Michael Lotz 99d8158635 Adding inline mpfr directory so the MPFR library is built as part of GCC 4.3.
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@29042 a95241bf-73f2-0310-859d-f6bbb57e9c96
2009-01-26 05:56:19 +00:00

398 lines
13 KiB
C

/* mpfr_atan -- arc-tangent of a floating-point number
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the MPFR Library, and was contributed by Mathieu Dutour.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/*
#define A
#define A1 1
#define A2 2
#define C
#define C1 3
#define C2 2
#define NO_FACTORIAL
#define GENERIC mpfr_atan_aux
#include "generic.c"
*/
/* This is the code of 'generic.c' slighty optimized for mpfr_atan.
If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms
for the series expansion, with an error of at most 1 ulp.
Assumes |x| < 1.
If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ...
*/
static void
mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab)
{
mpz_t *S, *Q, *ptoj;
unsigned long n, i, k, j, l;
mp_exp_t diff, expo;
int im, done;
mp_prec_t mult, *accu, *log2_nb_terms;
mp_prec_t precy = MPFR_PREC(y);
if (mpz_cmp_ui (p, 0) == 0)
{
mpfr_set_ui (y, 1, GMP_RNDN); /* limit(atan(x)/x, x=0) */
return;
}
accu = (mp_prec_t*) (*__gmp_allocate_func) ((2 * m + 2) * sizeof (mp_prec_t));
log2_nb_terms = accu + m + 1;
/* Set Tables */
S = tab; /* S */
ptoj = S + 1*(m+1); /* p^2^j Precomputed table */
Q = S + 2*(m+1); /* Product of Odd integer table */
/* From p to p^2, and r to 2r */
mpz_mul (p, p, p);
MPFR_ASSERTD (2 * r > r);
r = 2 * r;
/* Normalize p */
n = mpz_scan1 (p, 0);
mpz_tdiv_q_2exp (p, p, n); /* exact */
MPFR_ASSERTD (r > n);
r -= n;
/* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */
MPFR_ASSERTD (mpz_sgn (p) > 0);
MPFR_ASSERTD (m > 0);
/* check if p=1 (special case) */
l = 0;
/*
We compute by binary splitting, with X = x^2 = p/2^r:
P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise
Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough.
The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it
into account when we compute with Q.
*/
accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the
number of bits of the corresponding term S[j]/Q[j] */
if (mpz_cmp_ui (p, 1) != 0)
{
/* p <> 1: precompute ptoj table */
mpz_set (ptoj[0], p);
for (im = 1 ; im <= m ; im ++)
mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]);
/* main loop */
n = 1UL << m;
/* the ith term being X^i/(2i+1) with X=p/2^r, we can stop when
p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */
for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++)
{
/* initialize both S[k],Q[k] and S[k+1],Q[k+1] */
mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */
mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */
mpz_mul_2exp (S[k], Q[k+1], r);
mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */
mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */
log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --)
{
/* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond
to 2^l terms each. We combine them into S[k-1]/Q[k-1] */
MPFR_ASSERTD (k > 0);
mpz_mul (S[k], S[k], Q[k-1]);
mpz_mul (S[k], S[k], ptoj[l]);
mpz_mul (S[k-1], S[k-1], Q[k]);
mpz_mul_2exp (S[k-1], S[k-1], r << l);
mpz_add (S[k-1], S[k-1], S[k]);
mpz_mul (Q[k-1], Q[k-1], Q[k]);
log2_nb_terms[k-1] = l + 1;
/* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */
MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]);
/* FIXME: precompute bits(ptoj[l+1]) outside the loop? */
mult = (r << (l + 1)) - mult - 1;
accu[k-1] = (k == 1) ? mult : accu[k-2] + mult;
if (accu[k-1] > precy)
done = 1;
}
}
}
else /* special case p=1: the ith term being X^i/(2i+1) with X=1/2^r,
we can stop when r*i > precy i.e. i > precy/r */
{
n = 1UL << m;
for (i = k = 0; (i < n) && (i <= precy / r); i += 2, k ++)
{
mpz_set_ui (Q[k + 1], 2 * i + 3);
mpz_mul_2exp (S[k], Q[k+1], r);
mpz_sub_ui (S[k], S[k], 1 + 2 * i);
mpz_mul_ui (Q[k], Q[k + 1], 1 + 2 * i);
log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l++, j >>= 1, k --)
{
MPFR_ASSERTD (k > 0);
mpz_mul (S[k], S[k], Q[k-1]);
mpz_mul (S[k-1], S[k-1], Q[k]);
mpz_mul_2exp (S[k-1], S[k-1], r << l);
mpz_add (S[k-1], S[k-1], S[k]);
mpz_mul (Q[k-1], Q[k-1], Q[k]);
log2_nb_terms[k-1] = l + 1;
}
}
}
/* we need to combine S[0]/Q[0]...S[k-1]/Q[k-1] */
l = 0; /* number of terms accumulated in S[k]/Q[k] */
while (k > 1)
{
k --;
/* combine S[k-1]/Q[k-1] and S[k]/Q[k] */
j = log2_nb_terms[k-1];
mpz_mul (S[k], S[k], Q[k-1]);
if (mpz_cmp_ui (p, 1) != 0)
mpz_mul (S[k], S[k], ptoj[j]);
mpz_mul (S[k-1], S[k-1], Q[k]);
l += 1 << log2_nb_terms[k];
mpz_mul_2exp (S[k-1], S[k-1], r * l);
mpz_add (S[k-1], S[k-1], S[k]);
mpz_mul (Q[k-1], Q[k-1], Q[k]);
}
(*__gmp_free_func) (accu, (2 * m + 2) * sizeof (mp_prec_t));
MPFR_MPZ_SIZEINBASE2 (diff, S[0]);
diff -= 2 * precy;
expo = diff;
if (diff >= 0)
mpz_tdiv_q_2exp (S[0], S[0], diff);
else
mpz_mul_2exp (S[0], S[0], -diff);
MPFR_MPZ_SIZEINBASE2 (diff, Q[0]);
diff -= precy;
expo -= diff;
if (diff >= 0)
mpz_tdiv_q_2exp (Q[0], Q[0], diff);
else
mpz_mul_2exp (Q[0], Q[0], -diff);
mpz_tdiv_q (S[0], S[0], Q[0]);
mpfr_set_z (y, S[0], GMP_RNDD);
MPFR_SET_EXP (y, MPFR_EXP(y) + expo - r * (i - 1));
}
int
mpfr_atan (mpfr_ptr atan, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t xp, arctgt, sk, tmp, tmp2;
mpz_t ukz;
mpz_t *tabz;
mp_exp_t exptol;
mp_prec_t prec, realprec;
unsigned long twopoweri;
int comparaison, inexact, inexact2;
int i, n0, oldn0;
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("atan[%#R]=%R inexact=%d", atan, atan, inexact));
/* Singular cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (atan);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (x)) /* arctan(+inf) = Pi/2 */
inexact = mpfr_const_pi (atan, rnd_mode);
else /* arctan(-inf) = -Pi/2 */
{
inexact = -mpfr_const_pi (atan,
MPFR_INVERT_RND (rnd_mode));
MPFR_CHANGE_SIGN (atan);
}
inexact2 = mpfr_div_2ui (atan, atan, 1, rnd_mode);
if (MPFR_UNLIKELY (inexact2))
inexact = inexact2; /* An underflow occurs */
MPFR_RET (inexact);
}
else /* x is necessarily 0 */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (atan);
MPFR_SET_SAME_SIGN (atan, x);
MPFR_RET (0);
}
}
/* atan(x) = x - x^3/3 + x^5/5...
so the error is < 2^(3*EXP(x)-1)
so `EXP(x)-(3*EXP(x)-1)` = -2*EXP(x)+1 */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (atan, x, -2 * MPFR_GET_EXP (x), 1, 0,
rnd_mode, {});
/* Set x_p=|x| */
MPFR_TMP_INIT_ABS (xp, x);
/* Other simple case arctang(-+1)=-+pi/4 */
comparaison = mpfr_cmp_ui (xp, 1);
if (MPFR_UNLIKELY (comparaison == 0))
{
int neg = MPFR_IS_NEG (x);
inexact = mpfr_const_pi (atan, MPFR_IS_POS (x) ? rnd_mode
: MPFR_INVERT_RND (rnd_mode));
if (neg)
{
inexact = -inexact;
MPFR_CHANGE_SIGN (atan);
}
inexact2 = mpfr_div_2ui (atan, atan, 2, rnd_mode);
if (MPFR_UNLIKELY (inexact2))
inexact = inexact2; /* an underflow occurs */
return inexact;
}
realprec = MPFR_PREC (atan) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (atan)) + 4;
prec = realprec + BITS_PER_MP_LIMB;
MPFR_SAVE_EXPO_MARK (expo);
/* Initialisation */
mpz_init (ukz);
MPFR_GROUP_INIT_4 (group, prec, sk, tmp, tmp2, arctgt);
oldn0 = 0;
tabz = (mpz_t *) 0;
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
/* First, if |x| < 1, we need to have more prec to be able to round (sup)
n0 = ceil(log(prec_requested + 2 + 1+ln(2.4)/ln(2))/log(2)) */
mp_prec_t sup;
#if 0
sup = 1;
if (MPFR_GET_EXP (xp) < 0
&& (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) > realprec)
sup = (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) - realprec;
#else
sup = MPFR_GET_EXP (xp) < 0 ? 2-MPFR_GET_EXP (xp) : 1;
#endif
n0 = MPFR_INT_CEIL_LOG2 ((realprec + sup) + 3);
MPFR_ASSERTD (3*n0 > 2);
prec = (realprec + sup) + 1 + MPFR_INT_CEIL_LOG2 (3*n0-2);
/* Initialisation */
MPFR_GROUP_REPREC_4 (group, prec, sk, tmp, tmp2, arctgt);
if (MPFR_LIKELY (oldn0 == 0))
{
oldn0 = 3*(n0+1);
tabz = (mpz_t *) (*__gmp_allocate_func) (oldn0*sizeof (mpz_t));
for (i = 0; i < oldn0; i++)
mpz_init (tabz[i]);
}
else if (MPFR_UNLIKELY (oldn0 < 3*n0+1))
{
tabz = (mpz_t *) (*__gmp_reallocate_func)
(tabz, oldn0*sizeof (mpz_t), 3*(n0+1)*sizeof (mpz_t));
for (i = oldn0; i < 3*(n0+1); i++)
mpz_init (tabz[i]);
oldn0 = 3*(n0+1);
}
if (comparaison > 0)
mpfr_ui_div (sk, 1, xp, GMP_RNDN);
else
mpfr_set (sk, xp, GMP_RNDN);
/* sk is 1/|x| if |x| > 1, and |x| otherwise, i.e. min(|x|, 1/|x|) */
/* Assignation */
MPFR_SET_ZERO (arctgt);
twopoweri = 1<<0;
MPFR_ASSERTD (n0 >= 4);
/* FIXME: further reduce the argument so that it is less than
1/n where n is the output precision. In such a way, the
first calls to mpfr_atan_aux will not be too expensive,
since the number of needed terms will be n/log(n), so the
factorial contribution will be O(n). */
for (i = 0 ; i < n0; i++)
{
if (MPFR_UNLIKELY (MPFR_IS_ZERO (sk)))
break;
/* Calculation of trunc(tmp) --> mpz */
mpfr_mul_2ui (tmp, sk, twopoweri, GMP_RNDN);
mpfr_trunc (tmp, tmp);
if (!MPFR_IS_ZERO (tmp))
{
exptol = mpfr_get_z_exp (ukz, tmp);
/* since the s_k are decreasing (see algorithms.tex),
and s_0 = min(|x|, 1/|x|) < 1, we have sk < 1,
thus exptol < 0 */
MPFR_ASSERTD (exptol < 0);
mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol));
/* Calculation of arctan(Ak) */
mpfr_set_z (tmp, ukz, GMP_RNDN);
mpfr_div_2ui (tmp, tmp, twopoweri, GMP_RNDN);
mpfr_atan_aux (tmp2, ukz, twopoweri, n0 - i, tabz);
mpfr_mul (tmp2, tmp2, tmp, GMP_RNDN);
/* Addition */
mpfr_add (arctgt, arctgt, tmp2, GMP_RNDN);
/* Next iteration */
mpfr_sub (tmp2, sk, tmp, GMP_RNDN);
mpfr_mul (sk, sk, tmp, GMP_RNDN);
mpfr_add_ui (sk, sk, 1, GMP_RNDN);
mpfr_div (sk, tmp2, sk, GMP_RNDN);
}
twopoweri <<= 1;
}
/* Add last step (Arctan(sk) ~= sk */
mpfr_add (arctgt, arctgt, sk, GMP_RNDN);
if (comparaison > 0)
{
mpfr_const_pi (tmp, GMP_RNDN);
mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
mpfr_sub (arctgt, tmp, arctgt, GMP_RNDN);
}
MPFR_SET_POS (arctgt);
if (MPFR_LIKELY (MPFR_CAN_ROUND (arctgt, realprec, MPFR_PREC (atan),
rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, realprec);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set4 (atan, arctgt, rnd_mode, MPFR_SIGN (x));
for (i = 0 ; i < oldn0 ; i++)
mpz_clear (tabz[i]);
mpz_clear (ukz);
(*__gmp_free_func) (tabz, oldn0*sizeof (mpz_t));
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (arctgt, inexact, rnd_mode);
}