mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-31 18:44:48 +01:00
99d8158635
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@29042 a95241bf-73f2-0310-859d-f6bbb57e9c96
161 lines
5.0 KiB
C
161 lines
5.0 KiB
C
/* mpfr_pow_ui-- compute the power of a floating-point
|
|
by a machine integer
|
|
|
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the MPFR Library.
|
|
|
|
The MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the MPFR Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* sets x to y^n, and return 0 if exact, non-zero otherwise */
|
|
int
|
|
mpfr_pow_ui (mpfr_ptr x, mpfr_srcptr y, unsigned long int n, mp_rnd_t rnd)
|
|
{
|
|
unsigned long m;
|
|
mpfr_t res;
|
|
mp_prec_t prec, err;
|
|
int inexact;
|
|
mp_rnd_t rnd1;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
MPFR_ZIV_DECL (loop);
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (y)))
|
|
{
|
|
if (MPFR_IS_NAN (y))
|
|
{
|
|
MPFR_SET_NAN (x);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (n == 0) /* y^0 = 1 for any y except NAN */
|
|
{
|
|
/* The return mpfr_set_ui is important as 1 isn't necessarily
|
|
in the exponent range. */
|
|
return mpfr_set_ui (x, 1, rnd);
|
|
}
|
|
else if (MPFR_IS_INF (y))
|
|
{
|
|
/* Inf^n = Inf, (-Inf)^n = Inf for n even, -Inf for n odd */
|
|
if ((MPFR_IS_NEG (y)) && ((n & 1) == 1))
|
|
MPFR_SET_NEG (x);
|
|
else
|
|
MPFR_SET_POS (x);
|
|
MPFR_SET_INF (x);
|
|
MPFR_RET (0);
|
|
}
|
|
else /* y is zero */
|
|
{
|
|
MPFR_ASSERTD (MPFR_IS_ZERO (y));
|
|
/* 0^n = 0 for any n */
|
|
MPFR_SET_ZERO (x);
|
|
if (MPFR_IS_POS (y) || ((n & 1) == 0))
|
|
MPFR_SET_POS (x);
|
|
else
|
|
MPFR_SET_NEG (x);
|
|
MPFR_RET (0);
|
|
}
|
|
}
|
|
else if (MPFR_UNLIKELY (n <= 2))
|
|
{
|
|
if (n < 1)
|
|
/* y^0 = 1 for any y */
|
|
return mpfr_set_ui (x, 1, rnd);
|
|
else if (n == 1)
|
|
/* y^1 = y */
|
|
return mpfr_set (x, y, rnd);
|
|
else
|
|
/* y^2 = sqr(y) */
|
|
return mpfr_mul (x, y, y, rnd);
|
|
}
|
|
|
|
/* Augment exponent range */
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
__gmpfr_emin -= 3; /* So that we can check for underflow properly */
|
|
|
|
/* setup initial precision */
|
|
prec = MPFR_PREC (x) + 3 + BITS_PER_MP_LIMB
|
|
+ MPFR_INT_CEIL_LOG2 (MPFR_PREC (x));
|
|
mpfr_init2 (res, prec);
|
|
|
|
rnd1 = MPFR_IS_POS (y) ? GMP_RNDU : GMP_RNDD; /* away */
|
|
|
|
MPFR_ZIV_INIT (loop, prec);
|
|
for (;;)
|
|
{
|
|
int i;
|
|
for (m = n, i = 0; m; i++, m >>= 1)
|
|
;
|
|
/* now 2^(i-1) <= n < 2^i */
|
|
MPFR_ASSERTD (prec > (mpfr_prec_t) i);
|
|
err = prec - 1 - (mpfr_prec_t) i;
|
|
MPFR_ASSERTD (i >= 1);
|
|
mpfr_clear_overflow ();
|
|
mpfr_clear_underflow ();
|
|
/* First step: compute square from y */
|
|
inexact = mpfr_mul (res, y, y, GMP_RNDU);
|
|
if (n & (1UL << (i-2)))
|
|
inexact |= mpfr_mul (res, res, y, rnd1);
|
|
for (i -= 3; i >= 0 && !mpfr_overflow_p () && !mpfr_underflow_p (); i--)
|
|
{
|
|
inexact |= mpfr_mul (res, res, res, GMP_RNDU);
|
|
if (n & (1UL << i))
|
|
inexact |= mpfr_mul (res, res, y, rnd1);
|
|
}
|
|
/* let r(n) be the number of roundings: we have r(2)=1, r(3)=2,
|
|
and r(2n)=2r(n)+1, r(2n+1)=2r(n)+2, thus r(n)=n-1.
|
|
Using Higham's method, to each rounding corresponds a factor
|
|
(1-theta) with 0 <= theta <= 2^(1-p), thus at the end the
|
|
absolute error is bounded by (n-1)*2^(1-p)*res <= 2*(n-1)*ulp(res)
|
|
since 2^(-p)*x <= ulp(x). Since n < 2^i, this gives a maximal
|
|
error of 2^(1+i)*ulp(res).
|
|
*/
|
|
if (MPFR_LIKELY (inexact == 0
|
|
|| mpfr_overflow_p () || mpfr_underflow_p ()
|
|
|| MPFR_CAN_ROUND (res, err, MPFR_PREC (x), rnd)))
|
|
break;
|
|
/* Actualisation of the precision */
|
|
MPFR_ZIV_NEXT (loop, prec);
|
|
mpfr_set_prec (res, prec);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
inexact = mpfr_set (x, res, rnd);
|
|
mpfr_clear (res);
|
|
|
|
/* Check Overflow */
|
|
if (MPFR_UNLIKELY (mpfr_overflow_p ()))
|
|
{
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_overflow (x, rnd,
|
|
(n % 2) ? MPFR_SIGN (y) : MPFR_SIGN_POS);
|
|
}
|
|
/* Check Underflow */
|
|
else if (MPFR_UNLIKELY (mpfr_underflow_p ()))
|
|
{
|
|
if (rnd == GMP_RNDN)
|
|
rnd = GMP_RNDZ;
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_underflow (x, rnd,
|
|
(n % 2) ? MPFR_SIGN(y) : MPFR_SIGN_POS);
|
|
}
|
|
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (x, inexact, rnd);
|
|
}
|