mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-18 20:38:39 +01:00
1736 lines
50 KiB
C
1736 lines
50 KiB
C
/*
|
||
* Copyright 2008-2009 Katholieke Universiteit Leuven
|
||
* Copyright 2010 INRIA Saclay
|
||
* Copyright 2012-2013 Ecole Normale Superieure
|
||
*
|
||
* Use of this software is governed by the MIT license
|
||
*
|
||
* Written by Sven Verdoolaege, K.U.Leuven, Departement
|
||
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
|
||
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
|
||
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
|
||
* and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
|
||
*/
|
||
|
||
#include "isl_map_private.h"
|
||
#include <isl/seq.h>
|
||
#include <isl/options.h>
|
||
#include "isl_tab.h"
|
||
#include <isl_mat_private.h>
|
||
#include <isl_local_space_private.h>
|
||
|
||
#define STATUS_ERROR -1
|
||
#define STATUS_REDUNDANT 1
|
||
#define STATUS_VALID 2
|
||
#define STATUS_SEPARATE 3
|
||
#define STATUS_CUT 4
|
||
#define STATUS_ADJ_EQ 5
|
||
#define STATUS_ADJ_INEQ 6
|
||
|
||
static int status_in(isl_int *ineq, struct isl_tab *tab)
|
||
{
|
||
enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
|
||
switch (type) {
|
||
default:
|
||
case isl_ineq_error: return STATUS_ERROR;
|
||
case isl_ineq_redundant: return STATUS_VALID;
|
||
case isl_ineq_separate: return STATUS_SEPARATE;
|
||
case isl_ineq_cut: return STATUS_CUT;
|
||
case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
|
||
case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
|
||
}
|
||
}
|
||
|
||
/* Compute the position of the equalities of basic map "bmap_i"
|
||
* with respect to the basic map represented by "tab_j".
|
||
* The resulting array has twice as many entries as the number
|
||
* of equalities corresponding to the two inequalties to which
|
||
* each equality corresponds.
|
||
*/
|
||
static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
|
||
struct isl_tab *tab_j)
|
||
{
|
||
int k, l;
|
||
int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
|
||
unsigned dim;
|
||
|
||
dim = isl_basic_map_total_dim(bmap_i);
|
||
for (k = 0; k < bmap_i->n_eq; ++k) {
|
||
for (l = 0; l < 2; ++l) {
|
||
isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
|
||
eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
|
||
if (eq[2 * k + l] == STATUS_ERROR)
|
||
goto error;
|
||
}
|
||
if (eq[2 * k] == STATUS_SEPARATE ||
|
||
eq[2 * k + 1] == STATUS_SEPARATE)
|
||
break;
|
||
}
|
||
|
||
return eq;
|
||
error:
|
||
free(eq);
|
||
return NULL;
|
||
}
|
||
|
||
/* Compute the position of the inequalities of basic map "bmap_i"
|
||
* (also represented by "tab_i", if not NULL) with respect to the basic map
|
||
* represented by "tab_j".
|
||
*/
|
||
static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
|
||
struct isl_tab *tab_i, struct isl_tab *tab_j)
|
||
{
|
||
int k;
|
||
unsigned n_eq = bmap_i->n_eq;
|
||
int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
|
||
|
||
for (k = 0; k < bmap_i->n_ineq; ++k) {
|
||
if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
|
||
ineq[k] = STATUS_REDUNDANT;
|
||
continue;
|
||
}
|
||
ineq[k] = status_in(bmap_i->ineq[k], tab_j);
|
||
if (ineq[k] == STATUS_ERROR)
|
||
goto error;
|
||
if (ineq[k] == STATUS_SEPARATE)
|
||
break;
|
||
}
|
||
|
||
return ineq;
|
||
error:
|
||
free(ineq);
|
||
return NULL;
|
||
}
|
||
|
||
static int any(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len ; ++i)
|
||
if (con[i] == status)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
static int count(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
int c = 0;
|
||
|
||
for (i = 0; i < len ; ++i)
|
||
if (con[i] == status)
|
||
c++;
|
||
return c;
|
||
}
|
||
|
||
static int all(int *con, unsigned len, int status)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < len ; ++i) {
|
||
if (con[i] == STATUS_REDUNDANT)
|
||
continue;
|
||
if (con[i] != status)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
|
||
{
|
||
isl_basic_map_free(map->p[i]);
|
||
isl_tab_free(tabs[i]);
|
||
|
||
if (i != map->n - 1) {
|
||
map->p[i] = map->p[map->n - 1];
|
||
tabs[i] = tabs[map->n - 1];
|
||
}
|
||
tabs[map->n - 1] = NULL;
|
||
map->n--;
|
||
}
|
||
|
||
/* Replace the pair of basic maps i and j by the basic map bounded
|
||
* by the valid constraints in both basic maps and the constraint
|
||
* in extra (if not NULL).
|
||
*/
|
||
static int fuse(struct isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
|
||
__isl_keep isl_mat *extra)
|
||
{
|
||
int k, l;
|
||
struct isl_basic_map *fused = NULL;
|
||
struct isl_tab *fused_tab = NULL;
|
||
unsigned total = isl_basic_map_total_dim(map->p[i]);
|
||
unsigned extra_rows = extra ? extra->n_row : 0;
|
||
|
||
fused = isl_basic_map_alloc_space(isl_space_copy(map->p[i]->dim),
|
||
map->p[i]->n_div,
|
||
map->p[i]->n_eq + map->p[j]->n_eq,
|
||
map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
|
||
if (!fused)
|
||
goto error;
|
||
|
||
for (k = 0; k < map->p[i]->n_eq; ++k) {
|
||
if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
|
||
eq_i[2 * k + 1] != STATUS_VALID))
|
||
continue;
|
||
l = isl_basic_map_alloc_equality(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
|
||
}
|
||
|
||
for (k = 0; k < map->p[j]->n_eq; ++k) {
|
||
if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
|
||
eq_j[2 * k + 1] != STATUS_VALID))
|
||
continue;
|
||
l = isl_basic_map_alloc_equality(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
|
||
}
|
||
|
||
for (k = 0; k < map->p[i]->n_ineq; ++k) {
|
||
if (ineq_i[k] != STATUS_VALID)
|
||
continue;
|
||
l = isl_basic_map_alloc_inequality(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
|
||
}
|
||
|
||
for (k = 0; k < map->p[j]->n_ineq; ++k) {
|
||
if (ineq_j[k] != STATUS_VALID)
|
||
continue;
|
||
l = isl_basic_map_alloc_inequality(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
|
||
}
|
||
|
||
for (k = 0; k < map->p[i]->n_div; ++k) {
|
||
int l = isl_basic_map_alloc_div(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
|
||
}
|
||
|
||
for (k = 0; k < extra_rows; ++k) {
|
||
l = isl_basic_map_alloc_inequality(fused);
|
||
if (l < 0)
|
||
goto error;
|
||
isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
|
||
}
|
||
|
||
fused = isl_basic_map_gauss(fused, NULL);
|
||
ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
|
||
if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
|
||
ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
|
||
ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
|
||
|
||
fused_tab = isl_tab_from_basic_map(fused, 0);
|
||
if (isl_tab_detect_redundant(fused_tab) < 0)
|
||
goto error;
|
||
|
||
isl_basic_map_free(map->p[i]);
|
||
map->p[i] = fused;
|
||
isl_tab_free(tabs[i]);
|
||
tabs[i] = fused_tab;
|
||
drop(map, j, tabs);
|
||
|
||
return 1;
|
||
error:
|
||
isl_tab_free(fused_tab);
|
||
isl_basic_map_free(fused);
|
||
return -1;
|
||
}
|
||
|
||
/* Given a pair of basic maps i and j such that all constraints are either
|
||
* "valid" or "cut", check if the facets corresponding to the "cut"
|
||
* constraints of i lie entirely within basic map j.
|
||
* If so, replace the pair by the basic map consisting of the valid
|
||
* constraints in both basic maps.
|
||
*
|
||
* To see that we are not introducing any extra points, call the
|
||
* two basic maps A and B and the resulting map U and let x
|
||
* be an element of U \setminus ( A \cup B ).
|
||
* Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
|
||
* violates them. Let X be the intersection of U with the opposites
|
||
* of these constraints. Then x \in X.
|
||
* The facet corresponding to c_1 contains the corresponding facet of A.
|
||
* This facet is entirely contained in B, so c_2 is valid on the facet.
|
||
* However, since it is also (part of) a facet of X, -c_2 is also valid
|
||
* on the facet. This means c_2 is saturated on the facet, so c_1 and
|
||
* c_2 must be opposites of each other, but then x could not violate
|
||
* both of them.
|
||
*/
|
||
static int check_facets(struct isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *ineq_i, int *ineq_j)
|
||
{
|
||
int k, l;
|
||
struct isl_tab_undo *snap;
|
||
unsigned n_eq = map->p[i]->n_eq;
|
||
|
||
snap = isl_tab_snap(tabs[i]);
|
||
|
||
for (k = 0; k < map->p[i]->n_ineq; ++k) {
|
||
if (ineq_i[k] != STATUS_CUT)
|
||
continue;
|
||
if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
|
||
return -1;
|
||
for (l = 0; l < map->p[j]->n_ineq; ++l) {
|
||
int stat;
|
||
if (ineq_j[l] != STATUS_CUT)
|
||
continue;
|
||
stat = status_in(map->p[j]->ineq[l], tabs[i]);
|
||
if (stat != STATUS_VALID)
|
||
break;
|
||
}
|
||
if (isl_tab_rollback(tabs[i], snap) < 0)
|
||
return -1;
|
||
if (l < map->p[j]->n_ineq)
|
||
break;
|
||
}
|
||
|
||
if (k < map->p[i]->n_ineq)
|
||
/* BAD CUT PAIR */
|
||
return 0;
|
||
return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
|
||
}
|
||
|
||
/* Check if basic map "i" contains the basic map represented
|
||
* by the tableau "tab".
|
||
*/
|
||
static int contains(struct isl_map *map, int i, int *ineq_i,
|
||
struct isl_tab *tab)
|
||
{
|
||
int k, l;
|
||
unsigned dim;
|
||
|
||
dim = isl_basic_map_total_dim(map->p[i]);
|
||
for (k = 0; k < map->p[i]->n_eq; ++k) {
|
||
for (l = 0; l < 2; ++l) {
|
||
int stat;
|
||
isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
|
||
stat = status_in(map->p[i]->eq[k], tab);
|
||
if (stat != STATUS_VALID)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
for (k = 0; k < map->p[i]->n_ineq; ++k) {
|
||
int stat;
|
||
if (ineq_i[k] == STATUS_REDUNDANT)
|
||
continue;
|
||
stat = status_in(map->p[i]->ineq[k], tab);
|
||
if (stat != STATUS_VALID)
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Basic map "i" has an inequality (say "k") that is adjacent
|
||
* to some inequality of basic map "j". All the other inequalities
|
||
* are valid for "j".
|
||
* Check if basic map "j" forms an extension of basic map "i".
|
||
*
|
||
* Note that this function is only called if some of the equalities or
|
||
* inequalities of basic map "j" do cut basic map "i". The function is
|
||
* correct even if there are no such cut constraints, but in that case
|
||
* the additional checks performed by this function are overkill.
|
||
*
|
||
* In particular, we replace constraint k, say f >= 0, by constraint
|
||
* f <= -1, add the inequalities of "j" that are valid for "i"
|
||
* and check if the result is a subset of basic map "j".
|
||
* If so, then we know that this result is exactly equal to basic map "j"
|
||
* since all its constraints are valid for basic map "j".
|
||
* By combining the valid constraints of "i" (all equalities and all
|
||
* inequalities except "k") and the valid constraints of "j" we therefore
|
||
* obtain a basic map that is equal to their union.
|
||
* In this case, there is no need to perform a rollback of the tableau
|
||
* since it is going to be destroyed in fuse().
|
||
*
|
||
*
|
||
* |\__ |\__
|
||
* | \__ | \__
|
||
* | \_ => | \__
|
||
* |_______| _ |_________\
|
||
*
|
||
*
|
||
* |\ |\
|
||
* | \ | \
|
||
* | \ | \
|
||
* | | | \
|
||
* | ||\ => | \
|
||
* | || \ | \
|
||
* | || | | |
|
||
* |__||_/ |_____/
|
||
*/
|
||
static int is_adj_ineq_extension(__isl_keep isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int k;
|
||
struct isl_tab_undo *snap;
|
||
unsigned n_eq = map->p[i]->n_eq;
|
||
unsigned total = isl_basic_map_total_dim(map->p[i]);
|
||
int r;
|
||
|
||
if (isl_tab_extend_cons(tabs[i], 1 + map->p[j]->n_ineq) < 0)
|
||
return -1;
|
||
|
||
for (k = 0; k < map->p[i]->n_ineq; ++k)
|
||
if (ineq_i[k] == STATUS_ADJ_INEQ)
|
||
break;
|
||
if (k >= map->p[i]->n_ineq)
|
||
isl_die(isl_map_get_ctx(map), isl_error_internal,
|
||
"ineq_i should have exactly one STATUS_ADJ_INEQ",
|
||
return -1);
|
||
|
||
snap = isl_tab_snap(tabs[i]);
|
||
|
||
if (isl_tab_unrestrict(tabs[i], n_eq + k) < 0)
|
||
return -1;
|
||
|
||
isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
|
||
isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
|
||
r = isl_tab_add_ineq(tabs[i], map->p[i]->ineq[k]);
|
||
isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
|
||
isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
|
||
if (r < 0)
|
||
return -1;
|
||
|
||
for (k = 0; k < map->p[j]->n_ineq; ++k) {
|
||
if (ineq_j[k] != STATUS_VALID)
|
||
continue;
|
||
if (isl_tab_add_ineq(tabs[i], map->p[j]->ineq[k]) < 0)
|
||
return -1;
|
||
}
|
||
|
||
if (contains(map, j, ineq_j, tabs[i]))
|
||
return fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, NULL);
|
||
|
||
if (isl_tab_rollback(tabs[i], snap) < 0)
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Both basic maps have at least one inequality with and adjacent
|
||
* (but opposite) inequality in the other basic map.
|
||
* Check that there are no cut constraints and that there is only
|
||
* a single pair of adjacent inequalities.
|
||
* If so, we can replace the pair by a single basic map described
|
||
* by all but the pair of adjacent inequalities.
|
||
* Any additional points introduced lie strictly between the two
|
||
* adjacent hyperplanes and can therefore be integral.
|
||
*
|
||
* ____ _____
|
||
* / ||\ / \
|
||
* / || \ / \
|
||
* \ || \ => \ \
|
||
* \ || / \ /
|
||
* \___||_/ \_____/
|
||
*
|
||
* The test for a single pair of adjancent inequalities is important
|
||
* for avoiding the combination of two basic maps like the following
|
||
*
|
||
* /|
|
||
* / |
|
||
* /__|
|
||
* _____
|
||
* | |
|
||
* | |
|
||
* |___|
|
||
*
|
||
* If there are some cut constraints on one side, then we may
|
||
* still be able to fuse the two basic maps, but we need to perform
|
||
* some additional checks in is_adj_ineq_extension.
|
||
*/
|
||
static int check_adj_ineq(struct isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int count_i, count_j;
|
||
int cut_i, cut_j;
|
||
|
||
count_i = count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ);
|
||
count_j = count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ);
|
||
|
||
if (count_i != 1 && count_j != 1)
|
||
return 0;
|
||
|
||
cut_i = any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
|
||
any(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
|
||
cut_j = any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT) ||
|
||
any(ineq_j, map->p[j]->n_ineq, STATUS_CUT);
|
||
|
||
if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
|
||
return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
|
||
|
||
if (count_i == 1 && !cut_i)
|
||
return is_adj_ineq_extension(map, i, j, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
|
||
if (count_j == 1 && !cut_j)
|
||
return is_adj_ineq_extension(map, j, i, tabs,
|
||
eq_j, ineq_j, eq_i, ineq_i);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Basic map "i" has an inequality "k" that is adjacent to some equality
|
||
* of basic map "j". All the other inequalities are valid for "j".
|
||
* Check if basic map "j" forms an extension of basic map "i".
|
||
*
|
||
* In particular, we relax constraint "k", compute the corresponding
|
||
* facet and check whether it is included in the other basic map.
|
||
* If so, we know that relaxing the constraint extends the basic
|
||
* map with exactly the other basic map (we already know that this
|
||
* other basic map is included in the extension, because there
|
||
* were no "cut" inequalities in "i") and we can replace the
|
||
* two basic maps by this extension.
|
||
* ____ _____
|
||
* / || / |
|
||
* / || / |
|
||
* \ || => \ |
|
||
* \ || \ |
|
||
* \___|| \____|
|
||
*/
|
||
static int is_adj_eq_extension(struct isl_map *map, int i, int j, int k,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int changed = 0;
|
||
int super;
|
||
struct isl_tab_undo *snap, *snap2;
|
||
unsigned n_eq = map->p[i]->n_eq;
|
||
|
||
if (isl_tab_is_equality(tabs[i], n_eq + k))
|
||
return 0;
|
||
|
||
snap = isl_tab_snap(tabs[i]);
|
||
tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
|
||
snap2 = isl_tab_snap(tabs[i]);
|
||
if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
|
||
return -1;
|
||
super = contains(map, j, ineq_j, tabs[i]);
|
||
if (super) {
|
||
if (isl_tab_rollback(tabs[i], snap2) < 0)
|
||
return -1;
|
||
map->p[i] = isl_basic_map_cow(map->p[i]);
|
||
if (!map->p[i])
|
||
return -1;
|
||
isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
|
||
ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
|
||
drop(map, j, tabs);
|
||
changed = 1;
|
||
} else
|
||
if (isl_tab_rollback(tabs[i], snap) < 0)
|
||
return -1;
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Data structure that keeps track of the wrapping constraints
|
||
* and of information to bound the coefficients of those constraints.
|
||
*
|
||
* bound is set if we want to apply a bound on the coefficients
|
||
* mat contains the wrapping constraints
|
||
* max is the bound on the coefficients (if bound is set)
|
||
*/
|
||
struct isl_wraps {
|
||
int bound;
|
||
isl_mat *mat;
|
||
isl_int max;
|
||
};
|
||
|
||
/* Update wraps->max to be greater than or equal to the coefficients
|
||
* in the equalities and inequalities of bmap that can be removed if we end up
|
||
* applying wrapping.
|
||
*/
|
||
static void wraps_update_max(struct isl_wraps *wraps,
|
||
__isl_keep isl_basic_map *bmap, int *eq, int *ineq)
|
||
{
|
||
int k;
|
||
isl_int max_k;
|
||
unsigned total = isl_basic_map_total_dim(bmap);
|
||
|
||
isl_int_init(max_k);
|
||
|
||
for (k = 0; k < bmap->n_eq; ++k) {
|
||
if (eq[2 * k] == STATUS_VALID &&
|
||
eq[2 * k + 1] == STATUS_VALID)
|
||
continue;
|
||
isl_seq_abs_max(bmap->eq[k] + 1, total, &max_k);
|
||
if (isl_int_abs_gt(max_k, wraps->max))
|
||
isl_int_set(wraps->max, max_k);
|
||
}
|
||
|
||
for (k = 0; k < bmap->n_ineq; ++k) {
|
||
if (ineq[k] == STATUS_VALID || ineq[k] == STATUS_REDUNDANT)
|
||
continue;
|
||
isl_seq_abs_max(bmap->ineq[k] + 1, total, &max_k);
|
||
if (isl_int_abs_gt(max_k, wraps->max))
|
||
isl_int_set(wraps->max, max_k);
|
||
}
|
||
|
||
isl_int_clear(max_k);
|
||
}
|
||
|
||
/* Initialize the isl_wraps data structure.
|
||
* If we want to bound the coefficients of the wrapping constraints,
|
||
* we set wraps->max to the largest coefficient
|
||
* in the equalities and inequalities that can be removed if we end up
|
||
* applying wrapping.
|
||
*/
|
||
static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
|
||
__isl_keep isl_map *map, int i, int j,
|
||
int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
isl_ctx *ctx;
|
||
|
||
wraps->bound = 0;
|
||
wraps->mat = mat;
|
||
if (!mat)
|
||
return;
|
||
ctx = isl_mat_get_ctx(mat);
|
||
wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
|
||
if (!wraps->bound)
|
||
return;
|
||
isl_int_init(wraps->max);
|
||
isl_int_set_si(wraps->max, 0);
|
||
wraps_update_max(wraps, map->p[i], eq_i, ineq_i);
|
||
wraps_update_max(wraps, map->p[j], eq_j, ineq_j);
|
||
}
|
||
|
||
/* Free the contents of the isl_wraps data structure.
|
||
*/
|
||
static void wraps_free(struct isl_wraps *wraps)
|
||
{
|
||
isl_mat_free(wraps->mat);
|
||
if (wraps->bound)
|
||
isl_int_clear(wraps->max);
|
||
}
|
||
|
||
/* Is the wrapping constraint in row "row" allowed?
|
||
*
|
||
* If wraps->bound is set, we check that none of the coefficients
|
||
* is greater than wraps->max.
|
||
*/
|
||
static int allow_wrap(struct isl_wraps *wraps, int row)
|
||
{
|
||
int i;
|
||
|
||
if (!wraps->bound)
|
||
return 1;
|
||
|
||
for (i = 1; i < wraps->mat->n_col; ++i)
|
||
if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* For each non-redundant constraint in "bmap" (as determined by "tab"),
|
||
* wrap the constraint around "bound" such that it includes the whole
|
||
* set "set" and append the resulting constraint to "wraps".
|
||
* "wraps" is assumed to have been pre-allocated to the appropriate size.
|
||
* wraps->n_row is the number of actual wrapped constraints that have
|
||
* been added.
|
||
* If any of the wrapping problems results in a constraint that is
|
||
* identical to "bound", then this means that "set" is unbounded in such
|
||
* way that no wrapping is possible. If this happens then wraps->n_row
|
||
* is reset to zero.
|
||
* Similarly, if we want to bound the coefficients of the wrapping
|
||
* constraints and a newly added wrapping constraint does not
|
||
* satisfy the bound, then wraps->n_row is also reset to zero.
|
||
*/
|
||
static int add_wraps(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap,
|
||
struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
|
||
{
|
||
int l;
|
||
int w;
|
||
unsigned total = isl_basic_map_total_dim(bmap);
|
||
|
||
w = wraps->mat->n_row;
|
||
|
||
for (l = 0; l < bmap->n_ineq; ++l) {
|
||
if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
|
||
continue;
|
||
if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
|
||
continue;
|
||
if (isl_tab_is_redundant(tab, bmap->n_eq + l))
|
||
continue;
|
||
|
||
isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
|
||
if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->ineq[l]))
|
||
return -1;
|
||
if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
|
||
goto unbounded;
|
||
if (!allow_wrap(wraps, w))
|
||
goto unbounded;
|
||
++w;
|
||
}
|
||
for (l = 0; l < bmap->n_eq; ++l) {
|
||
if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
|
||
continue;
|
||
if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
|
||
continue;
|
||
|
||
isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
|
||
isl_seq_neg(wraps->mat->row[w + 1], bmap->eq[l], 1 + total);
|
||
if (!isl_set_wrap_facet(set, wraps->mat->row[w],
|
||
wraps->mat->row[w + 1]))
|
||
return -1;
|
||
if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
|
||
goto unbounded;
|
||
if (!allow_wrap(wraps, w))
|
||
goto unbounded;
|
||
++w;
|
||
|
||
isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
|
||
if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->eq[l]))
|
||
return -1;
|
||
if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
|
||
goto unbounded;
|
||
if (!allow_wrap(wraps, w))
|
||
goto unbounded;
|
||
++w;
|
||
}
|
||
|
||
wraps->mat->n_row = w;
|
||
return 0;
|
||
unbounded:
|
||
wraps->mat->n_row = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Check if the constraints in "wraps" from "first" until the last
|
||
* are all valid for the basic set represented by "tab".
|
||
* If not, wraps->n_row is set to zero.
|
||
*/
|
||
static int check_wraps(__isl_keep isl_mat *wraps, int first,
|
||
struct isl_tab *tab)
|
||
{
|
||
int i;
|
||
|
||
for (i = first; i < wraps->n_row; ++i) {
|
||
enum isl_ineq_type type;
|
||
type = isl_tab_ineq_type(tab, wraps->row[i]);
|
||
if (type == isl_ineq_error)
|
||
return -1;
|
||
if (type == isl_ineq_redundant)
|
||
continue;
|
||
wraps->n_row = 0;
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a set that corresponds to the non-redudant constraints
|
||
* (as recorded in tab) of bmap.
|
||
*
|
||
* It's important to remove the redundant constraints as some
|
||
* of the other constraints may have been modified after the
|
||
* constraints were marked redundant.
|
||
* In particular, a constraint may have been relaxed.
|
||
* Redundant constraints are ignored when a constraint is relaxed
|
||
* and should therefore continue to be ignored ever after.
|
||
* Otherwise, the relaxation might be thwarted by some of
|
||
* these constraints.
|
||
*/
|
||
static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
|
||
struct isl_tab *tab)
|
||
{
|
||
bmap = isl_basic_map_copy(bmap);
|
||
bmap = isl_basic_map_cow(bmap);
|
||
bmap = isl_basic_map_update_from_tab(bmap, tab);
|
||
return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
|
||
}
|
||
|
||
/* Given a basic set i with a constraint k that is adjacent to either the
|
||
* whole of basic set j or a facet of basic set j, check if we can wrap
|
||
* both the facet corresponding to k and the facet of j (or the whole of j)
|
||
* around their ridges to include the other set.
|
||
* If so, replace the pair of basic sets by their union.
|
||
*
|
||
* All constraints of i (except k) are assumed to be valid for j.
|
||
*
|
||
* However, the constraints of j may not be valid for i and so
|
||
* we have to check that the wrapping constraints for j are valid for i.
|
||
*
|
||
* In the case where j has a facet adjacent to i, tab[j] is assumed
|
||
* to have been restricted to this facet, so that the non-redundant
|
||
* constraints in tab[j] are the ridges of the facet.
|
||
* Note that for the purpose of wrapping, it does not matter whether
|
||
* we wrap the ridges of i around the whole of j or just around
|
||
* the facet since all the other constraints are assumed to be valid for j.
|
||
* In practice, we wrap to include the whole of j.
|
||
* ____ _____
|
||
* / | / \
|
||
* / || / |
|
||
* \ || => \ |
|
||
* \ || \ |
|
||
* \___|| \____|
|
||
*
|
||
*/
|
||
static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int changed = 0;
|
||
struct isl_wraps wraps;
|
||
isl_mat *mat;
|
||
struct isl_set *set_i = NULL;
|
||
struct isl_set *set_j = NULL;
|
||
struct isl_vec *bound = NULL;
|
||
unsigned total = isl_basic_map_total_dim(map->p[i]);
|
||
struct isl_tab_undo *snap;
|
||
int n;
|
||
|
||
set_i = set_from_updated_bmap(map->p[i], tabs[i]);
|
||
set_j = set_from_updated_bmap(map->p[j], tabs[j]);
|
||
mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
|
||
map->p[i]->n_ineq + map->p[j]->n_ineq,
|
||
1 + total);
|
||
wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
|
||
bound = isl_vec_alloc(map->ctx, 1 + total);
|
||
if (!set_i || !set_j || !wraps.mat || !bound)
|
||
goto error;
|
||
|
||
isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
|
||
isl_int_add_ui(bound->el[0], bound->el[0], 1);
|
||
|
||
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
|
||
wraps.mat->n_row = 1;
|
||
|
||
if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
snap = isl_tab_snap(tabs[i]);
|
||
|
||
if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0)
|
||
goto error;
|
||
if (isl_tab_detect_redundant(tabs[i]) < 0)
|
||
goto error;
|
||
|
||
isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
|
||
|
||
n = wraps.mat->n_row;
|
||
if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
|
||
goto error;
|
||
|
||
if (isl_tab_rollback(tabs[i], snap) < 0)
|
||
goto error;
|
||
if (check_wraps(wraps.mat, n, tabs[i]) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
|
||
|
||
unbounded:
|
||
wraps_free(&wraps);
|
||
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
|
||
isl_vec_free(bound);
|
||
|
||
return changed;
|
||
error:
|
||
wraps_free(&wraps);
|
||
isl_vec_free(bound);
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
return -1;
|
||
}
|
||
|
||
/* Set the is_redundant property of the "n" constraints in "cuts",
|
||
* except "k" to "v".
|
||
* This is a fairly tricky operation as it bypasses isl_tab.c.
|
||
* The reason we want to temporarily mark some constraints redundant
|
||
* is that we want to ignore them in add_wraps.
|
||
*
|
||
* Initially all cut constraints are non-redundant, but the
|
||
* selection of a facet right before the call to this function
|
||
* may have made some of them redundant.
|
||
* Likewise, the same constraints are marked non-redundant
|
||
* in the second call to this function, before they are officially
|
||
* made non-redundant again in the subsequent rollback.
|
||
*/
|
||
static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
|
||
int *cuts, int n, int k, int v)
|
||
{
|
||
int l;
|
||
|
||
for (l = 0; l < n; ++l) {
|
||
if (l == k)
|
||
continue;
|
||
tab->con[n_eq + cuts[l]].is_redundant = v;
|
||
}
|
||
}
|
||
|
||
/* Given a pair of basic maps i and j such that j sticks out
|
||
* of i at n cut constraints, each time by at most one,
|
||
* try to compute wrapping constraints and replace the two
|
||
* basic maps by a single basic map.
|
||
* The other constraints of i are assumed to be valid for j.
|
||
*
|
||
* The facets of i corresponding to the cut constraints are
|
||
* wrapped around their ridges, except those ridges determined
|
||
* by any of the other cut constraints.
|
||
* The intersections of cut constraints need to be ignored
|
||
* as the result of wrapping one cut constraint around another
|
||
* would result in a constraint cutting the union.
|
||
* In each case, the facets are wrapped to include the union
|
||
* of the two basic maps.
|
||
*
|
||
* The pieces of j that lie at an offset of exactly one from
|
||
* one of the cut constraints of i are wrapped around their edges.
|
||
* Here, there is no need to ignore intersections because we
|
||
* are wrapping around the union of the two basic maps.
|
||
*
|
||
* If any wrapping fails, i.e., if we cannot wrap to touch
|
||
* the union, then we give up.
|
||
* Otherwise, the pair of basic maps is replaced by their union.
|
||
*/
|
||
static int wrap_in_facets(struct isl_map *map, int i, int j,
|
||
int *cuts, int n, struct isl_tab **tabs,
|
||
int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int changed = 0;
|
||
struct isl_wraps wraps;
|
||
isl_mat *mat;
|
||
isl_set *set = NULL;
|
||
isl_vec *bound = NULL;
|
||
unsigned total = isl_basic_map_total_dim(map->p[i]);
|
||
int max_wrap;
|
||
int k;
|
||
struct isl_tab_undo *snap_i, *snap_j;
|
||
|
||
if (isl_tab_extend_cons(tabs[j], 1) < 0)
|
||
goto error;
|
||
|
||
max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
|
||
map->p[i]->n_ineq + map->p[j]->n_ineq;
|
||
max_wrap *= n;
|
||
|
||
set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
|
||
set_from_updated_bmap(map->p[j], tabs[j]));
|
||
mat = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
|
||
wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
|
||
bound = isl_vec_alloc(map->ctx, 1 + total);
|
||
if (!set || !wraps.mat || !bound)
|
||
goto error;
|
||
|
||
snap_i = isl_tab_snap(tabs[i]);
|
||
snap_j = isl_tab_snap(tabs[j]);
|
||
|
||
wraps.mat->n_row = 0;
|
||
|
||
for (k = 0; k < n; ++k) {
|
||
if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0)
|
||
goto error;
|
||
if (isl_tab_detect_redundant(tabs[i]) < 0)
|
||
goto error;
|
||
set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);
|
||
|
||
isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
|
||
if (!tabs[i]->empty &&
|
||
add_wraps(&wraps, map->p[i], tabs[i], bound->el, set) < 0)
|
||
goto error;
|
||
|
||
set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
|
||
if (isl_tab_rollback(tabs[i], snap_i) < 0)
|
||
goto error;
|
||
|
||
if (tabs[i]->empty)
|
||
break;
|
||
if (!wraps.mat->n_row)
|
||
break;
|
||
|
||
isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
|
||
isl_int_add_ui(bound->el[0], bound->el[0], 1);
|
||
if (isl_tab_add_eq(tabs[j], bound->el) < 0)
|
||
goto error;
|
||
if (isl_tab_detect_redundant(tabs[j]) < 0)
|
||
goto error;
|
||
|
||
if (!tabs[j]->empty &&
|
||
add_wraps(&wraps, map->p[j], tabs[j], bound->el, set) < 0)
|
||
goto error;
|
||
|
||
if (isl_tab_rollback(tabs[j], snap_j) < 0)
|
||
goto error;
|
||
|
||
if (!wraps.mat->n_row)
|
||
break;
|
||
}
|
||
|
||
if (k == n)
|
||
changed = fuse(map, i, j, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
|
||
|
||
isl_vec_free(bound);
|
||
wraps_free(&wraps);
|
||
isl_set_free(set);
|
||
|
||
return changed;
|
||
error:
|
||
isl_vec_free(bound);
|
||
wraps_free(&wraps);
|
||
isl_set_free(set);
|
||
return -1;
|
||
}
|
||
|
||
/* Given two basic sets i and j such that i has no cut equalities,
|
||
* check if relaxing all the cut inequalities of i by one turns
|
||
* them into valid constraint for j and check if we can wrap in
|
||
* the bits that are sticking out.
|
||
* If so, replace the pair by their union.
|
||
*
|
||
* We first check if all relaxed cut inequalities of i are valid for j
|
||
* and then try to wrap in the intersections of the relaxed cut inequalities
|
||
* with j.
|
||
*
|
||
* During this wrapping, we consider the points of j that lie at a distance
|
||
* of exactly 1 from i. In particular, we ignore the points that lie in
|
||
* between this lower-dimensional space and the basic map i.
|
||
* We can therefore only apply this to integer maps.
|
||
* ____ _____
|
||
* / ___|_ / \
|
||
* / | | / |
|
||
* \ | | => \ |
|
||
* \|____| \ |
|
||
* \___| \____/
|
||
*
|
||
* _____ ______
|
||
* | ____|_ | \
|
||
* | | | | |
|
||
* | | | => | |
|
||
* |_| | | |
|
||
* |_____| \______|
|
||
*
|
||
* _______
|
||
* | |
|
||
* | |\ |
|
||
* | | \ |
|
||
* | | \ |
|
||
* | | \|
|
||
* | | \
|
||
* | |_____\
|
||
* | |
|
||
* |_______|
|
||
*
|
||
* Wrapping can fail if the result of wrapping one of the facets
|
||
* around its edges does not produce any new facet constraint.
|
||
* In particular, this happens when we try to wrap in unbounded sets.
|
||
*
|
||
* _______________________________________________________________________
|
||
* |
|
||
* | ___
|
||
* | | |
|
||
* |_| |_________________________________________________________________
|
||
* |___|
|
||
*
|
||
* The following is not an acceptable result of coalescing the above two
|
||
* sets as it includes extra integer points.
|
||
* _______________________________________________________________________
|
||
* |
|
||
* |
|
||
* |
|
||
* |
|
||
* \______________________________________________________________________
|
||
*/
|
||
static int can_wrap_in_set(struct isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int changed = 0;
|
||
int k, m;
|
||
int n;
|
||
int *cuts = NULL;
|
||
|
||
if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
|
||
ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
|
||
return 0;
|
||
|
||
n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
|
||
if (n == 0)
|
||
return 0;
|
||
|
||
cuts = isl_alloc_array(map->ctx, int, n);
|
||
if (!cuts)
|
||
return -1;
|
||
|
||
for (k = 0, m = 0; m < n; ++k) {
|
||
enum isl_ineq_type type;
|
||
|
||
if (ineq_i[k] != STATUS_CUT)
|
||
continue;
|
||
|
||
isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
|
||
type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
|
||
isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
|
||
if (type == isl_ineq_error)
|
||
goto error;
|
||
if (type != isl_ineq_redundant)
|
||
break;
|
||
cuts[m] = k;
|
||
++m;
|
||
}
|
||
|
||
if (m == n)
|
||
changed = wrap_in_facets(map, i, j, cuts, n, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
|
||
free(cuts);
|
||
|
||
return changed;
|
||
error:
|
||
free(cuts);
|
||
return -1;
|
||
}
|
||
|
||
/* Check if either i or j has a single cut constraint that can
|
||
* be used to wrap in (a facet of) the other basic set.
|
||
* if so, replace the pair by their union.
|
||
*/
|
||
static int check_wrap(struct isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int changed = 0;
|
||
|
||
if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
|
||
changed = can_wrap_in_set(map, i, j, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
if (changed)
|
||
return changed;
|
||
|
||
if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
|
||
changed = can_wrap_in_set(map, j, i, tabs,
|
||
eq_j, ineq_j, eq_i, ineq_i);
|
||
return changed;
|
||
}
|
||
|
||
/* At least one of the basic maps has an equality that is adjacent
|
||
* to inequality. Make sure that only one of the basic maps has
|
||
* such an equality and that the other basic map has exactly one
|
||
* inequality adjacent to an equality.
|
||
* We call the basic map that has the inequality "i" and the basic
|
||
* map that has the equality "j".
|
||
* If "i" has any "cut" (in)equality, then relaxing the inequality
|
||
* by one would not result in a basic map that contains the other
|
||
* basic map.
|
||
*/
|
||
static int check_adj_eq(struct isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int changed = 0;
|
||
int k;
|
||
|
||
if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
|
||
any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
|
||
/* ADJ EQ TOO MANY */
|
||
return 0;
|
||
|
||
if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
|
||
return check_adj_eq(map, j, i, tabs,
|
||
eq_j, ineq_j, eq_i, ineq_i);
|
||
|
||
/* j has an equality adjacent to an inequality in i */
|
||
|
||
if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
|
||
return 0;
|
||
if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
|
||
/* ADJ EQ CUT */
|
||
return 0;
|
||
if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
|
||
any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
|
||
any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
|
||
any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
|
||
/* ADJ EQ TOO MANY */
|
||
return 0;
|
||
|
||
for (k = 0; k < map->p[i]->n_ineq; ++k)
|
||
if (ineq_i[k] == STATUS_ADJ_EQ)
|
||
break;
|
||
|
||
changed = is_adj_eq_extension(map, i, j, k, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
if (changed)
|
||
return changed;
|
||
|
||
if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1)
|
||
return 0;
|
||
|
||
changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* The two basic maps lie on adjacent hyperplanes. In particular,
|
||
* basic map "i" has an equality that lies parallel to basic map "j".
|
||
* Check if we can wrap the facets around the parallel hyperplanes
|
||
* to include the other set.
|
||
*
|
||
* We perform basically the same operations as can_wrap_in_facet,
|
||
* except that we don't need to select a facet of one of the sets.
|
||
* _
|
||
* \\ \\
|
||
* \\ => \\
|
||
* \ \|
|
||
*
|
||
* We only allow one equality of "i" to be adjacent to an equality of "j"
|
||
* to avoid coalescing
|
||
*
|
||
* [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
|
||
* x <= 10 and y <= 10;
|
||
* [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
|
||
* y >= 5 and y <= 15 }
|
||
*
|
||
* to
|
||
*
|
||
* [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
|
||
* 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
|
||
* y2 <= 1 + x + y - x2 and y2 >= y and
|
||
* y2 >= 1 + x + y - x2 }
|
||
*/
|
||
static int check_eq_adj_eq(struct isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
|
||
{
|
||
int k;
|
||
int changed = 0;
|
||
struct isl_wraps wraps;
|
||
isl_mat *mat;
|
||
struct isl_set *set_i = NULL;
|
||
struct isl_set *set_j = NULL;
|
||
struct isl_vec *bound = NULL;
|
||
unsigned total = isl_basic_map_total_dim(map->p[i]);
|
||
|
||
if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1)
|
||
return 0;
|
||
|
||
for (k = 0; k < 2 * map->p[i]->n_eq ; ++k)
|
||
if (eq_i[k] == STATUS_ADJ_EQ)
|
||
break;
|
||
|
||
set_i = set_from_updated_bmap(map->p[i], tabs[i]);
|
||
set_j = set_from_updated_bmap(map->p[j], tabs[j]);
|
||
mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
|
||
map->p[i]->n_ineq + map->p[j]->n_ineq,
|
||
1 + total);
|
||
wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
|
||
bound = isl_vec_alloc(map->ctx, 1 + total);
|
||
if (!set_i || !set_j || !wraps.mat || !bound)
|
||
goto error;
|
||
|
||
if (k % 2 == 0)
|
||
isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total);
|
||
else
|
||
isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total);
|
||
isl_int_add_ui(bound->el[0], bound->el[0], 1);
|
||
|
||
isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
|
||
wraps.mat->n_row = 1;
|
||
|
||
if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
isl_int_sub_ui(bound->el[0], bound->el[0], 1);
|
||
isl_seq_neg(bound->el, bound->el, 1 + total);
|
||
|
||
isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
|
||
wraps.mat->n_row++;
|
||
|
||
if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
|
||
goto error;
|
||
if (!wraps.mat->n_row)
|
||
goto unbounded;
|
||
|
||
changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
|
||
|
||
if (0) {
|
||
error: changed = -1;
|
||
}
|
||
unbounded:
|
||
|
||
wraps_free(&wraps);
|
||
isl_set_free(set_i);
|
||
isl_set_free(set_j);
|
||
isl_vec_free(bound);
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Check if the union of the given pair of basic maps
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and return 1.
|
||
* Otherwise, return 0;
|
||
* The two basic maps are assumed to live in the same local space.
|
||
*
|
||
* We first check the effect of each constraint of one basic map
|
||
* on the other basic map.
|
||
* The constraint may be
|
||
* redundant the constraint is redundant in its own
|
||
* basic map and should be ignore and removed
|
||
* in the end
|
||
* valid all (integer) points of the other basic map
|
||
* satisfy the constraint
|
||
* separate no (integer) point of the other basic map
|
||
* satisfies the constraint
|
||
* cut some but not all points of the other basic map
|
||
* satisfy the constraint
|
||
* adj_eq the given constraint is adjacent (on the outside)
|
||
* to an equality of the other basic map
|
||
* adj_ineq the given constraint is adjacent (on the outside)
|
||
* to an inequality of the other basic map
|
||
*
|
||
* We consider seven cases in which we can replace the pair by a single
|
||
* basic map. We ignore all "redundant" constraints.
|
||
*
|
||
* 1. all constraints of one basic map are valid
|
||
* => the other basic map is a subset and can be removed
|
||
*
|
||
* 2. all constraints of both basic maps are either "valid" or "cut"
|
||
* and the facets corresponding to the "cut" constraints
|
||
* of one of the basic maps lies entirely inside the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 3. there is a single pair of adjacent inequalities
|
||
* (all other constraints are "valid")
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 4. one basic map has a single adjacent inequality, while the other
|
||
* constraints are "valid". The other basic map has some
|
||
* "cut" constraints, but replacing the adjacent inequality by
|
||
* its opposite and adding the valid constraints of the other
|
||
* basic map results in a subset of the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps
|
||
*
|
||
* 5. there is a single adjacent pair of an inequality and an equality,
|
||
* the other constraints of the basic map containing the inequality are
|
||
* "valid". Moreover, if the inequality the basic map is relaxed
|
||
* and then turned into an equality, then resulting facet lies
|
||
* entirely inside the other basic map
|
||
* => the pair can be replaced by the basic map containing
|
||
* the inequality, with the inequality relaxed.
|
||
*
|
||
* 6. there is a single adjacent pair of an inequality and an equality,
|
||
* the other constraints of the basic map containing the inequality are
|
||
* "valid". Moreover, the facets corresponding to both
|
||
* the inequality and the equality can be wrapped around their
|
||
* ridges to include the other basic map
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps together
|
||
* with all wrapping constraints
|
||
*
|
||
* 7. one of the basic maps extends beyond the other by at most one.
|
||
* Moreover, the facets corresponding to the cut constraints and
|
||
* the pieces of the other basic map at offset one from these cut
|
||
* constraints can be wrapped around their ridges to include
|
||
* the union of the two basic maps
|
||
* => the pair can be replaced by a basic map consisting
|
||
* of the valid constraints in both basic maps together
|
||
* with all wrapping constraints
|
||
*
|
||
* 8. the two basic maps live in adjacent hyperplanes. In principle
|
||
* such sets can always be combined through wrapping, but we impose
|
||
* that there is only one such pair, to avoid overeager coalescing.
|
||
*
|
||
* Throughout the computation, we maintain a collection of tableaus
|
||
* corresponding to the basic maps. When the basic maps are dropped
|
||
* or combined, the tableaus are modified accordingly.
|
||
*/
|
||
static int coalesce_local_pair(__isl_keep isl_map *map, int i, int j,
|
||
struct isl_tab **tabs)
|
||
{
|
||
int changed = 0;
|
||
int *eq_i = NULL;
|
||
int *eq_j = NULL;
|
||
int *ineq_i = NULL;
|
||
int *ineq_j = NULL;
|
||
|
||
eq_i = eq_status_in(map->p[i], tabs[j]);
|
||
if (map->p[i]->n_eq && !eq_i)
|
||
goto error;
|
||
if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
eq_j = eq_status_in(map->p[j], tabs[i]);
|
||
if (map->p[j]->n_eq && !eq_j)
|
||
goto error;
|
||
if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
ineq_i = ineq_status_in(map->p[i], tabs[i], tabs[j]);
|
||
if (map->p[i]->n_ineq && !ineq_i)
|
||
goto error;
|
||
if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
ineq_j = ineq_status_in(map->p[j], tabs[j], tabs[i]);
|
||
if (map->p[j]->n_ineq && !ineq_j)
|
||
goto error;
|
||
if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
|
||
all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
|
||
drop(map, j, tabs);
|
||
changed = 1;
|
||
} else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
|
||
all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
|
||
drop(map, i, tabs);
|
||
changed = 1;
|
||
} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) {
|
||
changed = check_eq_adj_eq(map, i, j, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
} else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
|
||
changed = check_eq_adj_eq(map, j, i, tabs,
|
||
eq_j, ineq_j, eq_i, ineq_i);
|
||
} else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
|
||
any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
|
||
changed = check_adj_eq(map, i, j, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
|
||
any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
|
||
/* Can't happen */
|
||
/* BAD ADJ INEQ */
|
||
} else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
|
||
any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
|
||
changed = check_adj_ineq(map, i, j, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
} else {
|
||
if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
|
||
!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
|
||
changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
|
||
if (!changed)
|
||
changed = check_wrap(map, i, j, tabs,
|
||
eq_i, ineq_i, eq_j, ineq_j);
|
||
}
|
||
|
||
done:
|
||
free(eq_i);
|
||
free(eq_j);
|
||
free(ineq_i);
|
||
free(ineq_j);
|
||
return changed;
|
||
error:
|
||
free(eq_i);
|
||
free(eq_j);
|
||
free(ineq_i);
|
||
free(ineq_j);
|
||
return -1;
|
||
}
|
||
|
||
/* Do the two basic maps live in the same local space, i.e.,
|
||
* do they have the same (known) divs?
|
||
* If either basic map has any unknown divs, then we can only assume
|
||
* that they do not live in the same local space.
|
||
*/
|
||
static int same_divs(__isl_keep isl_basic_map *bmap1,
|
||
__isl_keep isl_basic_map *bmap2)
|
||
{
|
||
int i;
|
||
int known;
|
||
int total;
|
||
|
||
if (!bmap1 || !bmap2)
|
||
return -1;
|
||
if (bmap1->n_div != bmap2->n_div)
|
||
return 0;
|
||
|
||
if (bmap1->n_div == 0)
|
||
return 1;
|
||
|
||
known = isl_basic_map_divs_known(bmap1);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
known = isl_basic_map_divs_known(bmap2);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
|
||
total = isl_basic_map_total_dim(bmap1);
|
||
for (i = 0; i < bmap1->n_div; ++i)
|
||
if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Given two basic maps "i" and "j", where the divs of "i" form a subset
|
||
* of those of "j", check if basic map "j" is a subset of basic map "i"
|
||
* and, if so, drop basic map "j".
|
||
*
|
||
* We first expand the divs of basic map "i" to match those of basic map "j",
|
||
* using the divs and expansion computed by the caller.
|
||
* Then we check if all constraints of the expanded "i" are valid for "j".
|
||
*/
|
||
static int coalesce_subset(__isl_keep isl_map *map, int i, int j,
|
||
struct isl_tab **tabs, __isl_keep isl_mat *div, int *exp)
|
||
{
|
||
isl_basic_map *bmap;
|
||
int changed = 0;
|
||
int *eq_i = NULL;
|
||
int *ineq_i = NULL;
|
||
|
||
bmap = isl_basic_map_copy(map->p[i]);
|
||
bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
|
||
|
||
if (!bmap)
|
||
goto error;
|
||
|
||
eq_i = eq_status_in(bmap, tabs[j]);
|
||
if (bmap->n_eq && !eq_i)
|
||
goto error;
|
||
if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
ineq_i = ineq_status_in(bmap, NULL, tabs[j]);
|
||
if (bmap->n_ineq && !ineq_i)
|
||
goto error;
|
||
if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
|
||
goto error;
|
||
if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
|
||
goto done;
|
||
|
||
if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
|
||
all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
|
||
drop(map, j, tabs);
|
||
changed = 1;
|
||
}
|
||
|
||
done:
|
||
isl_basic_map_free(bmap);
|
||
free(eq_i);
|
||
free(ineq_i);
|
||
return 0;
|
||
error:
|
||
isl_basic_map_free(bmap);
|
||
free(eq_i);
|
||
free(ineq_i);
|
||
return -1;
|
||
}
|
||
|
||
/* Check if the basic map "j" is a subset of basic map "i",
|
||
* assuming that "i" has fewer divs that "j".
|
||
* If not, then we change the order.
|
||
*
|
||
* If the two basic maps have the same number of divs, then
|
||
* they must necessarily be different. Otherwise, we would have
|
||
* called coalesce_local_pair. We therefore don't try anything
|
||
* in this case.
|
||
*
|
||
* We first check if the divs of "i" are all known and form a subset
|
||
* of those of "j". If so, we pass control over to coalesce_subset.
|
||
*/
|
||
static int check_coalesce_subset(__isl_keep isl_map *map, int i, int j,
|
||
struct isl_tab **tabs)
|
||
{
|
||
int known;
|
||
isl_mat *div_i, *div_j, *div;
|
||
int *exp1 = NULL;
|
||
int *exp2 = NULL;
|
||
isl_ctx *ctx;
|
||
int subset;
|
||
|
||
if (map->p[i]->n_div == map->p[j]->n_div)
|
||
return 0;
|
||
if (map->p[j]->n_div < map->p[i]->n_div)
|
||
return check_coalesce_subset(map, j, i, tabs);
|
||
|
||
known = isl_basic_map_divs_known(map->p[i]);
|
||
if (known < 0 || !known)
|
||
return known;
|
||
|
||
ctx = isl_map_get_ctx(map);
|
||
|
||
div_i = isl_basic_map_get_divs(map->p[i]);
|
||
div_j = isl_basic_map_get_divs(map->p[j]);
|
||
|
||
if (!div_i || !div_j)
|
||
goto error;
|
||
|
||
exp1 = isl_alloc_array(ctx, int, div_i->n_row);
|
||
exp2 = isl_alloc_array(ctx, int, div_j->n_row);
|
||
if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
|
||
goto error;
|
||
|
||
div = isl_merge_divs(div_i, div_j, exp1, exp2);
|
||
if (!div)
|
||
goto error;
|
||
|
||
if (div->n_row == div_j->n_row)
|
||
subset = coalesce_subset(map, i, j, tabs, div, exp1);
|
||
else
|
||
subset = 0;
|
||
|
||
isl_mat_free(div);
|
||
|
||
isl_mat_free(div_i);
|
||
isl_mat_free(div_j);
|
||
|
||
free(exp2);
|
||
free(exp1);
|
||
|
||
return subset;
|
||
error:
|
||
isl_mat_free(div_i);
|
||
isl_mat_free(div_j);
|
||
free(exp1);
|
||
free(exp2);
|
||
return -1;
|
||
}
|
||
|
||
/* Check if the union of the given pair of basic maps
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and return 1.
|
||
* Otherwise, return 0;
|
||
*
|
||
* We first check if the two basic maps live in the same local space.
|
||
* If so, we do the complete check. Otherwise, we check if one is
|
||
* an obvious subset of the other.
|
||
*/
|
||
static int coalesce_pair(__isl_keep isl_map *map, int i, int j,
|
||
struct isl_tab **tabs)
|
||
{
|
||
int same;
|
||
|
||
same = same_divs(map->p[i], map->p[j]);
|
||
if (same < 0)
|
||
return -1;
|
||
if (same)
|
||
return coalesce_local_pair(map, i, j, tabs);
|
||
|
||
return check_coalesce_subset(map, i, j, tabs);
|
||
}
|
||
|
||
static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = map->n - 2; i >= 0; --i)
|
||
restart:
|
||
for (j = i + 1; j < map->n; ++j) {
|
||
int changed;
|
||
changed = coalesce_pair(map, i, j, tabs);
|
||
if (changed < 0)
|
||
goto error;
|
||
if (changed)
|
||
goto restart;
|
||
}
|
||
return map;
|
||
error:
|
||
isl_map_free(map);
|
||
return NULL;
|
||
}
|
||
|
||
/* For each pair of basic maps in the map, check if the union of the two
|
||
* can be represented by a single basic map.
|
||
* If so, replace the pair by the single basic map and start over.
|
||
*
|
||
* Since we are constructing the tableaus of the basic maps anyway,
|
||
* we exploit them to detect implicit equalities and redundant constraints.
|
||
* This also helps the coalescing as it can ignore the redundant constraints.
|
||
* In order to avoid confusion, we make all implicit equalities explicit
|
||
* in the basic maps. We don't call isl_basic_map_gauss, though,
|
||
* as that may affect the number of constraints.
|
||
* This means that we have to call isl_basic_map_gauss at the end
|
||
* of the computation to ensure that the basic maps are not left
|
||
* in an unexpected state.
|
||
*/
|
||
struct isl_map *isl_map_coalesce(struct isl_map *map)
|
||
{
|
||
int i;
|
||
unsigned n;
|
||
struct isl_tab **tabs = NULL;
|
||
|
||
map = isl_map_remove_empty_parts(map);
|
||
if (!map)
|
||
return NULL;
|
||
|
||
if (map->n <= 1)
|
||
return map;
|
||
|
||
map = isl_map_sort_divs(map);
|
||
map = isl_map_cow(map);
|
||
|
||
tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
|
||
if (!tabs)
|
||
goto error;
|
||
|
||
n = map->n;
|
||
for (i = 0; i < map->n; ++i) {
|
||
tabs[i] = isl_tab_from_basic_map(map->p[i], 0);
|
||
if (!tabs[i])
|
||
goto error;
|
||
if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
|
||
if (isl_tab_detect_implicit_equalities(tabs[i]) < 0)
|
||
goto error;
|
||
map->p[i] = isl_tab_make_equalities_explicit(tabs[i],
|
||
map->p[i]);
|
||
if (!map->p[i])
|
||
goto error;
|
||
if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
|
||
if (isl_tab_detect_redundant(tabs[i]) < 0)
|
||
goto error;
|
||
}
|
||
for (i = map->n - 1; i >= 0; --i)
|
||
if (tabs[i]->empty)
|
||
drop(map, i, tabs);
|
||
|
||
map = coalesce(map, tabs);
|
||
|
||
if (map)
|
||
for (i = 0; i < map->n; ++i) {
|
||
map->p[i] = isl_basic_map_update_from_tab(map->p[i],
|
||
tabs[i]);
|
||
map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
|
||
map->p[i] = isl_basic_map_finalize(map->p[i]);
|
||
if (!map->p[i])
|
||
goto error;
|
||
ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
|
||
ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
|
||
}
|
||
|
||
for (i = 0; i < n; ++i)
|
||
isl_tab_free(tabs[i]);
|
||
|
||
free(tabs);
|
||
|
||
return map;
|
||
error:
|
||
if (tabs)
|
||
for (i = 0; i < n; ++i)
|
||
isl_tab_free(tabs[i]);
|
||
free(tabs);
|
||
isl_map_free(map);
|
||
return NULL;
|
||
}
|
||
|
||
/* For each pair of basic sets in the set, check if the union of the two
|
||
* can be represented by a single basic set.
|
||
* If so, replace the pair by the single basic set and start over.
|
||
*/
|
||
struct isl_set *isl_set_coalesce(struct isl_set *set)
|
||
{
|
||
return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);
|
||
}
|