buildtools/gcc/isl/isl_equalities.c
Fredrik Holmqvist 0b514caa50 Move isl inside gcc dir
Moving it inside gcc dir allows gcc to detect and build isl while
building gcc. It has dependencies on other libraries that would
need to be prebuilt if we build it ourselves.

This is one of a few steps in building gcc with isl and allowing graphite
optimization flags.
2018-07-04 20:20:55 +02:00

782 lines
20 KiB
C

/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
*/
#include <isl_mat_private.h>
#include <isl/seq.h>
#include "isl_map_private.h"
#include "isl_equalities.h"
#include <isl_val_private.h>
/* Given a set of modulo constraints
*
* c + A y = 0 mod d
*
* this function computes a particular solution y_0
*
* The input is given as a matrix B = [ c A ] and a vector d.
*
* The output is matrix containing the solution y_0 or
* a zero-column matrix if the constraints admit no integer solution.
*
* The given set of constrains is equivalent to
*
* c + A y = -D x
*
* with D = diag d and x a fresh set of variables.
* Reducing both c and A modulo d does not change the
* value of y in the solution and may lead to smaller coefficients.
* Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
* Then
* [ x ]
* M [ y ] = - c
* and so
* [ x ]
* [ H 0 ] U^{-1} [ y ] = - c
* Let
* [ A ] [ x ]
* [ B ] = U^{-1} [ y ]
* then
* H A + 0 B = -c
*
* so B may be chosen arbitrarily, e.g., B = 0, and then
*
* [ x ] = [ -c ]
* U^{-1} [ y ] = [ 0 ]
* or
* [ x ] [ -c ]
* [ y ] = U [ 0 ]
* specifically,
*
* y = U_{2,1} (-c)
*
* If any of the coordinates of this y are non-integer
* then the constraints admit no integer solution and
* a zero-column matrix is returned.
*/
static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d)
{
int i, j;
struct isl_mat *M = NULL;
struct isl_mat *C = NULL;
struct isl_mat *U = NULL;
struct isl_mat *H = NULL;
struct isl_mat *cst = NULL;
struct isl_mat *T = NULL;
M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1);
C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1);
if (!M || !C)
goto error;
isl_int_set_si(C->row[0][0], 1);
for (i = 0; i < B->n_row; ++i) {
isl_seq_clr(M->row[i], B->n_row);
isl_int_set(M->row[i][i], d->block.data[i]);
isl_int_neg(C->row[1 + i][0], B->row[i][0]);
isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]);
for (j = 0; j < B->n_col - 1; ++j)
isl_int_fdiv_r(M->row[i][B->n_row + j],
B->row[i][1 + j], M->row[i][i]);
}
M = isl_mat_left_hermite(M, 0, &U, NULL);
if (!M || !U)
goto error;
H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row);
H = isl_mat_lin_to_aff(H);
C = isl_mat_inverse_product(H, C);
if (!C)
goto error;
for (i = 0; i < B->n_row; ++i) {
if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0]))
break;
isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]);
}
if (i < B->n_row)
cst = isl_mat_alloc(B->ctx, B->n_row, 0);
else
cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1);
T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row);
cst = isl_mat_product(T, cst);
isl_mat_free(M);
isl_mat_free(C);
isl_mat_free(U);
return cst;
error:
isl_mat_free(M);
isl_mat_free(C);
isl_mat_free(U);
return NULL;
}
/* Compute and return the matrix
*
* U_1^{-1} diag(d_1, 1, ..., 1)
*
* with U_1 the unimodular completion of the first (and only) row of B.
* The columns of this matrix generate the lattice that satisfies
* the single (linear) modulo constraint.
*/
static struct isl_mat *parameter_compression_1(
struct isl_mat *B, struct isl_vec *d)
{
struct isl_mat *U;
U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1);
if (!U)
return NULL;
isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1);
U = isl_mat_unimodular_complete(U, 1);
U = isl_mat_right_inverse(U);
if (!U)
return NULL;
isl_mat_col_mul(U, 0, d->block.data[0], 0);
U = isl_mat_lin_to_aff(U);
return U;
}
/* Compute a common lattice of solutions to the linear modulo
* constraints specified by B and d.
* See also the documentation of isl_mat_parameter_compression.
* We put the matrix
*
* A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
*
* on a common denominator. This denominator D is the lcm of modulos d.
* Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
* L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
* Putting this on the common denominator, we have
* D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
*/
static struct isl_mat *parameter_compression_multi(
struct isl_mat *B, struct isl_vec *d)
{
int i, j, k;
isl_int D;
struct isl_mat *A = NULL, *U = NULL;
struct isl_mat *T;
unsigned size;
isl_int_init(D);
isl_vec_lcm(d, &D);
size = B->n_col - 1;
A = isl_mat_alloc(B->ctx, size, B->n_row * size);
U = isl_mat_alloc(B->ctx, size, size);
if (!U || !A)
goto error;
for (i = 0; i < B->n_row; ++i) {
isl_seq_cpy(U->row[0], B->row[i] + 1, size);
U = isl_mat_unimodular_complete(U, 1);
if (!U)
goto error;
isl_int_divexact(D, D, d->block.data[i]);
for (k = 0; k < U->n_col; ++k)
isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
isl_int_mul(D, D, d->block.data[i]);
for (j = 1; j < U->n_row; ++j)
for (k = 0; k < U->n_col; ++k)
isl_int_mul(A->row[k][i*size+j],
D, U->row[j][k]);
}
A = isl_mat_left_hermite(A, 0, NULL, NULL);
T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
T = isl_mat_lin_to_aff(T);
if (!T)
goto error;
isl_int_set(T->row[0][0], D);
T = isl_mat_right_inverse(T);
if (!T)
goto error;
isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
T = isl_mat_transpose(T);
isl_mat_free(A);
isl_mat_free(U);
isl_int_clear(D);
return T;
error:
isl_mat_free(A);
isl_mat_free(U);
isl_int_clear(D);
return NULL;
}
/* Given a set of modulo constraints
*
* c + A y = 0 mod d
*
* this function returns an affine transformation T,
*
* y = T y'
*
* that bijectively maps the integer vectors y' to integer
* vectors y that satisfy the modulo constraints.
*
* This function is inspired by Section 2.5.3
* of B. Meister, "Stating and Manipulating Periodicity in the Polytope
* Model. Applications to Program Analysis and Optimization".
* However, the implementation only follows the algorithm of that
* section for computing a particular solution and not for computing
* a general homogeneous solution. The latter is incomplete and
* may remove some valid solutions.
* Instead, we use an adaptation of the algorithm in Section 7 of
* B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
* Model: Bringing the Power of Quasi-Polynomials to the Masses".
*
* The input is given as a matrix B = [ c A ] and a vector d.
* Each element of the vector d corresponds to a row in B.
* The output is a lower triangular matrix.
* If no integer vector y satisfies the given constraints then
* a matrix with zero columns is returned.
*
* We first compute a particular solution y_0 to the given set of
* modulo constraints in particular_solution. If no such solution
* exists, then we return a zero-columned transformation matrix.
* Otherwise, we compute the generic solution to
*
* A y = 0 mod d
*
* That is we want to compute G such that
*
* y = G y''
*
* with y'' integer, describes the set of solutions.
*
* We first remove the common factors of each row.
* In particular if gcd(A_i,d_i) != 1, then we divide the whole
* row i (including d_i) by this common factor. If afterwards gcd(A_i) != 1,
* then we divide this row of A by the common factor, unless gcd(A_i) = 0.
* In the later case, we simply drop the row (in both A and d).
*
* If there are no rows left in A, then G is the identity matrix. Otherwise,
* for each row i, we now determine the lattice of integer vectors
* that satisfies this row. Let U_i be the unimodular extension of the
* row A_i. This unimodular extension exists because gcd(A_i) = 1.
* The first component of
*
* y' = U_i y
*
* needs to be a multiple of d_i. Let y' = diag(d_i, 1, ..., 1) y''.
* Then,
*
* y = U_i^{-1} diag(d_i, 1, ..., 1) y''
*
* for arbitrary integer vectors y''. That is, y belongs to the lattice
* generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
* If there is only one row, then G = L_1.
*
* If there is more than one row left, we need to compute the intersection
* of the lattices. That is, we need to compute an L such that
*
* L = L_i L_i' for all i
*
* with L_i' some integer matrices. Let A be constructed as follows
*
* A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
*
* and computed the Hermite Normal Form of A = [ H 0 ] U
* Then,
*
* L_i^{-T} = H U_{1,i}
*
* or
*
* H^{-T} = L_i U_{1,i}^T
*
* In other words G = L = H^{-T}.
* To ensure that G is lower triangular, we compute and use its Hermite
* normal form.
*
* The affine transformation matrix returned is then
*
* [ 1 0 ]
* [ y_0 G ]
*
* as any y = y_0 + G y' with y' integer is a solution to the original
* modulo constraints.
*/
struct isl_mat *isl_mat_parameter_compression(
struct isl_mat *B, struct isl_vec *d)
{
int i;
struct isl_mat *cst = NULL;
struct isl_mat *T = NULL;
isl_int D;
if (!B || !d)
goto error;
isl_assert(B->ctx, B->n_row == d->size, goto error);
cst = particular_solution(B, d);
if (!cst)
goto error;
if (cst->n_col == 0) {
T = isl_mat_alloc(B->ctx, B->n_col, 0);
isl_mat_free(cst);
isl_mat_free(B);
isl_vec_free(d);
return T;
}
isl_int_init(D);
/* Replace a*g*row = 0 mod g*m by row = 0 mod m */
for (i = 0; i < B->n_row; ++i) {
isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
if (isl_int_is_one(D))
continue;
if (isl_int_is_zero(D)) {
B = isl_mat_drop_rows(B, i, 1);
d = isl_vec_cow(d);
if (!B || !d)
goto error2;
isl_seq_cpy(d->block.data+i, d->block.data+i+1,
d->size - (i+1));
d->size--;
i--;
continue;
}
B = isl_mat_cow(B);
if (!B)
goto error2;
isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
isl_int_gcd(D, D, d->block.data[i]);
d = isl_vec_cow(d);
if (!d)
goto error2;
isl_int_divexact(d->block.data[i], d->block.data[i], D);
}
isl_int_clear(D);
if (B->n_row == 0)
T = isl_mat_identity(B->ctx, B->n_col);
else if (B->n_row == 1)
T = parameter_compression_1(B, d);
else
T = parameter_compression_multi(B, d);
T = isl_mat_left_hermite(T, 0, NULL, NULL);
if (!T)
goto error;
isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
isl_mat_free(cst);
isl_mat_free(B);
isl_vec_free(d);
return T;
error2:
isl_int_clear(D);
error:
isl_mat_free(cst);
isl_mat_free(B);
isl_vec_free(d);
return NULL;
}
/* Given a set of equalities
*
* B(y) + A x = 0 (*)
*
* compute and return an affine transformation T,
*
* y = T y'
*
* that bijectively maps the integer vectors y' to integer
* vectors y that satisfy the modulo constraints for some value of x.
*
* Let [H 0] be the Hermite Normal Form of A, i.e.,
*
* A = [H 0] Q
*
* Then y is a solution of (*) iff
*
* H^-1 B(y) (= - [I 0] Q x)
*
* is an integer vector. Let d be the common denominator of H^-1.
* We impose
*
* d H^-1 B(y) = 0 mod d
*
* and compute the solution using isl_mat_parameter_compression.
*/
__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B,
__isl_take isl_mat *A)
{
isl_ctx *ctx;
isl_vec *d;
int n_row, n_col;
if (!A)
return isl_mat_free(B);
ctx = isl_mat_get_ctx(A);
n_row = A->n_row;
n_col = A->n_col;
A = isl_mat_left_hermite(A, 0, NULL, NULL);
A = isl_mat_drop_cols(A, n_row, n_col - n_row);
A = isl_mat_lin_to_aff(A);
A = isl_mat_right_inverse(A);
d = isl_vec_alloc(ctx, n_row);
if (A)
d = isl_vec_set(d, A->row[0][0]);
A = isl_mat_drop_rows(A, 0, 1);
A = isl_mat_drop_cols(A, 0, 1);
B = isl_mat_product(A, B);
return isl_mat_parameter_compression(B, d);
}
/* Given a set of equalities
*
* M x - c = 0
*
* this function computes a unimodular transformation from a lower-dimensional
* space to the original space that bijectively maps the integer points x'
* in the lower-dimensional space to the integer points x in the original
* space that satisfy the equalities.
*
* The input is given as a matrix B = [ -c M ] and the output is a
* matrix that maps [1 x'] to [1 x].
* If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
*
* First compute the (left) Hermite normal form of M,
*
* M [U1 U2] = M U = H = [H1 0]
* or
* M = H Q = [H1 0] [Q1]
* [Q2]
*
* with U, Q unimodular, Q = U^{-1} (and H lower triangular).
* Define the transformed variables as
*
* x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
* [ x2' ] [Q2]
*
* The equalities then become
*
* H1 x1' - c = 0 or x1' = H1^{-1} c = c'
*
* If any of the c' is non-integer, then the original set has no
* integer solutions (since the x' are a unimodular transformation
* of the x) and a zero-column matrix is returned.
* Otherwise, the transformation is given by
*
* x = U1 H1^{-1} c + U2 x2'
*
* The inverse transformation is simply
*
* x2' = Q2 x
*/
__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B,
__isl_give isl_mat **T2)
{
int i;
struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC;
unsigned dim;
if (T2)
*T2 = NULL;
if (!B)
goto error;
dim = B->n_col - 1;
H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim);
H = isl_mat_left_hermite(H, 0, &U, T2);
if (!H || !U || (T2 && !*T2))
goto error;
if (T2) {
*T2 = isl_mat_drop_rows(*T2, 0, B->n_row);
*T2 = isl_mat_lin_to_aff(*T2);
if (!*T2)
goto error;
}
C = isl_mat_alloc(B->ctx, 1+B->n_row, 1);
if (!C)
goto error;
isl_int_set_si(C->row[0][0], 1);
isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1);
H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
H1 = isl_mat_lin_to_aff(H1);
TC = isl_mat_inverse_product(H1, C);
if (!TC)
goto error;
isl_mat_free(H);
if (!isl_int_is_one(TC->row[0][0])) {
for (i = 0; i < B->n_row; ++i) {
if (!isl_int_is_divisible_by(TC->row[1+i][0], TC->row[0][0])) {
struct isl_ctx *ctx = B->ctx;
isl_mat_free(B);
isl_mat_free(TC);
isl_mat_free(U);
if (T2) {
isl_mat_free(*T2);
*T2 = NULL;
}
return isl_mat_alloc(ctx, 1 + dim, 0);
}
isl_seq_scale_down(TC->row[1+i], TC->row[1+i], TC->row[0][0], 1);
}
isl_int_set_si(TC->row[0][0], 1);
}
U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row);
U1 = isl_mat_lin_to_aff(U1);
U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row);
U2 = isl_mat_lin_to_aff(U2);
isl_mat_free(U);
TC = isl_mat_product(U1, TC);
TC = isl_mat_aff_direct_sum(TC, U2);
isl_mat_free(B);
return TC;
error:
isl_mat_free(B);
isl_mat_free(H);
isl_mat_free(U);
if (T2) {
isl_mat_free(*T2);
*T2 = NULL;
}
return NULL;
}
/* Use the n equalities of bset to unimodularly transform the
* variables x such that n transformed variables x1' have a constant value
* and rewrite the constraints of bset in terms of the remaining
* transformed variables x2'. The matrix pointed to by T maps
* the new variables x2' back to the original variables x, while T2
* maps the original variables to the new variables.
*/
static struct isl_basic_set *compress_variables(
struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2)
{
struct isl_mat *B, *TC;
unsigned dim;
if (T)
*T = NULL;
if (T2)
*T2 = NULL;
if (!bset)
goto error;
isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
isl_assert(bset->ctx, bset->n_div == 0, goto error);
dim = isl_basic_set_n_dim(bset);
isl_assert(bset->ctx, bset->n_eq <= dim, goto error);
if (bset->n_eq == 0)
return bset;
B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim);
TC = isl_mat_variable_compression(B, T2);
if (!TC)
goto error;
if (TC->n_col == 0) {
isl_mat_free(TC);
if (T2) {
isl_mat_free(*T2);
*T2 = NULL;
}
return isl_basic_set_set_to_empty(bset);
}
bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC);
if (T)
*T = TC;
return bset;
error:
isl_basic_set_free(bset);
return NULL;
}
struct isl_basic_set *isl_basic_set_remove_equalities(
struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2)
{
if (T)
*T = NULL;
if (T2)
*T2 = NULL;
if (!bset)
return NULL;
isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
bset = isl_basic_set_gauss(bset, NULL);
if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
return bset;
bset = compress_variables(bset, T, T2);
return bset;
error:
isl_basic_set_free(bset);
*T = NULL;
return NULL;
}
/* Check if dimension dim belongs to a residue class
* i_dim \equiv r mod m
* with m != 1 and if so return m in *modulo and r in *residue.
* As a special case, when i_dim has a fixed value v, then
* *modulo is set to 0 and *residue to v.
*
* If i_dim does not belong to such a residue class, then *modulo
* is set to 1 and *residue is set to 0.
*/
int isl_basic_set_dim_residue_class(struct isl_basic_set *bset,
int pos, isl_int *modulo, isl_int *residue)
{
struct isl_ctx *ctx;
struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
unsigned total;
unsigned nparam;
if (!bset || !modulo || !residue)
return -1;
if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) {
isl_int_set_si(*modulo, 0);
return 0;
}
ctx = bset->ctx;
total = isl_basic_set_total_dim(bset);
nparam = isl_basic_set_n_param(bset);
H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 1, total);
H = isl_mat_left_hermite(H, 0, &U, NULL);
if (!H)
return -1;
isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
total-bset->n_eq, modulo);
if (isl_int_is_zero(*modulo))
isl_int_set_si(*modulo, 1);
if (isl_int_is_one(*modulo)) {
isl_int_set_si(*residue, 0);
isl_mat_free(H);
isl_mat_free(U);
return 0;
}
C = isl_mat_alloc(bset->ctx, 1+bset->n_eq, 1);
if (!C)
goto error;
isl_int_set_si(C->row[0][0], 1);
isl_mat_sub_neg(C->ctx, C->row+1, bset->eq, bset->n_eq, 0, 0, 1);
H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
H1 = isl_mat_lin_to_aff(H1);
C = isl_mat_inverse_product(H1, C);
isl_mat_free(H);
U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
U1 = isl_mat_lin_to_aff(U1);
isl_mat_free(U);
C = isl_mat_product(U1, C);
if (!C)
goto error;
if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
bset = isl_basic_set_copy(bset);
bset = isl_basic_set_set_to_empty(bset);
isl_basic_set_free(bset);
isl_int_set_si(*modulo, 1);
isl_int_set_si(*residue, 0);
return 0;
}
isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
isl_int_fdiv_r(*residue, *residue, *modulo);
isl_mat_free(C);
return 0;
error:
isl_mat_free(H);
isl_mat_free(U);
return -1;
}
/* Check if dimension dim belongs to a residue class
* i_dim \equiv r mod m
* with m != 1 and if so return m in *modulo and r in *residue.
* As a special case, when i_dim has a fixed value v, then
* *modulo is set to 0 and *residue to v.
*
* If i_dim does not belong to such a residue class, then *modulo
* is set to 1 and *residue is set to 0.
*/
int isl_set_dim_residue_class(struct isl_set *set,
int pos, isl_int *modulo, isl_int *residue)
{
isl_int m;
isl_int r;
int i;
if (!set || !modulo || !residue)
return -1;
if (set->n == 0) {
isl_int_set_si(*modulo, 0);
isl_int_set_si(*residue, 0);
return 0;
}
if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0)
return -1;
if (set->n == 1)
return 0;
if (isl_int_is_one(*modulo))
return 0;
isl_int_init(m);
isl_int_init(r);
for (i = 1; i < set->n; ++i) {
if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0)
goto error;
isl_int_gcd(*modulo, *modulo, m);
isl_int_sub(m, *residue, r);
isl_int_gcd(*modulo, *modulo, m);
if (!isl_int_is_zero(*modulo))
isl_int_fdiv_r(*residue, *residue, *modulo);
if (isl_int_is_one(*modulo))
break;
}
isl_int_clear(m);
isl_int_clear(r);
return 0;
error:
isl_int_clear(m);
isl_int_clear(r);
return -1;
}
/* Check if dimension "dim" belongs to a residue class
* i_dim \equiv r mod m
* with m != 1 and if so return m in *modulo and r in *residue.
* As a special case, when i_dim has a fixed value v, then
* *modulo is set to 0 and *residue to v.
*
* If i_dim does not belong to such a residue class, then *modulo
* is set to 1 and *residue is set to 0.
*/
int isl_set_dim_residue_class_val(__isl_keep isl_set *set,
int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue)
{
*modulo = NULL;
*residue = NULL;
if (!set)
return -1;
*modulo = isl_val_alloc(isl_set_get_ctx(set));
*residue = isl_val_alloc(isl_set_get_ctx(set));
if (!*modulo || !*residue)
goto error;
if (isl_set_dim_residue_class(set, pos,
&(*modulo)->n, &(*residue)->n) < 0)
goto error;
isl_int_set_si((*modulo)->d, 1);
isl_int_set_si((*residue)->d, 1);
return 0;
error:
isl_val_free(*modulo);
isl_val_free(*residue);
return -1;
}