mirror of
https://review.haiku-os.org/buildtools
synced 2024-11-23 07:18:49 +01:00
c8db99d323
GCC had a horrible .gitignore, untracked files were not applied
375 lines
10 KiB
C++
375 lines
10 KiB
C++
/* Copyright 2016-2017 Tobias Grosser
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Tobias Grosser, Weststrasse 47, CH-8003, Zurich
|
|
*/
|
|
|
|
#ifndef IS_TRUE
|
|
#define IS_TRUE(b) (b)
|
|
#endif
|
|
#ifndef SIZE_VAL
|
|
#define SIZE_VAL(s) (s)
|
|
#endif
|
|
|
|
/* Test the pointer interface for interaction between isl C and C++ types.
|
|
*
|
|
* This tests:
|
|
* - construction from an isl C object
|
|
* - check that constructed objects are non-null
|
|
* - get a non-owned C pointer from an isl C++ object usable in __isl_keep
|
|
* methods
|
|
* - use copy to get an owned C pointer from an isl C++ object which is usable
|
|
* in __isl_take methods. Verify that the original C++ object retains a valid
|
|
* pointer.
|
|
* - use release to get an owned C pointer from an isl C++ object which is
|
|
* usable in __isl_take methods. Verify that the original C++ object gave up
|
|
* its pointer and now is null.
|
|
*/
|
|
void test_pointer(isl::ctx ctx)
|
|
{
|
|
isl_set *c_empty = isl_set_read_from_str(ctx.get(), "{ : false }");
|
|
isl::set empty = isl::manage(c_empty);
|
|
assert(IS_TRUE(empty.is_empty()));
|
|
assert(isl_set_is_empty(empty.get()));
|
|
|
|
assert(!empty.is_null());
|
|
isl_set_free(empty.copy());
|
|
assert(!empty.is_null());
|
|
isl_set_free(empty.release());
|
|
assert(empty.is_null());
|
|
}
|
|
|
|
/* Test that isl objects can be constructed.
|
|
*
|
|
* This tests:
|
|
* - construction of a null object
|
|
* - construction from a string
|
|
* - construction from an integer
|
|
* - static constructor without a parameter
|
|
* - conversion construction (implicit)
|
|
* - conversion construction (explicit)
|
|
* - construction of empty union set
|
|
*
|
|
* The tests to construct from integers and strings cover functionality that
|
|
* is also tested in the parameter type tests, but here we verify that
|
|
* multiple overloaded constructors are available and that overload resolution
|
|
* works as expected.
|
|
*
|
|
* Construction from an isl C pointer is tested in test_pointer.
|
|
*/
|
|
void test_constructors(isl::ctx ctx)
|
|
{
|
|
isl::val null;
|
|
assert(null.is_null());
|
|
|
|
isl::val zero_from_str = isl::val(ctx, "0");
|
|
assert(IS_TRUE(zero_from_str.is_zero()));
|
|
|
|
isl::val zero_int_con = isl::val(ctx, 0);
|
|
assert(IS_TRUE(zero_int_con.is_zero()));
|
|
|
|
isl::val zero_static_con = isl::val::zero(ctx);
|
|
assert(IS_TRUE(zero_static_con.is_zero()));
|
|
|
|
isl::basic_set bs(ctx, "{ [1] }");
|
|
isl::set result(ctx, "{ [1] }");
|
|
isl::set s = bs;
|
|
assert(IS_TRUE(s.is_equal(result)));
|
|
isl::set s2(bs);
|
|
assert(IS_TRUE(s.unite(s2).is_equal(result)));
|
|
|
|
isl::union_set us(ctx, "{ A[1]; B[2, 3] }");
|
|
isl::union_set empty = isl::union_set::empty(ctx);
|
|
assert(IS_TRUE(us.is_equal(us.unite(empty))));
|
|
}
|
|
|
|
/* Test integer function parameters.
|
|
*
|
|
* Verify that extreme values and zero work.
|
|
*/
|
|
void test_parameters_int(isl::ctx ctx)
|
|
{
|
|
isl::val long_max_str(ctx, std::to_string(LONG_MAX));
|
|
isl::val long_max_int(ctx, LONG_MAX);
|
|
assert(IS_TRUE(long_max_str.eq(long_max_int)));
|
|
|
|
isl::val long_min_str(ctx, std::to_string(LONG_MIN));
|
|
isl::val long_min_int(ctx, LONG_MIN);
|
|
assert(IS_TRUE(long_min_str.eq(long_min_int)));
|
|
|
|
isl::val long_zero_str = isl::val(ctx, std::to_string(0));
|
|
isl::val long_zero_int = isl::val(ctx, 0);
|
|
assert(IS_TRUE(long_zero_str.eq(long_zero_int)));
|
|
}
|
|
|
|
/* Test isl objects parameters.
|
|
*
|
|
* Verify that isl objects can be passed as lvalue and rvalue parameters.
|
|
* Also verify that isl object parameters are automatically type converted if
|
|
* there is an inheritance relation. Finally, test function calls without
|
|
* any additional parameters, apart from the isl object on which
|
|
* the method is called.
|
|
*/
|
|
void test_parameters_obj(isl::ctx ctx)
|
|
{
|
|
isl::set a(ctx, "{ [0] }");
|
|
isl::set b(ctx, "{ [1] }");
|
|
isl::set c(ctx, "{ [2] }");
|
|
isl::set expected(ctx, "{ [i] : 0 <= i <= 2 }");
|
|
|
|
isl::set tmp = a.unite(b);
|
|
isl::set res_lvalue_param = tmp.unite(c);
|
|
assert(IS_TRUE(res_lvalue_param.is_equal(expected)));
|
|
|
|
isl::set res_rvalue_param = a.unite(b).unite(c);
|
|
assert(IS_TRUE(res_rvalue_param.is_equal(expected)));
|
|
|
|
isl::basic_set a2(ctx, "{ [0] }");
|
|
assert(IS_TRUE(a.is_equal(a2)));
|
|
|
|
isl::val two(ctx, 2);
|
|
isl::val half(ctx, "1/2");
|
|
isl::val res_only_this_param = two.inv();
|
|
assert(IS_TRUE(res_only_this_param.eq(half)));
|
|
}
|
|
|
|
/* Test different kinds of parameters to be passed to functions.
|
|
*
|
|
* This includes integer and isl C++ object parameters.
|
|
*/
|
|
void test_parameters(isl::ctx ctx)
|
|
{
|
|
test_parameters_int(ctx);
|
|
test_parameters_obj(ctx);
|
|
}
|
|
|
|
/* Test that isl objects are returned correctly.
|
|
*
|
|
* This only tests that after combining two objects, the result is successfully
|
|
* returned.
|
|
*/
|
|
void test_return_obj(isl::ctx ctx)
|
|
{
|
|
isl::val one(ctx, "1");
|
|
isl::val two(ctx, "2");
|
|
isl::val three(ctx, "3");
|
|
|
|
isl::val res = one.add(two);
|
|
|
|
assert(IS_TRUE(res.eq(three)));
|
|
}
|
|
|
|
/* Test that integer values are returned correctly.
|
|
*/
|
|
void test_return_int(isl::ctx ctx)
|
|
{
|
|
isl::val one(ctx, "1");
|
|
isl::val neg_one(ctx, "-1");
|
|
isl::val zero(ctx, "0");
|
|
|
|
assert(one.sgn() > 0);
|
|
assert(neg_one.sgn() < 0);
|
|
assert(zero.sgn() == 0);
|
|
}
|
|
|
|
/* Test that strings are returned correctly.
|
|
* Do so by calling overloaded isl::ast_build::from_expr methods.
|
|
*/
|
|
void test_return_string(isl::ctx ctx)
|
|
{
|
|
isl::set context(ctx, "[n] -> { : }");
|
|
isl::ast_build build = isl::ast_build::from_context(context);
|
|
isl::pw_aff pw_aff(ctx, "[n] -> { [n] }");
|
|
isl::set set(ctx, "[n] -> { : n >= 0 }");
|
|
|
|
isl::ast_expr expr = build.expr_from(pw_aff);
|
|
const char *expected_string = "n";
|
|
assert(expected_string == expr.to_C_str());
|
|
|
|
expr = build.expr_from(set);
|
|
expected_string = "n >= 0";
|
|
assert(expected_string == expr.to_C_str());
|
|
}
|
|
|
|
/* Test the functionality of "every" functions
|
|
* that does not depend on the type of C++ bindings.
|
|
*/
|
|
static void test_every_generic(isl::ctx ctx)
|
|
{
|
|
isl::union_set us(ctx, "{ A[i]; B[j] }");
|
|
|
|
auto is_empty = [] (isl::set s) {
|
|
return s.is_empty();
|
|
};
|
|
assert(!IS_TRUE(us.every_set(is_empty)));
|
|
|
|
auto is_non_empty = [] (isl::set s) {
|
|
return !s.is_empty();
|
|
};
|
|
assert(IS_TRUE(us.every_set(is_non_empty)));
|
|
|
|
auto in_A = [] (isl::set s) {
|
|
return s.is_subset(isl::set(s.ctx(), "{ A[x] }"));
|
|
};
|
|
assert(!IS_TRUE(us.every_set(in_A)));
|
|
|
|
auto not_in_A = [] (isl::set s) {
|
|
return !s.is_subset(isl::set(s.ctx(), "{ A[x] }"));
|
|
};
|
|
assert(!IS_TRUE(us.every_set(not_in_A)));
|
|
}
|
|
|
|
/* Check basic construction of spaces.
|
|
*/
|
|
static void test_space(isl::ctx ctx)
|
|
{
|
|
isl::space unit = isl::space::unit(ctx);
|
|
isl::space set_space = unit.add_named_tuple("A", 3);
|
|
isl::space map_space = set_space.add_named_tuple("B", 2);
|
|
|
|
isl::set set = isl::set::universe(set_space);
|
|
isl::map map = isl::map::universe(map_space);
|
|
assert(IS_TRUE(set.is_equal(isl::set(ctx, "{ A[*,*,*] }"))));
|
|
assert(IS_TRUE(map.is_equal(isl::map(ctx, "{ A[*,*,*] -> B[*,*] }"))));
|
|
}
|
|
|
|
/* Construct a simple schedule tree with an outer sequence node and
|
|
* a single-dimensional band node in each branch, with one of them
|
|
* marked coincident.
|
|
*/
|
|
static isl::schedule construct_schedule_tree(isl::ctx ctx)
|
|
{
|
|
isl::union_set A(ctx, "{ A[i] : 0 <= i < 10 }");
|
|
isl::union_set B(ctx, "{ B[i] : 0 <= i < 20 }");
|
|
|
|
auto node = isl::schedule_node::from_domain(A.unite(B));
|
|
node = node.child(0);
|
|
|
|
isl::union_set_list filters(ctx, 0);
|
|
filters = filters.add(A).add(B);
|
|
node = node.insert_sequence(filters);
|
|
|
|
isl::multi_union_pw_aff f_A(ctx, "[ { A[i] -> [i] } ]");
|
|
node = node.child(0);
|
|
node = node.child(0);
|
|
node = node.insert_partial_schedule(f_A);
|
|
auto band = node.as<isl::schedule_node_band>();
|
|
band = band.member_set_coincident(0, true);
|
|
node = band.ancestor(2);
|
|
|
|
isl::multi_union_pw_aff f_B(ctx, "[ { B[i] -> [i] } ]");
|
|
node = node.child(1);
|
|
node = node.child(0);
|
|
node = node.insert_partial_schedule(f_B);
|
|
node = node.ancestor(2);
|
|
|
|
return node.schedule();
|
|
}
|
|
|
|
/* Test basic schedule tree functionality that is independent
|
|
* of the type of bindings.
|
|
*
|
|
* In particular, create a simple schedule tree and
|
|
* - check that the root node is a domain node
|
|
* - check that an object of a subclass can be used as one of the superclass
|
|
* - test map_descendant_bottom_up in the successful case
|
|
*/
|
|
static isl::schedule_node test_schedule_tree_generic(isl::ctx ctx)
|
|
{
|
|
auto schedule = construct_schedule_tree(ctx);
|
|
auto root = schedule.root();
|
|
|
|
assert(IS_TRUE(root.isa<isl::schedule_node_domain>()));
|
|
root = root.as<isl::schedule_node_domain>().child(0).parent();
|
|
|
|
int count = 0;
|
|
auto inc_count = [&count](isl::schedule_node node) {
|
|
count++;
|
|
return node;
|
|
};
|
|
root = root.map_descendant_bottom_up(inc_count);
|
|
assert(count == 8);
|
|
|
|
return root;
|
|
}
|
|
|
|
/* Test marking band members for unrolling.
|
|
* "schedule" is the schedule created by construct_schedule_tree.
|
|
* It schedules two statements, with 10 and 20 instances, respectively.
|
|
* Unrolling all band members therefore results in 30 at-domain calls
|
|
* by the AST generator.
|
|
*/
|
|
static void test_ast_build_unroll(isl::schedule schedule)
|
|
{
|
|
auto root = schedule.root();
|
|
auto mark_unroll = [](isl::schedule_node node) {
|
|
if (IS_TRUE(node.isa<isl::schedule_node_band>())) {
|
|
auto band = node.as<isl::schedule_node_band>();
|
|
node = band.member_set_ast_loop_unroll(0);
|
|
}
|
|
return node;
|
|
};
|
|
root = root.map_descendant_bottom_up(mark_unroll);
|
|
schedule = root.schedule();
|
|
|
|
int count_ast = 0;
|
|
auto inc_count_ast =
|
|
[&count_ast](isl::ast_node node, isl::ast_build build) {
|
|
count_ast++;
|
|
return node;
|
|
};
|
|
auto build = isl::ast_build(schedule.ctx());
|
|
build = build.set_at_each_domain(inc_count_ast);
|
|
auto ast = build.node_from(schedule);
|
|
assert(count_ast == 30);
|
|
}
|
|
|
|
/* Test basic AST generation from a schedule tree that is independent
|
|
* of the type of bindings.
|
|
*
|
|
* In particular, create a simple schedule tree and
|
|
* - generate an AST from the schedule tree
|
|
* - test at_each_domain in the successful case
|
|
* - test unrolling
|
|
*/
|
|
static isl::schedule test_ast_build_generic(isl::ctx ctx)
|
|
{
|
|
auto schedule = construct_schedule_tree(ctx);
|
|
|
|
int count_ast = 0;
|
|
auto inc_count_ast =
|
|
[&count_ast](isl::ast_node node, isl::ast_build build) {
|
|
count_ast++;
|
|
return node;
|
|
};
|
|
auto build = isl::ast_build(ctx);
|
|
auto build_copy = build.set_at_each_domain(inc_count_ast);
|
|
auto ast = build.node_from(schedule);
|
|
assert(count_ast == 0);
|
|
count_ast = 0;
|
|
ast = build_copy.node_from(schedule);
|
|
assert(count_ast == 2);
|
|
build = build_copy;
|
|
count_ast = 0;
|
|
ast = build.node_from(schedule);
|
|
assert(count_ast == 2);
|
|
|
|
test_ast_build_unroll(schedule);
|
|
|
|
return schedule;
|
|
}
|
|
|
|
/* Test basic AST expression generation from an affine expression.
|
|
*/
|
|
static void test_ast_build_expr(isl::ctx ctx)
|
|
{
|
|
isl::pw_aff pa(ctx, "[n] -> { [n + 1] }");
|
|
isl::ast_build build = isl::ast_build::from_context(pa.domain());
|
|
|
|
auto expr = build.expr_from(pa);
|
|
auto op = expr.as<isl::ast_expr_op>();
|
|
assert(IS_TRUE(op.isa<isl::ast_expr_op_add>()));
|
|
assert(SIZE_VAL(op.n_arg()) == 2);
|
|
}
|