mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-31 10:34:41 +01:00
b58ddff026
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
264 lines
9.7 KiB
C
264 lines
9.7 KiB
C
/* mpfr_erfc -- The Complementary Error Function of a floating-point number
|
|
|
|
Copyright 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* erfc(x) = 1 - erf(x) */
|
|
|
|
/* Put in y an approximation of erfc(x) for large x, using formulae 7.1.23 and
|
|
7.1.24 from Abramowitz and Stegun.
|
|
Returns e such that the error is bounded by 2^e ulp(y),
|
|
or returns 0 in case of underflow.
|
|
*/
|
|
static mpfr_exp_t
|
|
mpfr_erfc_asympt (mpfr_ptr y, mpfr_srcptr x)
|
|
{
|
|
mpfr_t t, xx, err;
|
|
unsigned long k;
|
|
mpfr_prec_t prec = MPFR_PREC(y);
|
|
mpfr_exp_t exp_err;
|
|
|
|
mpfr_init2 (t, prec);
|
|
mpfr_init2 (xx, prec);
|
|
mpfr_init2 (err, 31);
|
|
/* let u = 2^(1-p), and let us represent the error as (1+u)^err
|
|
with a bound for err */
|
|
mpfr_mul (xx, x, x, MPFR_RNDD); /* err <= 1 */
|
|
mpfr_ui_div (xx, 1, xx, MPFR_RNDU); /* upper bound for 1/(2x^2), err <= 2 */
|
|
mpfr_div_2ui (xx, xx, 1, MPFR_RNDU); /* exact */
|
|
mpfr_set_ui (t, 1, MPFR_RNDN); /* current term, exact */
|
|
mpfr_set (y, t, MPFR_RNDN); /* current sum */
|
|
mpfr_set_ui (err, 0, MPFR_RNDN);
|
|
for (k = 1; ; k++)
|
|
{
|
|
mpfr_mul_ui (t, t, 2 * k - 1, MPFR_RNDU); /* err <= 4k-3 */
|
|
mpfr_mul (t, t, xx, MPFR_RNDU); /* err <= 4k */
|
|
/* for -1 < x < 1, and |nx| < 1, we have |(1+x)^n| <= 1+7/4|nx|.
|
|
Indeed, for x>=0: log((1+x)^n) = n*log(1+x) <= n*x. Let y=n*x < 1,
|
|
then exp(y) <= 1+7/4*y.
|
|
For x<=0, let x=-x, we can prove by induction that (1-x)^n >= 1-n*x.*/
|
|
mpfr_mul_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU);
|
|
mpfr_add_ui (err, err, 14 * k, MPFR_RNDU); /* 2^(1-p) * t <= 2 ulp(t) */
|
|
mpfr_div_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU);
|
|
if (MPFR_GET_EXP (t) + (mpfr_exp_t) prec <= MPFR_GET_EXP (y))
|
|
{
|
|
/* the truncation error is bounded by |t| < ulp(y) */
|
|
mpfr_add_ui (err, err, 1, MPFR_RNDU);
|
|
break;
|
|
}
|
|
if (k & 1)
|
|
mpfr_sub (y, y, t, MPFR_RNDN);
|
|
else
|
|
mpfr_add (y, y, t, MPFR_RNDN);
|
|
}
|
|
/* the error on y is bounded by err*ulp(y) */
|
|
mpfr_mul (t, x, x, MPFR_RNDU); /* rel. err <= 2^(1-p) */
|
|
mpfr_div_2ui (err, err, 3, MPFR_RNDU); /* err/8 */
|
|
mpfr_add (err, err, t, MPFR_RNDU); /* err/8 + xx */
|
|
mpfr_mul_2ui (err, err, 3, MPFR_RNDU); /* err + 8*xx */
|
|
mpfr_exp (t, t, MPFR_RNDU); /* err <= 1/2*ulp(t) + err(x*x)*t
|
|
<= 1/2*ulp(t)+2*|x*x|*ulp(t)
|
|
<= (2*|x*x|+1/2)*ulp(t) */
|
|
mpfr_mul (t, t, x, MPFR_RNDN); /* err <= 1/2*ulp(t) + (4*|x*x|+1)*ulp(t)
|
|
<= (4*|x*x|+3/2)*ulp(t) */
|
|
mpfr_const_pi (xx, MPFR_RNDZ); /* err <= ulp(Pi) */
|
|
mpfr_sqrt (xx, xx, MPFR_RNDN); /* err <= 1/2*ulp(xx) + ulp(Pi)/2/sqrt(Pi)
|
|
<= 3/2*ulp(xx) */
|
|
mpfr_mul (t, t, xx, MPFR_RNDN); /* err <= (8 |xx| + 13/2) * ulp(t) */
|
|
mpfr_div (y, y, t, MPFR_RNDN); /* the relative error on input y is bounded
|
|
by (1+u)^err with u = 2^(1-p), that on
|
|
t is bounded by (1+u)^(8 |xx| + 13/2),
|
|
thus that on output y is bounded by
|
|
8 |xx| + 7 + err. */
|
|
|
|
if (MPFR_IS_ZERO(y))
|
|
{
|
|
/* If y is zero, most probably we have underflow. We check it directly
|
|
using the fact that erfc(x) <= exp(-x^2)/sqrt(Pi)/x for x >= 0.
|
|
We compute an upper approximation of exp(-x^2)/sqrt(Pi)/x.
|
|
*/
|
|
mpfr_mul (t, x, x, MPFR_RNDD); /* t <= x^2 */
|
|
mpfr_neg (t, t, MPFR_RNDU); /* -x^2 <= t */
|
|
mpfr_exp (t, t, MPFR_RNDU); /* exp(-x^2) <= t */
|
|
mpfr_const_pi (xx, MPFR_RNDD); /* xx <= sqrt(Pi), cached */
|
|
mpfr_mul (xx, xx, x, MPFR_RNDD); /* xx <= sqrt(Pi)*x */
|
|
mpfr_div (y, t, xx, MPFR_RNDN); /* if y is zero, this means that the upper
|
|
approximation of exp(-x^2)/sqrt(Pi)/x
|
|
is nearer from 0 than from 2^(-emin-1),
|
|
thus we have underflow. */
|
|
exp_err = 0;
|
|
}
|
|
else
|
|
{
|
|
mpfr_add_ui (err, err, 7, MPFR_RNDU);
|
|
exp_err = MPFR_GET_EXP (err);
|
|
}
|
|
|
|
mpfr_clear (t);
|
|
mpfr_clear (xx);
|
|
mpfr_clear (err);
|
|
return exp_err;
|
|
}
|
|
|
|
int
|
|
mpfr_erfc (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
|
|
{
|
|
int inex;
|
|
mpfr_t tmp;
|
|
mpfr_exp_t te, err;
|
|
mpfr_prec_t prec;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
MPFR_ZIV_DECL (loop);
|
|
|
|
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd),
|
|
("y[%#R]=%R inexact=%d", y, y, inex));
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
{
|
|
if (MPFR_IS_NAN (x))
|
|
{
|
|
MPFR_SET_NAN (y);
|
|
MPFR_RET_NAN;
|
|
}
|
|
/* erfc(+inf) = 0+, erfc(-inf) = 2 erfc (0) = 1 */
|
|
else if (MPFR_IS_INF (x))
|
|
return mpfr_set_ui (y, MPFR_IS_POS (x) ? 0 : 2, rnd);
|
|
else
|
|
return mpfr_set_ui (y, 1, rnd);
|
|
}
|
|
|
|
if (MPFR_SIGN (x) > 0)
|
|
{
|
|
/* for x >= 27282, erfc(x) < 2^(-2^30-1) */
|
|
if (mpfr_cmp_ui (x, 27282) >= 0)
|
|
return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1);
|
|
}
|
|
|
|
if (MPFR_SIGN (x) < 0)
|
|
{
|
|
mpfr_exp_t e = MPFR_EXP(x);
|
|
/* For x < 0 going to -infinity, erfc(x) tends to 2 by below.
|
|
More precisely, we have 2 + 1/sqrt(Pi)/x/exp(x^2) < erfc(x) < 2.
|
|
Thus log2 |2 - erfc(x)| <= -log2|x| - x^2 / log(2).
|
|
If |2 - erfc(x)| < 2^(-PREC(y)) then the result is either 2 or
|
|
nextbelow(2).
|
|
For x <= -27282, -log2|x| - x^2 / log(2) <= -2^30.
|
|
*/
|
|
if ((MPFR_PREC(y) <= 7 && e >= 2) || /* x <= -2 */
|
|
(MPFR_PREC(y) <= 25 && e >= 3) || /* x <= -4 */
|
|
(MPFR_PREC(y) <= 120 && mpfr_cmp_si (x, -9) <= 0) ||
|
|
mpfr_cmp_si (x, -27282) <= 0)
|
|
{
|
|
near_two:
|
|
mpfr_set_ui (y, 2, MPFR_RNDN);
|
|
mpfr_set_inexflag ();
|
|
if (rnd == MPFR_RNDZ || rnd == MPFR_RNDD)
|
|
{
|
|
mpfr_nextbelow (y);
|
|
return -1;
|
|
}
|
|
else
|
|
return 1;
|
|
}
|
|
else if (e >= 3) /* more accurate test */
|
|
{
|
|
mpfr_t t, u;
|
|
int near_2;
|
|
mpfr_init2 (t, 32);
|
|
mpfr_init2 (u, 32);
|
|
/* the following is 1/log(2) rounded to zero on 32 bits */
|
|
mpfr_set_str_binary (t, "1.0111000101010100011101100101001");
|
|
mpfr_sqr (u, x, MPFR_RNDZ);
|
|
mpfr_mul (t, t, u, MPFR_RNDZ); /* t <= x^2/log(2) */
|
|
mpfr_neg (u, x, MPFR_RNDZ); /* 0 <= u <= |x| */
|
|
mpfr_log2 (u, u, MPFR_RNDZ); /* u <= log2(|x|) */
|
|
mpfr_add (t, t, u, MPFR_RNDZ); /* t <= log2|x| + x^2 / log(2) */
|
|
near_2 = mpfr_cmp_ui (t, MPFR_PREC(y)) >= 0;
|
|
mpfr_clear (t);
|
|
mpfr_clear (u);
|
|
if (near_2)
|
|
goto near_two;
|
|
}
|
|
}
|
|
|
|
/* Init stuff */
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
/* erfc(x) ~ 1, with error < 2^(EXP(x)+1) */
|
|
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, __gmpfr_one, - MPFR_GET_EXP (x) - 1,
|
|
0, MPFR_SIGN(x) < 0,
|
|
rnd, inex = _inexact; goto end);
|
|
|
|
prec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 3;
|
|
if (MPFR_GET_EXP (x) > 0)
|
|
prec += 2 * MPFR_GET_EXP(x);
|
|
|
|
mpfr_init2 (tmp, prec);
|
|
|
|
MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controler */
|
|
for (;;) /* Infinite loop */
|
|
{
|
|
/* use asymptotic formula only whenever x^2 >= p*log(2),
|
|
otherwise it will not converge */
|
|
if (MPFR_SIGN (x) > 0 &&
|
|
2 * MPFR_GET_EXP (x) - 2 >= MPFR_INT_CEIL_LOG2 (prec))
|
|
/* we have x^2 >= p in that case */
|
|
{
|
|
err = mpfr_erfc_asympt (tmp, x);
|
|
if (err == 0) /* underflow case */
|
|
{
|
|
mpfr_clear (tmp);
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mpfr_erf (tmp, x, MPFR_RNDN);
|
|
MPFR_ASSERTD (!MPFR_IS_SINGULAR (tmp)); /* FIXME: 0 only for x=0 ? */
|
|
te = MPFR_GET_EXP (tmp);
|
|
mpfr_ui_sub (tmp, 1, tmp, MPFR_RNDN);
|
|
/* See error analysis in algorithms.tex for details */
|
|
if (MPFR_IS_ZERO (tmp))
|
|
{
|
|
prec *= 2;
|
|
err = prec; /* ensures MPFR_CAN_ROUND fails */
|
|
}
|
|
else
|
|
err = MAX (te - MPFR_GET_EXP (tmp), 0) + 1;
|
|
}
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd)))
|
|
break;
|
|
MPFR_ZIV_NEXT (loop, prec); /* Increase used precision */
|
|
mpfr_set_prec (tmp, prec);
|
|
}
|
|
MPFR_ZIV_FREE (loop); /* Free the ZivLoop Controler */
|
|
|
|
inex = mpfr_set (y, tmp, rnd); /* Set y to the computed value */
|
|
mpfr_clear (tmp);
|
|
|
|
end:
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (y, inex, rnd);
|
|
}
|