mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-31 10:34:41 +01:00
4389066602
GCC had a horrible .gitignore, untracked files were not applied
179 lines
5.1 KiB
C
179 lines
5.1 KiB
C
/* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas
|
|
primality test on n, using parameters as suggested by the BPSW test.
|
|
|
|
THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
|
|
CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
|
|
FUTURE GNU MP RELEASES.
|
|
|
|
Copyright 2018 Free Software Foundation, Inc.
|
|
|
|
Contributed by Marco Bodrato.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of either:
|
|
|
|
* the GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
or
|
|
|
|
* the GNU General Public License as published by the Free Software
|
|
Foundation; either version 2 of the License, or (at your option) any
|
|
later version.
|
|
|
|
or both in parallel, as here.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received copies of the GNU General Public License and the
|
|
GNU Lesser General Public License along with the GNU MP Library. If not,
|
|
see https://www.gnu.org/licenses/. */
|
|
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
/* Returns an approximation of the sqare root of x.
|
|
* It gives:
|
|
* limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2
|
|
* or
|
|
* x <= limb_apprsqrt (x) ^ 2 <= x * 9/8
|
|
*/
|
|
static mp_limb_t
|
|
limb_apprsqrt (mp_limb_t x)
|
|
{
|
|
int s;
|
|
|
|
ASSERT (x > 2);
|
|
count_leading_zeros (s, x);
|
|
s = (GMP_LIMB_BITS - s) >> 1;
|
|
return ((CNST_LIMB(1) << s) + (x >> s)) >> 1;
|
|
}
|
|
|
|
/* Performs strong Lucas' test on x, with parameters suggested */
|
|
/* for the BPSW test. Qk and V are passed to recycle variables. */
|
|
/* Requires GCD (x,6) = 1.*/
|
|
int
|
|
mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk)
|
|
{
|
|
mp_bitcnt_t b0;
|
|
mpz_t n;
|
|
mp_limb_t D; /* The absolute value is stored. */
|
|
long Q;
|
|
mpz_t T1, T2;
|
|
|
|
/* Test on the absolute value. */
|
|
mpz_roinit_n (n, PTR (x), ABSIZ (x));
|
|
|
|
ASSERT (mpz_odd_p (n));
|
|
/* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1); */
|
|
#if GMP_NUMB_BITS % 16 == 0
|
|
/* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */
|
|
D = mpn_mod_34lsub1 (PTR (n), SIZ (n));
|
|
/* (2^12 - 1) = 3^2 * 5 * 7 * 13 */
|
|
ASSERT (D % 3 != 0 && D % 5 != 0 && D % 7 != 0);
|
|
if ((D % 5 & 2) != 0)
|
|
/* (5/n) = -1, iff n = 2 or 3 (mod 5) */
|
|
/* D = 5; Q = -1 */
|
|
return mpn_strongfibo (PTR (n), SIZ (n), PTR (V));
|
|
else if (! POW2_P (D % 7))
|
|
/* (-7/n) = -1, iff n = 3,5 or 6 (mod 7) */
|
|
D = 7; /* Q = 2 */
|
|
/* (9/n) = -1, never: 9 = 3^2 */
|
|
else if (mpz_kronecker_ui (n, 11) == -1)
|
|
/* (-11/n) = (n/11) */
|
|
D = 11; /* Q = 3 */
|
|
else if ((((D % 13 - (D % 13 >> 3)) & 7) > 4) ||
|
|
(((D % 13 - (D % 13 >> 3)) & 7) == 2))
|
|
/* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13) */
|
|
D = 13; /* Q = -3 */
|
|
else if (D % 3 == 2)
|
|
/* (-15/n) = (n/15) = (n/5)*(n/3) */
|
|
/* Here, (n/5) = 1, and */
|
|
/* (n/3) = -1, iff n = 2 (mod 3) */
|
|
D = 15; /* Q = 4 */
|
|
#if GMP_NUMB_BITS % 32 == 0
|
|
/* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */
|
|
/* (2^24 - 1) = (2^12 - 1) * 17 * 241 */
|
|
else if (! POW2_P (D % 17) && ! POW2_P (17 - D % 17))
|
|
D = 17; /* Q = -4 */
|
|
#endif
|
|
#else
|
|
if (mpz_kronecker_ui (n, 5) == -1)
|
|
return mpn_strongfibo (PTR (n), SIZ (n), PTR (V));
|
|
#endif
|
|
else
|
|
{
|
|
mp_limb_t tl;
|
|
mp_limb_t maxD;
|
|
int jac_bit1;
|
|
|
|
if (UNLIKELY (mpz_perfect_square_p (n)))
|
|
return 0; /* A square is composite. */
|
|
|
|
/* Check Ds up to square root (in case, n is prime)
|
|
or avoid overflows */
|
|
if (SIZ (n) == 1)
|
|
maxD = limb_apprsqrt (* PTR (n));
|
|
else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2)
|
|
mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2);
|
|
else
|
|
maxD = GMP_NUMB_MAX;
|
|
maxD = MIN (maxD, ULONG_MAX);
|
|
|
|
D = GMP_NUMB_BITS % 16 == 0 ? (GMP_NUMB_BITS % 32 == 0 ? 17 : 15) : 5;
|
|
|
|
/* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */
|
|
/* For those Ds we have (D/n) = (n/|D|) */
|
|
/* FIXME: Should we loop only on prime Ds? */
|
|
/* The only interesting composite D is 15. */
|
|
do
|
|
{
|
|
if (UNLIKELY (D >= maxD))
|
|
return 1;
|
|
D += 2;
|
|
jac_bit1 = 0;
|
|
JACOBI_MOD_OR_MODEXACT_1_ODD (jac_bit1, tl, PTR (n), SIZ (n), D);
|
|
if (UNLIKELY (tl == 0))
|
|
return 0;
|
|
}
|
|
while (mpn_jacobi_base (tl, D, jac_bit1) == 1);
|
|
}
|
|
|
|
/* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */
|
|
Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2);
|
|
/* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */
|
|
|
|
/* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */
|
|
b0 = mpz_scan0 (n, 0);
|
|
|
|
mpz_init (T1);
|
|
mpz_init (T2);
|
|
|
|
/* If Ud != 0 && Vd != 0 */
|
|
if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0)
|
|
if (LIKELY (--b0 != 0))
|
|
do
|
|
{
|
|
/* V_{2k} <- V_k ^ 2 - 2Q^k */
|
|
mpz_mul (T2, V, V);
|
|
mpz_submul_ui (T2, Qk, 2);
|
|
mpz_tdiv_r (V, T2, n);
|
|
if (SIZ (V) == 0 || UNLIKELY (--b0 == 0))
|
|
break;
|
|
/* Q^{2k} = (Q^k)^2 */
|
|
mpz_mul (T2, Qk, Qk);
|
|
mpz_tdiv_r (Qk, T2, n);
|
|
} while (1);
|
|
|
|
mpz_clear (T1);
|
|
mpz_clear (T2);
|
|
|
|
return (b0 != 0);
|
|
}
|