mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-19 21:01:18 +01:00
99d8158635
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@29042 a95241bf-73f2-0310-859d-f6bbb57e9c96
262 lines
8.1 KiB
C
262 lines
8.1 KiB
C
/* mpfr_erf -- error function of a floating-point number
|
|
|
|
Copyright 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
|
Contributed by Ludovic Meunier and Paul Zimmermann.
|
|
|
|
This file is part of the MPFR Library.
|
|
|
|
The MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the MPFR Library; see the file COPYING.LIB. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
#define EXP1 2.71828182845904523536 /* exp(1) */
|
|
|
|
static int mpfr_erf_0 (mpfr_ptr, mpfr_srcptr, double, mp_rnd_t);
|
|
|
|
int
|
|
mpfr_erf (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
|
|
{
|
|
mpfr_t xf;
|
|
int inex, large;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
|
|
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
|
|
("y[%#R]=%R inexact=%d", y, y, inex));
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
{
|
|
if (MPFR_IS_NAN (x))
|
|
{
|
|
MPFR_SET_NAN (y);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_IS_INF (x)) /* erf(+inf) = +1, erf(-inf) = -1 */
|
|
return mpfr_set_si (y, MPFR_INT_SIGN (x), GMP_RNDN);
|
|
else /* erf(+0) = +0, erf(-0) = -0 */
|
|
{
|
|
MPFR_ASSERTD (MPFR_IS_ZERO (x));
|
|
return mpfr_set (y, x, GMP_RNDN); /* should keep the sign of x */
|
|
}
|
|
}
|
|
|
|
/* now x is neither NaN, Inf nor 0 */
|
|
|
|
/* first try expansion at x=0 when x is small, or asymptotic expansion
|
|
where x is large */
|
|
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
/* around x=0, we have erf(x) = 2x/sqrt(Pi) (1 - x^2/3 + ...),
|
|
with 1 - x^2/3 <= sqrt(Pi)*erf(x)/2/x <= 1 for x >= 0. This means that
|
|
if x^2/3 < 2^(-PREC(y)-1) we can decide of the correct rounding,
|
|
unless we have a worst-case for 2x/sqrt(Pi). */
|
|
if (MPFR_EXP(x) < - (mp_exp_t) (MPFR_PREC(y) / 2))
|
|
{
|
|
/* we use 2x/sqrt(Pi) (1 - x^2/3) <= erf(x) <= 2x/sqrt(Pi) for x > 0
|
|
and 2x/sqrt(Pi) <= erf(x) <= 2x/sqrt(Pi) (1 - x^2/3) for x < 0.
|
|
In both cases |2x/sqrt(Pi) (1 - x^2/3)| <= |erf(x)| <= |2x/sqrt(Pi)|.
|
|
We will compute l and h such that l <= |2x/sqrt(Pi) (1 - x^2/3)|
|
|
and |2x/sqrt(Pi)| <= h. If l and h round to the same value to
|
|
precision PREC(y) and rounding rnd_mode, then we are done. */
|
|
mpfr_t l, h; /* lower and upper bounds for erf(x) */
|
|
int ok, inex2;
|
|
|
|
mpfr_init2 (l, MPFR_PREC(y) + 17);
|
|
mpfr_init2 (h, MPFR_PREC(y) + 17);
|
|
/* first compute l */
|
|
mpfr_mul (l, x, x, GMP_RNDU);
|
|
mpfr_div_ui (l, l, 3, GMP_RNDU); /* upper bound on x^2/3 */
|
|
mpfr_ui_sub (l, 1, l, GMP_RNDZ); /* lower bound on 1 - x^2/3 */
|
|
mpfr_const_pi (h, GMP_RNDU); /* upper bound of Pi */
|
|
mpfr_sqrt (h, h, GMP_RNDU); /* upper bound on sqrt(Pi) */
|
|
mpfr_div (l, l, h, GMP_RNDZ); /* lower bound on 1/sqrt(Pi) (1 - x^2/3) */
|
|
mpfr_mul_2ui (l, l, 1, GMP_RNDZ); /* 2/sqrt(Pi) (1 - x^2/3) */
|
|
mpfr_mul (l, l, x, GMP_RNDZ); /* |l| is a lower bound on
|
|
|2x/sqrt(Pi) (1 - x^2/3)| */
|
|
/* now compute h */
|
|
mpfr_const_pi (h, GMP_RNDD); /* lower bound on Pi */
|
|
mpfr_sqrt (h, h, GMP_RNDD); /* lower bound on sqrt(Pi) */
|
|
mpfr_div_2ui (h, h, 1, GMP_RNDD); /* lower bound on sqrt(Pi)/2 */
|
|
/* since sqrt(Pi)/2 < 1, the following should not underflow */
|
|
mpfr_div (h, x, h, MPFR_IS_POS(x) ? GMP_RNDU : GMP_RNDD);
|
|
/* round l and h to precision PREC(y) */
|
|
inex = mpfr_prec_round (l, MPFR_PREC(y), rnd_mode);
|
|
inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd_mode);
|
|
/* Caution: we also need inex=inex2 (inex might be 0). */
|
|
ok = SAME_SIGN (inex, inex2) && mpfr_cmp (l, h) == 0;
|
|
if (ok)
|
|
mpfr_set (y, h, rnd_mode);
|
|
mpfr_clear (l);
|
|
mpfr_clear (h);
|
|
if (ok)
|
|
goto end;
|
|
/* this test can still fail for small precision, for example
|
|
for x=-0.100E-2 with a target precision of 3 bits, since
|
|
the error term x^2/3 is not that small. */
|
|
}
|
|
|
|
mpfr_init2 (xf, 53);
|
|
mpfr_const_log2 (xf, GMP_RNDU);
|
|
mpfr_div (xf, x, xf, GMP_RNDZ); /* round to zero ensures we get a lower
|
|
bound of |x/log(2)| */
|
|
mpfr_mul (xf, xf, x, GMP_RNDZ);
|
|
large = mpfr_cmp_ui (xf, MPFR_PREC (y) + 1) > 0;
|
|
mpfr_clear (xf);
|
|
|
|
/* when x goes to infinity, we have erf(x) = 1 - 1/sqrt(Pi)/exp(x^2)/x + ...
|
|
and |erf(x) - 1| <= exp(-x^2) is true for any x >= 0, thus if
|
|
exp(-x^2) < 2^(-PREC(y)-1) the result is 1 or 1-epsilon.
|
|
This rewrites as x^2/log(2) > p+1. */
|
|
if (MPFR_UNLIKELY (large))
|
|
/* |erf x| = 1 or 1- */
|
|
{
|
|
mp_rnd_t rnd2 = MPFR_IS_POS (x) ? rnd_mode : MPFR_INVERT_RND(rnd_mode);
|
|
if (rnd2 == GMP_RNDN || rnd2 == GMP_RNDU)
|
|
{
|
|
inex = MPFR_INT_SIGN (x);
|
|
mpfr_set_si (y, inex, rnd2);
|
|
}
|
|
else /* round to zero */
|
|
{
|
|
inex = -MPFR_INT_SIGN (x);
|
|
mpfr_setmax (y, 0); /* warning: setmax keeps the old sign of y */
|
|
MPFR_SET_SAME_SIGN (y, x);
|
|
}
|
|
}
|
|
else /* use Taylor */
|
|
{
|
|
double xf2;
|
|
|
|
/* FIXME: get rid of doubles/mpfr_get_d here */
|
|
xf2 = mpfr_get_d (x, GMP_RNDN);
|
|
xf2 = xf2 * xf2; /* xf2 ~ x^2 */
|
|
inex = mpfr_erf_0 (y, x, xf2, rnd_mode);
|
|
}
|
|
|
|
end:
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (y, inex, rnd_mode);
|
|
}
|
|
|
|
/* return x*2^e */
|
|
static double
|
|
mul_2exp (double x, mp_exp_t e)
|
|
{
|
|
if (e > 0)
|
|
{
|
|
while (e--)
|
|
x *= 2.0;
|
|
}
|
|
else
|
|
{
|
|
while (e++)
|
|
x /= 2.0;
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
/* evaluates erf(x) using the expansion at x=0:
|
|
|
|
erf(x) = 2/sqrt(Pi) * sum((-1)^k*x^(2k+1)/k!/(2k+1), k=0..infinity)
|
|
|
|
Assumes x is neither NaN nor infinite nor zero.
|
|
Assumes also that e*x^2 <= n (target precision).
|
|
*/
|
|
static int
|
|
mpfr_erf_0 (mpfr_ptr res, mpfr_srcptr x, double xf2, mp_rnd_t rnd_mode)
|
|
{
|
|
mp_prec_t n, m;
|
|
mp_exp_t nuk, sigmak;
|
|
double tauk;
|
|
mpfr_t y, s, t, u;
|
|
unsigned int k;
|
|
int log2tauk;
|
|
int inex;
|
|
MPFR_ZIV_DECL (loop);
|
|
|
|
n = MPFR_PREC (res); /* target precision */
|
|
|
|
/* initial working precision */
|
|
m = n + (mp_prec_t) (xf2 / LOG2) + 8 + MPFR_INT_CEIL_LOG2 (n);
|
|
|
|
mpfr_init2 (y, m);
|
|
mpfr_init2 (s, m);
|
|
mpfr_init2 (t, m);
|
|
mpfr_init2 (u, m);
|
|
|
|
MPFR_ZIV_INIT (loop, m);
|
|
for (;;)
|
|
{
|
|
mpfr_mul (y, x, x, GMP_RNDU); /* err <= 1 ulp */
|
|
mpfr_set_ui (s, 1, GMP_RNDN);
|
|
mpfr_set_ui (t, 1, GMP_RNDN);
|
|
tauk = 0.0;
|
|
|
|
for (k = 1; ; k++)
|
|
{
|
|
mpfr_mul (t, y, t, GMP_RNDU);
|
|
mpfr_div_ui (t, t, k, GMP_RNDU);
|
|
mpfr_div_ui (u, t, 2 * k + 1, GMP_RNDU);
|
|
sigmak = MPFR_GET_EXP (s);
|
|
if (k % 2)
|
|
mpfr_sub (s, s, u, GMP_RNDN);
|
|
else
|
|
mpfr_add (s, s, u, GMP_RNDN);
|
|
sigmak -= MPFR_GET_EXP(s);
|
|
nuk = MPFR_GET_EXP(u) - MPFR_GET_EXP(s);
|
|
|
|
if ((nuk < - (mp_exp_t) m) && ((double) k >= xf2))
|
|
break;
|
|
|
|
/* tauk <- 1/2 + tauk * 2^sigmak + (1+8k)*2^nuk */
|
|
tauk = 0.5 + mul_2exp (tauk, sigmak)
|
|
+ mul_2exp (1.0 + 8.0 * (double) k, nuk);
|
|
}
|
|
|
|
mpfr_mul (s, x, s, GMP_RNDU);
|
|
MPFR_SET_EXP (s, MPFR_GET_EXP (s) + 1);
|
|
|
|
mpfr_const_pi (t, GMP_RNDZ);
|
|
mpfr_sqrt (t, t, GMP_RNDZ);
|
|
mpfr_div (s, s, t, GMP_RNDN);
|
|
tauk = 4.0 * tauk + 11.0; /* final ulp-error on s */
|
|
log2tauk = __gmpfr_ceil_log2 (tauk);
|
|
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, m - log2tauk, n, rnd_mode)))
|
|
break;
|
|
|
|
/* Actualisation of the precision */
|
|
MPFR_ZIV_NEXT (loop, m);
|
|
mpfr_set_prec (y, m);
|
|
mpfr_set_prec (s, m);
|
|
mpfr_set_prec (t, m);
|
|
mpfr_set_prec (u, m);
|
|
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
inex = mpfr_set (res, s, rnd_mode);
|
|
|
|
mpfr_clear (y);
|
|
mpfr_clear (t);
|
|
mpfr_clear (u);
|
|
mpfr_clear (s);
|
|
|
|
return inex;
|
|
}
|