mirror of
https://review.haiku-os.org/buildtools
synced 2025-02-14 17:57:39 +01:00
Change-Id: Iae65e95cfa0d92091b8b0a424ae36d88efa76aa9 Reviewed-on: https://review.haiku-os.org/c/buildtools/+/3020 Reviewed-by: Adrien Destugues <pulkomandy@gmail.com>
223 lines
6.0 KiB
C
223 lines
6.0 KiB
C
/* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality
|
|
test found in Knuth's Seminumerical Algorithms book. If the function
|
|
mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is
|
|
'probably' prime. The probability of a false positive is (1/4)**reps, where
|
|
reps is the number of internal passes of the probabilistic algorithm. Knuth
|
|
indicates that 25 passes are reasonable.
|
|
|
|
With the current implementation, the first 24 MR-tests are substituted by a
|
|
Baillie-PSW probable prime test.
|
|
|
|
This implementation the Baillie-PSW test was checked up to 19*2^46,
|
|
for smaller values no MR-test is performed, regardless of reps, and
|
|
2 ("surely prime") is returned if the number was not proved composite.
|
|
|
|
If GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS is defined as non-zero,
|
|
the code assumes that the Baillie-PSW test was checked up to 2^64.
|
|
|
|
THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
|
|
CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
|
|
FUTURE GNU MP RELEASES.
|
|
|
|
Copyright 1991, 1993, 1994, 1996-2002, 2005, 2014, 2018, 2019 Free
|
|
Software Foundation, Inc.
|
|
|
|
Contributed by John Amanatides.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of either:
|
|
|
|
* the GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
or
|
|
|
|
* the GNU General Public License as published by the Free Software
|
|
Foundation; either version 2 of the License, or (at your option) any
|
|
later version.
|
|
|
|
or both in parallel, as here.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received copies of the GNU General Public License and the
|
|
GNU Lesser General Public License along with the GNU MP Library. If not,
|
|
see https://www.gnu.org/licenses/. */
|
|
|
|
#include "gmp-impl.h"
|
|
|
|
#ifndef GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS
|
|
#define GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS 0
|
|
#endif
|
|
|
|
static int millerrabin (mpz_srcptr,
|
|
mpz_ptr, mpz_ptr,
|
|
mpz_srcptr, unsigned long int);
|
|
|
|
int
|
|
mpz_millerrabin (mpz_srcptr n, int reps)
|
|
{
|
|
mpz_t nm, x, y, q;
|
|
unsigned long int k;
|
|
gmp_randstate_t rstate;
|
|
int is_prime;
|
|
TMP_DECL;
|
|
TMP_MARK;
|
|
|
|
ASSERT (SIZ (n) > 0);
|
|
MPZ_TMP_INIT (nm, SIZ (n) + 1);
|
|
mpz_tdiv_q_2exp (nm, n, 1);
|
|
|
|
MPZ_TMP_INIT (x, SIZ (n) + 1);
|
|
MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */
|
|
MPZ_TMP_INIT (q, SIZ (n));
|
|
|
|
/* Find q and k, where q is odd and n = 1 + 2**k * q. */
|
|
k = mpz_scan1 (nm, 0L);
|
|
mpz_tdiv_q_2exp (q, nm, k);
|
|
++k;
|
|
|
|
/* BPSW test */
|
|
mpz_set_ui (x, 2);
|
|
is_prime = millerrabin (n, x, y, q, k) && mpz_stronglucas (n, x, y);
|
|
|
|
if (is_prime)
|
|
{
|
|
if (
|
|
#if GMP_BPSW_NOFALSEPOSITIVES_UPTO_64BITS
|
|
/* Consider numbers up to 2^64 that pass the BPSW test as primes. */
|
|
#if GMP_NUMB_BITS <= 64
|
|
SIZ (n) <= 64 / GMP_NUMB_BITS
|
|
#else
|
|
0
|
|
#endif
|
|
#if 64 % GMP_NUMB_BITS != 0
|
|
|| SIZ (n) - 64 / GMP_NUMB_BITS == (PTR (n) [64 / GMP_NUMB_BITS] < CNST_LIMB(1) << 64 % GMP_NUMB_BITS)
|
|
#endif
|
|
#else
|
|
/* Consider numbers up to 19*2^46 that pass the BPSW test as primes.
|
|
This implementation was tested up to 19*2^46 = 2^50+2^47+2^46 */
|
|
/* 2^4 < 19 = 0b10011 < 2^5 */
|
|
#define GMP_BPSW_LIMB_CONST CNST_LIMB(19)
|
|
#define GMP_BPSW_BITS_CONST (LOG2C(19) - 1)
|
|
#define GMP_BPSW_BITS_LIMIT (46 + GMP_BPSW_BITS_CONST)
|
|
|
|
#define GMP_BPSW_LIMBS_LIMIT (GMP_BPSW_BITS_LIMIT / GMP_NUMB_BITS)
|
|
#define GMP_BPSW_BITS_MOD (GMP_BPSW_BITS_LIMIT % GMP_NUMB_BITS)
|
|
|
|
#if GMP_NUMB_BITS <= GMP_BPSW_BITS_LIMIT
|
|
SIZ (n) <= GMP_BPSW_LIMBS_LIMIT
|
|
#else
|
|
0
|
|
#endif
|
|
#if GMP_BPSW_BITS_MOD >= GMP_BPSW_BITS_CONST
|
|
|| SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST << (GMP_BPSW_BITS_MOD - GMP_BPSW_BITS_CONST))
|
|
#else
|
|
#if GMP_BPSW_BITS_MOD != 0
|
|
|| SIZ (n) - GMP_BPSW_LIMBS_LIMIT == (PTR (n) [GMP_BPSW_LIMBS_LIMIT] < GMP_BPSW_LIMB_CONST >> (GMP_BPSW_BITS_CONST - GMP_BPSW_BITS_MOD))
|
|
#else
|
|
#if GMP_NUMB_BITS > GMP_BPSW_BITS_CONST
|
|
|| SIZ (nm) - GMP_BPSW_LIMBS_LIMIT + 1 == (PTR (nm) [GMP_BPSW_LIMBS_LIMIT - 1] < GMP_BPSW_LIMB_CONST << (GMP_NUMB_BITS - 1 - GMP_BPSW_BITS_CONST))
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#undef GMP_BPSW_BITS_LIMIT
|
|
#undef GMP_BPSW_LIMB_CONST
|
|
#undef GMP_BPSW_BITS_CONST
|
|
#undef GMP_BPSW_LIMBS_LIMIT
|
|
#undef GMP_BPSW_BITS_MOD
|
|
|
|
#endif
|
|
)
|
|
is_prime = 2;
|
|
else
|
|
{
|
|
reps -= 24;
|
|
if (reps > 0)
|
|
{
|
|
/* (n-5)/2 */
|
|
mpz_sub_ui (nm, nm, 2L);
|
|
ASSERT (mpz_cmp_ui (nm, 1L) >= 0);
|
|
|
|
gmp_randinit_default (rstate);
|
|
|
|
do
|
|
{
|
|
/* 3 to (n-1)/2 inclusive, don't want 1, 0 or 2 */
|
|
mpz_urandomm (x, rstate, nm);
|
|
mpz_add_ui (x, x, 3L);
|
|
|
|
is_prime = millerrabin (n, x, y, q, k);
|
|
} while (--reps > 0 && is_prime);
|
|
|
|
gmp_randclear (rstate);
|
|
}
|
|
}
|
|
}
|
|
TMP_FREE;
|
|
return is_prime;
|
|
}
|
|
|
|
static int
|
|
mod_eq_m1 (mpz_srcptr x, mpz_srcptr m)
|
|
{
|
|
mp_size_t ms;
|
|
mp_srcptr mp, xp;
|
|
|
|
ms = SIZ (m);
|
|
if (SIZ (x) != ms)
|
|
return 0;
|
|
ASSERT (ms > 0);
|
|
|
|
mp = PTR (m);
|
|
xp = PTR (x);
|
|
ASSERT ((mp[0] - 1) == (mp[0] ^ 1)); /* n is odd */
|
|
|
|
if ((*xp ^ CNST_LIMB(1) ^ *mp) != CNST_LIMB(0)) /* xp[0] != mp[0] - 1 */
|
|
return 0;
|
|
else
|
|
{
|
|
int cmp;
|
|
|
|
--ms;
|
|
++xp;
|
|
++mp;
|
|
|
|
MPN_CMP (cmp, xp, mp, ms);
|
|
|
|
return cmp == 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
millerrabin (mpz_srcptr n, mpz_ptr x, mpz_ptr y,
|
|
mpz_srcptr q, unsigned long int k)
|
|
{
|
|
unsigned long int i;
|
|
|
|
mpz_powm (y, x, q, n);
|
|
|
|
if (mpz_cmp_ui (y, 1L) == 0 || mod_eq_m1 (y, n))
|
|
return 1;
|
|
|
|
for (i = 1; i < k; i++)
|
|
{
|
|
mpz_powm_ui (y, y, 2L, n);
|
|
if (mod_eq_m1 (y, n))
|
|
return 1;
|
|
/* y == 1 means that the previous y was a non-trivial square root
|
|
of 1 (mod n). y == 0 means that n is a power of the base.
|
|
In either case, n is not prime. */
|
|
if (mpz_cmp_ui (y, 1L) <= 0)
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|