buildtools/gcc/mpfr/exp_2.c
Michael Lotz 99d8158635 Adding inline mpfr directory so the MPFR library is built as part of GCC 4.3.
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@29042 a95241bf-73f2-0310-859d-f6bbb57e9c96
2009-01-26 05:56:19 +00:00

399 lines
13 KiB
C

/* mpfr_exp_2 -- exponential of a floating-point number
using Brent's algorithms in O(n^(1/2)*M(n)) and O(n^(1/3)*M(n))
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
/* #define DEBUG */
#define MPFR_NEED_LONGLONG_H /* for count_leading_zeros */
#include "mpfr-impl.h"
static unsigned long
mpfr_exp2_aux (mpz_t, mpfr_srcptr, mp_prec_t, mp_exp_t *);
static unsigned long
mpfr_exp2_aux2 (mpz_t, mpfr_srcptr, mp_prec_t, mp_exp_t *);
static mp_exp_t
mpz_normalize (mpz_t, mpz_t, mp_exp_t);
static mp_exp_t
mpz_normalize2 (mpz_t, mpz_t, mp_exp_t, mp_exp_t);
#define MY_INIT_MPZ(x, s) { \
(x)->_mp_alloc = (s); \
PTR(x) = (mp_ptr) MPFR_TMP_ALLOC((s)*BYTES_PER_MP_LIMB); \
(x)->_mp_size = 0; }
/* if k = the number of bits of z > q, divides z by 2^(k-q) and returns k-q.
Otherwise do nothing and return 0.
*/
static mp_exp_t
mpz_normalize (mpz_t rop, mpz_t z, mp_exp_t q)
{
size_t k;
MPFR_MPZ_SIZEINBASE2 (k, z);
MPFR_ASSERTD (k == (mpfr_uexp_t) k);
if (q < 0 || (mpfr_uexp_t) k > (mpfr_uexp_t) q)
{
mpz_div_2exp(rop, z, (unsigned long) ((mpfr_uexp_t) k - q));
return (mp_exp_t) k - q;
}
if (MPFR_UNLIKELY(rop != z))
mpz_set(rop, z);
return 0;
}
/* if expz > target, shift z by (expz-target) bits to the left.
if expz < target, shift z by (target-expz) bits to the right.
Returns target.
*/
static mp_exp_t
mpz_normalize2 (mpz_t rop, mpz_t z, mp_exp_t expz, mp_exp_t target)
{
if (target > expz)
mpz_div_2exp(rop, z, target-expz);
else
mpz_mul_2exp(rop, z, expz-target);
return target;
}
/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n
where x = n*log(2)+(2^K)*r
together with Brent-Kung O(t^(1/2)) algorithm for the evaluation of
power series. The resulting complexity is O(n^(1/3)*M(n)).
*/
int
mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
long n;
unsigned long K, k, l, err; /* FIXME: Which type ? */
int error_r;
mp_exp_t exps;
mp_prec_t q, precy;
int inexact;
mpfr_t r, s;
mpz_t ss;
MPFR_ZIV_DECL (loop);
MPFR_TMP_DECL(marker);
precy = MPFR_PREC(y);
/* Warning: we cannot use the 'double' type here, since on 64-bit machines
x may be as large as 2^62*log(2) without overflow, and then x/log(2)
is about 2^62: not every integer of that size can be represented as a
'double', thus the argument reduction would fail. */
mpfr_init2 (r, sizeof (long) * CHAR_BIT);
mpfr_const_log2 (r, GMP_RNDZ);
mpfr_div (r, x, r, GMP_RNDN);
n = mpfr_get_si (r, GMP_RNDN);
mpfr_clear (r);
MPFR_LOG_MSG (("d(x)=%1.30e n=%ld\n", mpfr_get_d1(x), n));
/* error bounds the cancelled bits in x - n*log(2) */
if (MPFR_UNLIKELY (n == 0))
error_r = 0;
else
count_leading_zeros (error_r, (mp_limb_t) SAFE_ABS (unsigned long, n));
error_r = BITS_PER_MP_LIMB - error_r + 2;
/* for the O(n^(1/2)*M(n)) method, the Taylor series computation of
n/K terms costs about n/(2K) multiplications when computed in fixed
point */
K = (precy < MPFR_EXP_2_THRESHOLD) ? __gmpfr_isqrt ((precy + 1) / 2)
: __gmpfr_cuberoot (4*precy);
l = (precy - 1) / K + 1;
err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18);
/* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */
q = precy + err + K + 5;
mpfr_init2 (r, q + error_r);
mpfr_init2 (s, q + error_r);
/* the algorithm consists in computing an upper bound of exp(x) using
a precision of q bits, and see if we can round to MPFR_PREC(y) taking
into account the maximal error. Otherwise we increase q. */
MPFR_ZIV_INIT (loop, q);
for (;;)
{
MPFR_LOG_MSG (("n=%d K=%d l=%d q=%d\n",n,K,l,q) );
/* if n<0, we have to get an upper bound of log(2)
in order to get an upper bound of r = x-n*log(2) */
mpfr_const_log2 (s, (n >= 0) ? GMP_RNDZ : GMP_RNDU);
/* s is within 1 ulp of log(2) */
mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? GMP_RNDZ : GMP_RNDU);
/* r is within 3 ulps of n*log(2) */
if (n < 0)
MPFR_CHANGE_SIGN (r);
/* r = floor(n*log(2)), within 3 ulps */
MPFR_LOG_VAR (x);
MPFR_LOG_VAR (r);
mpfr_sub (r, x, r, GMP_RNDU);
/* possible cancellation here: the error on r is at most
3*2^(EXP(old_r)-EXP(new_r)) */
while (MPFR_IS_NEG (r))
{ /* initial approximation n was too large */
n--;
mpfr_add (r, r, s, GMP_RNDU);
}
mpfr_prec_round (r, q, GMP_RNDU);
MPFR_LOG_VAR (r);
MPFR_ASSERTD (MPFR_IS_POS (r));
mpfr_div_2ui (r, r, K, GMP_RNDU); /* r = (x-n*log(2))/2^K, exact */
MPFR_TMP_MARK(marker);
MY_INIT_MPZ(ss, 3 + 2*((q-1)/BITS_PER_MP_LIMB));
exps = mpfr_get_z_exp (ss, s);
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */
l = (precy < MPFR_EXP_2_THRESHOLD)
? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */
: mpfr_exp2_aux2 (ss, r, q, &exps); /* Brent/Kung method */
MPFR_LOG_MSG (("l=%d q=%d (K+l)*q^2=%1.3e\n", l, q, (K+l)*(double)q*q));
for (k = 0; k < K; k++)
{
mpz_mul (ss, ss, ss);
exps <<= 1;
exps += mpz_normalize (ss, ss, q);
}
mpfr_set_z (s, ss, GMP_RNDN);
MPFR_SET_EXP(s, MPFR_GET_EXP (s) + exps);
MPFR_TMP_FREE(marker); /* don't need ss anymore */
mpfr_clear_underflow ();
mpfr_mul_2si (s, s, n, GMP_RNDU);
/* Check if an overflow occurs */
if (MPFR_UNLIKELY (MPFR_IS_INF (s)))
{
/* We hack to set a FP number outside the valid range so that
mpfr_check_range properly generates an overflow */
mpfr_setmax (y, __gmpfr_emax);
MPFR_EXP (y) ++;
inexact = 1;
break;
}
/* Check if an underflow occurs */
else if (MPFR_UNLIKELY (mpfr_underflow_p ()))
{
/* We hack to set a FP number outside the valid range so that
mpfr_check_range properly generates an underflow.
Note that the range has been increased to allow a safe
detection of underflow (MPFR_EMIN_MIN-3 in exp.c) even for
RNDN */
mpfr_setmax (y, MPFR_EMIN_MIN-2);
inexact = -1;
break;
}
/* error is at most 2^K*l */
K += MPFR_INT_CEIL_LOG2 (l);
MPFR_LOG_MSG (("after mult. by 2^n:\n", 0));
MPFR_LOG_VAR (s);
MPFR_LOG_MSG (("err=%d bits\n", K));
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, q-K, precy, rnd_mode)))
{
inexact = mpfr_set (y, s, rnd_mode);
break;
}
MPFR_ZIV_NEXT (loop, q);
mpfr_set_prec (r, q);
mpfr_set_prec (s, q);
}
MPFR_ZIV_FREE (loop);
mpfr_clear (r);
mpfr_clear (s);
return inexact;
}
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
using naive method with O(l) multiplications.
Return the number of iterations l.
The absolute error on s is less than 3*l*(l+1)*2^(-q).
Version using fixed-point arithmetic with mpz instead
of mpfr for internal computations.
s must have at least qn+1 limbs (qn should be enough, but currently fails
since mpz_mul_2exp(s, s, q-1) reallocates qn+1 limbs)
*/
static unsigned long
mpfr_exp2_aux (mpz_t s, mpfr_srcptr r, mp_prec_t q, mp_exp_t *exps)
{
unsigned long l;
mp_exp_t dif, expt, expr;
mp_size_t qn;
mpz_t t, rr;
mp_size_t sbit, tbit;
MPFR_TMP_DECL(marker);
MPFR_TMP_MARK(marker);
qn = 1 + (q-1)/BITS_PER_MP_LIMB;
expt = 0;
*exps = 1 - (mp_exp_t) q; /* s = 2^(q-1) */
MY_INIT_MPZ(t, 2*qn+1);
MY_INIT_MPZ(rr, qn+1);
mpz_set_ui(t, 1);
mpz_set_ui(s, 1);
mpz_mul_2exp(s, s, q-1);
expr = mpfr_get_z_exp(rr, r); /* no error here */
l = 0;
for (;;) {
l++;
mpz_mul(t, t, rr);
expt += expr;
MPFR_MPZ_SIZEINBASE2 (sbit, s);
MPFR_MPZ_SIZEINBASE2 (tbit, t);
dif = *exps + sbit - expt - tbit;
/* truncates the bits of t which are < ulp(s) = 2^(1-q) */
expt += mpz_normalize(t, t, (mp_exp_t) q-dif); /* error at most 2^(1-q) */
mpz_div_ui(t, t, l); /* error at most 2^(1-q) */
/* the error wrt t^l/l! is here at most 3*l*ulp(s) */
MPFR_ASSERTD (expt == *exps);
if (mpz_sgn (t) == 0)
break;
mpz_add(s, s, t); /* no error here: exact */
/* ensures rr has the same size as t: after several shifts, the error
on rr is still at most ulp(t)=ulp(s) */
MPFR_MPZ_SIZEINBASE2 (tbit, t);
expr += mpz_normalize(rr, rr, tbit);
}
MPFR_TMP_FREE(marker);
return 3*l*(l+1);
}
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
using Brent/Kung method with O(sqrt(l)) multiplications.
Return l.
Uses m multiplications of full size and 2l/m of decreasing size,
i.e. a total equivalent to about m+l/m full multiplications,
i.e. 2*sqrt(l) for m=sqrt(l).
Version using mpz. ss must have at least (sizer+1) limbs.
The error is bounded by (l^2+4*l) ulps where l is the return value.
*/
static unsigned long
mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, mp_prec_t q, mp_exp_t *exps)
{
mp_exp_t expr, *expR, expt;
mp_size_t sizer;
mp_prec_t ql;
unsigned long l, m, i;
mpz_t t, *R, rr, tmp;
mp_size_t sbit, rrbit;
MPFR_TMP_DECL(marker);
/* estimate value of l */
MPFR_ASSERTD (MPFR_GET_EXP (r) < 0);
l = q / (- MPFR_GET_EXP (r));
m = __gmpfr_isqrt (l);
/* we access R[2], thus we need m >= 2 */
if (m < 2)
m = 2;
MPFR_TMP_MARK(marker);
R = (mpz_t*) MPFR_TMP_ALLOC((m+1)*sizeof(mpz_t)); /* R[i] is r^i */
expR = (mp_exp_t*) MPFR_TMP_ALLOC((m+1)*sizeof(mp_exp_t)); /* exponent for R[i] */
sizer = 1 + (MPFR_PREC(r)-1)/BITS_PER_MP_LIMB;
mpz_init(tmp);
MY_INIT_MPZ(rr, sizer+2);
MY_INIT_MPZ(t, 2*sizer); /* double size for products */
mpz_set_ui(s, 0);
*exps = 1-q; /* 1 ulp = 2^(1-q) */
for (i = 0 ; i <= m ; i++)
MY_INIT_MPZ(R[i], sizer+2);
expR[1] = mpfr_get_z_exp(R[1], r); /* exact operation: no error */
expR[1] = mpz_normalize2(R[1], R[1], expR[1], 1-q); /* error <= 1 ulp */
mpz_mul(t, R[1], R[1]); /* err(t) <= 2 ulps */
mpz_div_2exp(R[2], t, q-1); /* err(R[2]) <= 3 ulps */
expR[2] = 1-q;
for (i = 3 ; i <= m ; i++)
{
mpz_mul(t, R[i-1], R[1]); /* err(t) <= 2*i-2 */
mpz_div_2exp(R[i], t, q-1); /* err(R[i]) <= 2*i-1 ulps */
expR[i] = 1-q;
}
mpz_set_ui (R[0], 1);
mpz_mul_2exp (R[0], R[0], q-1);
expR[0] = 1-q; /* R[0]=1 */
mpz_set_ui (rr, 1);
expr = 0; /* rr contains r^l/l! */
/* by induction: err(rr) <= 2*l ulps */
l = 0;
ql = q; /* precision used for current giant step */
do {
/* all R[i] must have exponent 1-ql */
if (l != 0)
for (i = 0 ; i < m ; i++)
expR[i] = mpz_normalize2 (R[i], R[i], expR[i], 1-ql);
/* the absolute error on R[i]*rr is still 2*i-1 ulps */
expt = mpz_normalize2 (t, R[m-1], expR[m-1], 1-ql);
/* err(t) <= 2*m-1 ulps */
/* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)!
using Horner's scheme */
for (i = m-1 ; i-- != 0 ; )
{
mpz_div_ui(t, t, l+i+1); /* err(t) += 1 ulp */
mpz_add(t, t, R[i]);
}
/* now err(t) <= (3m-2) ulps */
/* now multiplies t by r^l/l! and adds to s */
mpz_mul(t, t, rr);
expt += expr;
expt = mpz_normalize2(t, t, expt, *exps);
/* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */
MPFR_ASSERTD (expt == *exps);
mpz_add(s, s, t); /* no error here */
/* updates rr, the multiplication of the factors l+i could be done
using binary splitting too, but it is not sure it would save much */
mpz_mul(t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */
expr += expR[m];
mpz_set_ui (tmp, 1);
for (i = 1 ; i <= m ; i++)
mpz_mul_ui (tmp, tmp, l + i);
mpz_fdiv_q(t, t, tmp); /* err(t) <= err(rr) + 2m */
l += m;
if (MPFR_UNLIKELY (mpz_sgn (t) == 0))
break;
expr += mpz_normalize(rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */
if (MPFR_UNLIKELY (mpz_sgn (rr) == 0))
rrbit = 1;
else
MPFR_MPZ_SIZEINBASE2 (rrbit, rr);
MPFR_MPZ_SIZEINBASE2 (sbit, s);
ql = q - *exps - sbit + expr + rrbit;
/* TODO: Wrong cast. I don't want what is right, but this is
certainly wrong */
} while ((size_t) expr+rrbit > (size_t)((int)-q));
MPFR_TMP_FREE(marker);
mpz_clear(tmp);
return l*(l+4);
}