mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-31 02:24:40 +01:00
b58ddff026
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
158 lines
5.3 KiB
C
158 lines
5.3 KiB
C
/* mpfr_sinh_cosh -- hyperbolic sine and cosine
|
|
|
|
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
#define INEXPOS(y) ((y) == 0 ? 0 : (((y) > 0) ? 1 : 2))
|
|
#define INEX(y,z) (INEXPOS(y) | (INEXPOS(z) << 2))
|
|
|
|
/* The computations are done by
|
|
cosh(x) = 1/2 [e^(x)+e^(-x)]
|
|
sinh(x) = 1/2 [e^(x)-e^(-x)]
|
|
Adapted from mpfr_sinh.c */
|
|
|
|
int
|
|
mpfr_sinh_cosh (mpfr_ptr sh, mpfr_ptr ch, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
|
|
{
|
|
mpfr_t x;
|
|
int inexact_sh, inexact_ch;
|
|
|
|
MPFR_ASSERTN (sh != ch);
|
|
|
|
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode),
|
|
("sh[%#R]=%R ch[%#R]=%R", sh, sh, ch, ch));
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
|
|
{
|
|
if (MPFR_IS_NAN (xt))
|
|
{
|
|
MPFR_SET_NAN (ch);
|
|
MPFR_SET_NAN (sh);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_IS_INF (xt))
|
|
{
|
|
MPFR_SET_INF (sh);
|
|
MPFR_SET_SAME_SIGN (sh, xt);
|
|
MPFR_SET_INF (ch);
|
|
MPFR_SET_POS (ch);
|
|
MPFR_RET (0);
|
|
}
|
|
else /* xt is zero */
|
|
{
|
|
MPFR_ASSERTD (MPFR_IS_ZERO (xt));
|
|
MPFR_SET_ZERO (sh); /* sinh(0) = 0 */
|
|
MPFR_SET_SAME_SIGN (sh, xt);
|
|
inexact_sh = 0;
|
|
inexact_ch = mpfr_set_ui (ch, 1, rnd_mode); /* cosh(0) = 1 */
|
|
return INEX(inexact_sh,inexact_ch);
|
|
}
|
|
}
|
|
|
|
/* Warning: if we use MPFR_FAST_COMPUTE_IF_SMALL_INPUT here, make sure
|
|
that the code also works in case of overlap (see sin_cos.c) */
|
|
|
|
MPFR_TMP_INIT_ABS (x, xt);
|
|
|
|
{
|
|
mpfr_t s, c, ti;
|
|
mpfr_exp_t d;
|
|
mpfr_prec_t N; /* Precision of the intermediary variables */
|
|
long int err; /* Precision of error */
|
|
MPFR_ZIV_DECL (loop);
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
MPFR_GROUP_DECL (group);
|
|
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
/* compute the precision of intermediary variable */
|
|
N = MPFR_PREC (ch);
|
|
N = MAX (N, MPFR_PREC (sh));
|
|
/* the optimal number of bits : see algorithms.ps */
|
|
N = N + MPFR_INT_CEIL_LOG2 (N) + 4;
|
|
|
|
/* initialise of intermediary variables */
|
|
MPFR_GROUP_INIT_3 (group, N, s, c, ti);
|
|
|
|
/* First computation of sinh_cosh */
|
|
MPFR_ZIV_INIT (loop, N);
|
|
for (;;)
|
|
{
|
|
MPFR_BLOCK_DECL (flags);
|
|
|
|
/* compute sinh_cosh */
|
|
MPFR_BLOCK (flags, mpfr_exp (s, x, MPFR_RNDD));
|
|
if (MPFR_OVERFLOW (flags))
|
|
/* exp(x) does overflow */
|
|
{
|
|
/* since cosh(x) >= exp(x), cosh(x) overflows too */
|
|
inexact_ch = mpfr_overflow (ch, rnd_mode, MPFR_SIGN_POS);
|
|
/* sinh(x) may be representable */
|
|
inexact_sh = mpfr_sinh (sh, xt, rnd_mode);
|
|
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
|
|
break;
|
|
}
|
|
d = MPFR_GET_EXP (s);
|
|
mpfr_ui_div (ti, 1, s, MPFR_RNDU); /* 1/exp(x) */
|
|
mpfr_add (c, s, ti, MPFR_RNDU); /* exp(x) + 1/exp(x) */
|
|
mpfr_sub (s, s, ti, MPFR_RNDN); /* exp(x) - 1/exp(x) */
|
|
mpfr_div_2ui (c, c, 1, MPFR_RNDN); /* 1/2(exp(x) + 1/exp(x)) */
|
|
mpfr_div_2ui (s, s, 1, MPFR_RNDN); /* 1/2(exp(x) - 1/exp(x)) */
|
|
|
|
/* it may be that s is zero (in fact, it can only occur when exp(x)=1,
|
|
and thus ti=1 too) */
|
|
if (MPFR_IS_ZERO (s))
|
|
err = N; /* double the precision */
|
|
else
|
|
{
|
|
/* calculation of the error */
|
|
d = d - MPFR_GET_EXP (s) + 2;
|
|
/* error estimate: err = N-(__gmpfr_ceil_log2(1+pow(2,d)));*/
|
|
err = N - (MAX (d, 0) + 1);
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, err, MPFR_PREC (sh),
|
|
rnd_mode) && \
|
|
MPFR_CAN_ROUND (c, err, MPFR_PREC (ch),
|
|
rnd_mode)))
|
|
{
|
|
inexact_sh = mpfr_set4 (sh, s, rnd_mode, MPFR_SIGN (xt));
|
|
inexact_ch = mpfr_set (ch, c, rnd_mode);
|
|
break;
|
|
}
|
|
}
|
|
/* actualisation of the precision */
|
|
N += err;
|
|
MPFR_ZIV_NEXT (loop, N);
|
|
MPFR_GROUP_REPREC_3 (group, N, s, c, ti);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
MPFR_GROUP_CLEAR (group);
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
}
|
|
|
|
/* now, let's raise the flags if needed */
|
|
inexact_sh = mpfr_check_range (sh, inexact_sh, rnd_mode);
|
|
inexact_ch = mpfr_check_range (ch, inexact_ch, rnd_mode);
|
|
|
|
return INEX(inexact_sh,inexact_ch);
|
|
}
|