc;
|
|
|
|
sc = isl_schedule_constraints_on_domain(domain);
|
|
sc = isl_schedule_constraints_set_validity(sc, validity);
|
|
sc = isl_schedule_constraints_set_proximity(sc, proximity);
|
|
|
|
return isl_schedule_constraints_compute_schedule(sc);
|
|
}
|