Michael Lotz 99d8158635 Adding inline mpfr directory so the MPFR library is built as part of GCC 4.3.
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@29042 a95241bf-73f2-0310-859d-f6bbb57e9c96
2009-01-26 05:56:19 +00:00

436 lines
13 KiB
C

/* mpfr_rint -- Round to an integer.
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* Merge the following mpfr_rint code with mpfr_round_raw_generic? */
int
mpfr_rint (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
int sign;
int rnd_away;
mp_exp_t exp;
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ))
{
if (MPFR_IS_NAN(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
MPFR_SET_SAME_SIGN(r, u);
if (MPFR_IS_INF(u))
{
MPFR_SET_INF(r);
MPFR_RET(0); /* infinity is exact */
}
else /* now u is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(u));
MPFR_SET_ZERO(r);
MPFR_RET(0); /* zero is exact */
}
}
MPFR_SET_SAME_SIGN (r, u); /* Does nothing if r==u */
sign = MPFR_INT_SIGN (u);
exp = MPFR_GET_EXP (u);
rnd_away =
rnd_mode == GMP_RNDD ? sign < 0 :
rnd_mode == GMP_RNDU ? sign > 0 :
rnd_mode == GMP_RNDZ ? 0 : -1;
/* rnd_away:
1 if round away from zero,
0 if round to zero,
-1 if not decided yet.
*/
if (MPFR_UNLIKELY (exp <= 0)) /* 0 < |u| < 1 ==> round |u| to 0 or 1 */
{
/* Note: in the GMP_RNDN mode, 0.5 must be rounded to 0. */
if (rnd_away != 0 &&
(rnd_away > 0 ||
(exp == 0 && (rnd_mode == GMP_RNDNA ||
!mpfr_powerof2_raw (u)))))
{
mp_limb_t *rp;
mp_size_t rm;
rp = MPFR_MANT(r);
rm = (MPFR_PREC(r) - 1) / BITS_PER_MP_LIMB;
rp[rm] = MPFR_LIMB_HIGHBIT;
MPN_ZERO(rp, rm);
MPFR_SET_EXP (r, 1); /* |r| = 1 */
MPFR_RET(sign > 0 ? 2 : -2);
}
else
{
MPFR_SET_ZERO(r); /* r = 0 */
MPFR_RET(sign > 0 ? -2 : 2);
}
}
else /* exp > 0, |u| >= 1 */
{
mp_limb_t *up, *rp;
mp_size_t un, rn, ui;
int sh, idiff;
int uflags;
/*
* uflags will contain:
* _ 0 if u is an integer representable in r,
* _ 1 if u is an integer not representable in r,
* _ 2 if u is not an integer.
*/
up = MPFR_MANT(u);
rp = MPFR_MANT(r);
un = MPFR_LIMB_SIZE(u);
rn = MPFR_LIMB_SIZE(r);
MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (r));
MPFR_SET_EXP (r, exp); /* Does nothing if r==u */
if ((exp - 1) / BITS_PER_MP_LIMB >= un)
{
ui = un;
idiff = 0;
uflags = 0; /* u is an integer, representable or not in r */
}
else
{
mp_size_t uj;
ui = (exp - 1) / BITS_PER_MP_LIMB + 1; /* #limbs of the int part */
MPFR_ASSERTD (un >= ui);
uj = un - ui; /* lowest limb of the integer part */
idiff = exp % BITS_PER_MP_LIMB; /* #int-part bits in up[uj] or 0 */
uflags = idiff == 0 || (up[uj] << idiff) == 0 ? 0 : 2;
if (uflags == 0)
while (uj > 0)
if (up[--uj] != 0)
{
uflags = 2;
break;
}
}
if (ui > rn)
{
/* More limbs in the integer part of u than in r.
Just round u with the precision of r. */
MPFR_ASSERTD (rp != up && un > rn);
MPN_COPY (rp, up + (un - rn), rn); /* r != u */
if (rnd_away < 0)
{
/* This is a rounding to nearest mode (GMP_RNDN or GMP_RNDNA).
Decide the rounding direction here. */
if (rnd_mode == GMP_RNDN &&
(rp[0] & (MPFR_LIMB_ONE << sh)) == 0)
{ /* halfway cases rounded towards zero */
mp_limb_t a, b;
/* a: rounding bit and some of the following bits */
/* b: boundary for a (weight of the rounding bit in a) */
if (sh != 0)
{
a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1);
b = MPFR_LIMB_ONE << (sh - 1);
}
else
{
a = up[un - rn - 1];
b = MPFR_LIMB_HIGHBIT;
}
rnd_away = a > b;
if (a == b)
{
mp_size_t i;
for (i = un - rn - 1 - (sh == 0); i >= 0; i--)
if (up[i] != 0)
{
rnd_away = 1;
break;
}
}
}
else /* halfway cases rounded away from zero */
rnd_away = /* rounding bit */
((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) ||
(sh == 0 && (up[un - rn - 1] & MPFR_LIMB_HIGHBIT) != 0));
}
if (uflags == 0)
{ /* u is an integer; determine if it is representable in r */
if (sh != 0 && rp[0] << (BITS_PER_MP_LIMB - sh) != 0)
uflags = 1; /* u is not representable in r */
else
{
mp_size_t i;
for (i = un - rn - 1; i >= 0; i--)
if (up[i] != 0)
{
uflags = 1; /* u is not representable in r */
break;
}
}
}
}
else /* ui <= rn */
{
mp_size_t uj, rj;
int ush;
uj = un - ui; /* lowest limb of the integer part in u */
rj = rn - ui; /* lowest limb of the integer part in r */
if (MPFR_LIKELY (rp != up))
MPN_COPY(rp + rj, up + uj, ui);
/* Ignore the lowest rj limbs, all equal to zero. */
rp += rj;
rn = ui;
/* number of fractional bits in whole rp[0] */
ush = idiff == 0 ? 0 : BITS_PER_MP_LIMB - idiff;
if (rj == 0 && ush < sh)
{
/* If u is an integer (uflags == 0), we need to determine
if it is representable in r, i.e. if its sh - ush bits
in the non-significant part of r are all 0. */
if (uflags == 0 && (rp[0] & ((MPFR_LIMB_ONE << sh) -
(MPFR_LIMB_ONE << ush))) != 0)
uflags = 1; /* u is an integer not representable in r */
}
else /* The integer part of u fits in r, we'll round to it. */
sh = ush;
if (rnd_away < 0)
{
/* This is a rounding to nearest mode.
Decide the rounding direction here. */
if (uj == 0 && sh == 0)
rnd_away = 0; /* rounding bit = 0 (not represented in u) */
else if (rnd_mode == GMP_RNDN &&
(rp[0] & (MPFR_LIMB_ONE << sh)) == 0)
{ /* halfway cases rounded towards zero */
mp_limb_t a, b;
/* a: rounding bit and some of the following bits */
/* b: boundary for a (weight of the rounding bit in a) */
if (sh != 0)
{
a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1);
b = MPFR_LIMB_ONE << (sh - 1);
}
else
{
MPFR_ASSERTD (uj >= 1); /* see above */
a = up[uj - 1];
b = MPFR_LIMB_HIGHBIT;
}
rnd_away = a > b;
if (a == b)
{
mp_size_t i;
for (i = uj - 1 - (sh == 0); i >= 0; i--)
if (up[i] != 0)
{
rnd_away = 1;
break;
}
}
}
else /* halfway cases rounded away from zero */
rnd_away = /* rounding bit */
((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) ||
(sh == 0 && (MPFR_ASSERTD (uj >= 1),
up[uj - 1] & MPFR_LIMB_HIGHBIT) != 0));
}
/* Now we can make the low rj limbs to 0 */
MPN_ZERO (rp-rj, rj);
}
if (sh != 0)
rp[0] &= MP_LIMB_T_MAX << sh;
/* If u is a representable integer, there is no rounding. */
if (uflags == 0)
MPFR_RET(0);
MPFR_ASSERTD (rnd_away >= 0); /* rounding direction is defined */
if (rnd_away && mpn_add_1(rp, rp, rn, MPFR_LIMB_ONE << sh))
{
if (exp == __gmpfr_emax)
return mpfr_overflow(r, rnd_mode, MPFR_SIGN(r)) >= 0 ?
uflags : -uflags;
else
{
MPFR_SET_EXP(r, exp + 1);
rp[rn-1] = MPFR_LIMB_HIGHBIT;
}
}
MPFR_RET (rnd_away ^ (sign < 0) ? uflags : -uflags);
} /* exp > 0, |u| >= 1 */
}
#undef mpfr_round
int
mpfr_round (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDNA);
}
#undef mpfr_trunc
int
mpfr_trunc (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDZ);
}
#undef mpfr_ceil
int
mpfr_ceil (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDU);
}
#undef mpfr_floor
int
mpfr_floor (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDD);
}
#undef mpfr_rint_round
int
mpfr_rint_round (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* round(u) is representable in tmp unless an overflow occurs */
mpfr_clear_overflow ();
mpfr_round (tmp, u);
inex = (mpfr_overflow_p ()
? mpfr_overflow (r, rnd_mode, MPFR_SIGN (u))
: mpfr_set (r, tmp, rnd_mode));
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}
#undef mpfr_rint_trunc
int
mpfr_rint_trunc (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* trunc(u) is always representable in tmp */
mpfr_trunc (tmp, u);
inex = mpfr_set (r, tmp, rnd_mode);
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}
#undef mpfr_rint_ceil
int
mpfr_rint_ceil (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* ceil(u) is representable in tmp unless an overflow occurs */
mpfr_clear_overflow ();
mpfr_ceil (tmp, u);
inex = (mpfr_overflow_p ()
? mpfr_overflow (r, rnd_mode, MPFR_SIGN_POS)
: mpfr_set (r, tmp, rnd_mode));
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}
#undef mpfr_rint_floor
int
mpfr_rint_floor (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* floor(u) is representable in tmp unless an overflow occurs */
mpfr_clear_overflow ();
mpfr_floor (tmp, u);
inex = (mpfr_overflow_p ()
? mpfr_overflow (r, rnd_mode, MPFR_SIGN_NEG)
: mpfr_set (r, tmp, rnd_mode));
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}