mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-31 10:34:41 +01:00
b58ddff026
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
222 lines
6.6 KiB
C
222 lines
6.6 KiB
C
/* mpfr_const_euler -- Euler's constant
|
|
|
|
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* Declare the cache */
|
|
MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_euler, mpfr_const_euler_internal);
|
|
|
|
/* Set User Interface */
|
|
#undef mpfr_const_euler
|
|
int
|
|
mpfr_const_euler (mpfr_ptr x, mpfr_rnd_t rnd_mode) {
|
|
return mpfr_cache (x, __gmpfr_cache_const_euler, rnd_mode);
|
|
}
|
|
|
|
|
|
static void mpfr_const_euler_S2 (mpfr_ptr, unsigned long);
|
|
static void mpfr_const_euler_R (mpfr_ptr, unsigned long);
|
|
|
|
int
|
|
mpfr_const_euler_internal (mpfr_t x, mpfr_rnd_t rnd)
|
|
{
|
|
mpfr_prec_t prec = MPFR_PREC(x), m, log2m;
|
|
mpfr_t y, z;
|
|
unsigned long n;
|
|
int inexact;
|
|
MPFR_ZIV_DECL (loop);
|
|
|
|
log2m = MPFR_INT_CEIL_LOG2 (prec);
|
|
m = prec + 2 * log2m + 23;
|
|
|
|
mpfr_init2 (y, m);
|
|
mpfr_init2 (z, m);
|
|
|
|
MPFR_ZIV_INIT (loop, m);
|
|
for (;;)
|
|
{
|
|
mpfr_exp_t exp_S, err;
|
|
/* since prec >= 1, we have m >= 24 here, which ensures n >= 9 below */
|
|
n = 1 + (unsigned long) ((double) m * LOG2 / 2.0);
|
|
MPFR_ASSERTD (n >= 9);
|
|
mpfr_const_euler_S2 (y, n); /* error <= 3 ulps */
|
|
exp_S = MPFR_EXP(y);
|
|
mpfr_set_ui (z, n, MPFR_RNDN);
|
|
mpfr_log (z, z, MPFR_RNDD); /* error <= 1 ulp */
|
|
mpfr_sub (y, y, z, MPFR_RNDN); /* S'(n) - log(n) */
|
|
/* the error is less than 1/2 + 3*2^(exp_S-EXP(y)) + 2^(EXP(z)-EXP(y))
|
|
<= 1/2 + 2^(exp_S+2-EXP(y)) + 2^(EXP(z)-EXP(y))
|
|
<= 1/2 + 2^(1+MAX(exp_S+2,EXP(z))-EXP(y)) */
|
|
err = 1 + MAX(exp_S + 2, MPFR_EXP(z)) - MPFR_EXP(y);
|
|
err = (err >= -1) ? err + 1 : 0; /* error <= 2^err ulp(y) */
|
|
exp_S = MPFR_EXP(y);
|
|
mpfr_const_euler_R (z, n); /* err <= ulp(1/2) = 2^(-m) */
|
|
mpfr_sub (y, y, z, MPFR_RNDN);
|
|
/* err <= 1/2 ulp(y) + 2^(-m) + 2^(err + exp_S - EXP(y)) ulp(y).
|
|
Since the result is between 0.5 and 1, ulp(y) = 2^(-m).
|
|
So we get 3/2*ulp(y) + 2^(err + exp_S - EXP(y)) ulp(y).
|
|
3/2 + 2^e <= 2^(e+1) for e>=1, and <= 2^2 otherwise */
|
|
err = err + exp_S - MPFR_EXP(y);
|
|
err = (err >= 1) ? err + 1 : 2;
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (y, m - err, prec, rnd)))
|
|
break;
|
|
MPFR_ZIV_NEXT (loop, m);
|
|
mpfr_set_prec (y, m);
|
|
mpfr_set_prec (z, m);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
inexact = mpfr_set (x, y, rnd);
|
|
|
|
mpfr_clear (y);
|
|
mpfr_clear (z);
|
|
|
|
return inexact; /* always inexact */
|
|
}
|
|
|
|
static void
|
|
mpfr_const_euler_S2_aux (mpz_t P, mpz_t Q, mpz_t T, unsigned long n,
|
|
unsigned long a, unsigned long b, int need_P)
|
|
{
|
|
if (a + 1 == b)
|
|
{
|
|
mpz_set_ui (P, n);
|
|
if (a > 1)
|
|
mpz_mul_si (P, P, 1 - (long) a);
|
|
mpz_set (T, P);
|
|
mpz_set_ui (Q, a);
|
|
mpz_mul_ui (Q, Q, a);
|
|
}
|
|
else
|
|
{
|
|
unsigned long c = (a + b) / 2;
|
|
mpz_t P2, Q2, T2;
|
|
mpfr_const_euler_S2_aux (P, Q, T, n, a, c, 1);
|
|
mpz_init (P2);
|
|
mpz_init (Q2);
|
|
mpz_init (T2);
|
|
mpfr_const_euler_S2_aux (P2, Q2, T2, n, c, b, 1);
|
|
mpz_mul (T, T, Q2);
|
|
mpz_mul (T2, T2, P);
|
|
mpz_add (T, T, T2);
|
|
if (need_P)
|
|
mpz_mul (P, P, P2);
|
|
mpz_mul (Q, Q, Q2);
|
|
mpz_clear (P2);
|
|
mpz_clear (Q2);
|
|
mpz_clear (T2);
|
|
/* divide by 2 if possible */
|
|
{
|
|
unsigned long v2;
|
|
v2 = mpz_scan1 (P, 0);
|
|
c = mpz_scan1 (Q, 0);
|
|
if (c < v2)
|
|
v2 = c;
|
|
c = mpz_scan1 (T, 0);
|
|
if (c < v2)
|
|
v2 = c;
|
|
if (v2)
|
|
{
|
|
mpz_tdiv_q_2exp (P, P, v2);
|
|
mpz_tdiv_q_2exp (Q, Q, v2);
|
|
mpz_tdiv_q_2exp (T, T, v2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* computes S(n) = sum(n^k*(-1)^(k-1)/k!/k, k=1..ceil(4.319136566 * n))
|
|
using binary splitting.
|
|
We have S(n) = sum(f(k), k=1..N) with N=ceil(4.319136566 * n)
|
|
and f(k) = n^k*(-1)*(k-1)/k!/k,
|
|
thus f(k)/f(k-1) = -n*(k-1)/k^2
|
|
*/
|
|
static void
|
|
mpfr_const_euler_S2 (mpfr_t x, unsigned long n)
|
|
{
|
|
mpz_t P, Q, T;
|
|
unsigned long N = (unsigned long) (ALPHA * (double) n + 1.0);
|
|
mpz_init (P);
|
|
mpz_init (Q);
|
|
mpz_init (T);
|
|
mpfr_const_euler_S2_aux (P, Q, T, n, 1, N + 1, 0);
|
|
mpfr_set_z (x, T, MPFR_RNDN);
|
|
mpfr_div_z (x, x, Q, MPFR_RNDN);
|
|
mpz_clear (P);
|
|
mpz_clear (Q);
|
|
mpz_clear (T);
|
|
}
|
|
|
|
/* computes R(n) = exp(-n)/n * sum(k!/(-n)^k, k=0..n-2)
|
|
with error at most 4*ulp(x). Assumes n>=2.
|
|
Since x <= exp(-n)/n <= 1/8, then 4*ulp(x) <= ulp(1).
|
|
*/
|
|
static void
|
|
mpfr_const_euler_R (mpfr_t x, unsigned long n)
|
|
{
|
|
unsigned long k, m;
|
|
mpz_t a, s;
|
|
mpfr_t y;
|
|
|
|
MPFR_ASSERTN (n >= 2); /* ensures sum(k!/(-n)^k, k=0..n-2) >= 2/3 */
|
|
|
|
/* as we multiply the sum by exp(-n), we need only PREC(x) - n/LOG2 bits */
|
|
m = MPFR_PREC(x) - (unsigned long) ((double) n / LOG2);
|
|
|
|
mpz_init_set_ui (a, 1);
|
|
mpz_mul_2exp (a, a, m);
|
|
mpz_init_set (s, a);
|
|
|
|
for (k = 1; k <= n; k++)
|
|
{
|
|
mpz_mul_ui (a, a, k);
|
|
mpz_fdiv_q_ui (a, a, n);
|
|
/* the error e(k) on a is e(k) <= 1 + k/n*e(k-1) with e(0)=0,
|
|
i.e. e(k) <= k */
|
|
if (k % 2)
|
|
mpz_sub (s, s, a);
|
|
else
|
|
mpz_add (s, s, a);
|
|
}
|
|
/* the error on s is at most 1+2+...+n = n*(n+1)/2 */
|
|
mpz_fdiv_q_ui (s, s, n); /* err <= 1 + (n+1)/2 */
|
|
MPFR_ASSERTN (MPFR_PREC(x) >= mpz_sizeinbase(s, 2));
|
|
mpfr_set_z (x, s, MPFR_RNDD); /* exact */
|
|
mpfr_div_2ui (x, x, m, MPFR_RNDD);
|
|
/* now x = 1/n * sum(k!/(-n)^k, k=0..n-2) <= 1/n */
|
|
/* err(x) <= (n+1)/2^m <= (n+1)*exp(n)/2^PREC(x) */
|
|
|
|
mpfr_init2 (y, m);
|
|
mpfr_set_si (y, -(long)n, MPFR_RNDD); /* assumed exact */
|
|
mpfr_exp (y, y, MPFR_RNDD); /* err <= ulp(y) <= exp(-n)*2^(1-m) */
|
|
mpfr_mul (x, x, y, MPFR_RNDD);
|
|
/* err <= ulp(x) + (n + 1 + 2/n) / 2^prec(x)
|
|
<= ulp(x) + (n + 1 + 2/n) ulp(x)/x since x*2^(-prec(x)) < ulp(x)
|
|
<= ulp(x) + (n + 1 + 2/n) 3/(2n) ulp(x) since x >= 2/3*n for n >= 2
|
|
<= 4 * ulp(x) for n >= 2 */
|
|
mpfr_clear (y);
|
|
|
|
mpz_clear (a);
|
|
mpz_clear (s);
|
|
}
|