Michael Lotz 99d8158635 Adding inline mpfr directory so the MPFR library is built as part of GCC 4.3.
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@29042 a95241bf-73f2-0310-859d-f6bbb57e9c96
2009-01-26 05:56:19 +00:00

455 lines
14 KiB
C

/* mpfr_zeta -- compute the Riemann Zeta function
Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by Jean-Luc Re'my and the Spaces project, INRIA Lorraine.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/*
Parameters:
s - the input floating-point number
n, p - parameters from the algorithm
tc - an array of p floating-point numbers tc[1]..tc[p]
Output:
b is the result, i.e.
sum(tc[i]*product((s+2j)*(s+2j-1)/n^2,j=1..i-1), i=1..p)*s*n^(-s-1)
*/
static void
mpfr_zeta_part_b (mpfr_t b, mpfr_srcptr s, int n, int p, mpfr_t *tc)
{
mpfr_t s1, d, u;
unsigned long n2;
int l, t;
MPFR_GROUP_DECL (group);
if (p == 0)
{
MPFR_SET_ZERO (b);
MPFR_SET_POS (b);
return;
}
n2 = n * n;
MPFR_GROUP_INIT_3 (group, MPFR_PREC (b), s1, d, u);
/* t equals 2p-2, 2p-3, ... ; s1 equals s+t */
t = 2 * p - 2;
mpfr_set (d, tc[p], GMP_RNDN);
for (l = 1; l < p; l++)
{
mpfr_add_ui (s1, s, t, GMP_RNDN); /* s + (2p-2l) */
mpfr_mul (d, d, s1, GMP_RNDN);
t = t - 1;
mpfr_add_ui (s1, s, t, GMP_RNDN); /* s + (2p-2l-1) */
mpfr_mul (d, d, s1, GMP_RNDN);
t = t - 1;
mpfr_div_ui (d, d, n2, GMP_RNDN);
mpfr_add (d, d, tc[p-l], GMP_RNDN);
/* since s is positive and the tc[i] have alternate signs,
the following is unlikely */
if (MPFR_UNLIKELY (mpfr_cmpabs (d, tc[p-l]) > 0))
mpfr_set (d, tc[p-l], GMP_RNDN);
}
mpfr_mul (d, d, s, GMP_RNDN);
mpfr_add (s1, s, __gmpfr_one, GMP_RNDN);
mpfr_neg (s1, s1, GMP_RNDN);
mpfr_ui_pow (u, n, s1, GMP_RNDN);
mpfr_mul (b, d, u, GMP_RNDN);
MPFR_GROUP_CLEAR (group);
}
/* Input: p - an integer
Output: fills tc[1..p], tc[i] = bernoulli(2i)/(2i)!
tc[1]=1/12, tc[2]=-1/720, tc[3]=1/30240, ...
*/
static void
mpfr_zeta_c (int p, mpfr_t *tc)
{
mpfr_t d;
int k, l;
if (p > 0)
{
mpfr_init2 (d, MPFR_PREC (tc[1]));
mpfr_div_ui (tc[1], __gmpfr_one, 12, GMP_RNDN);
for (k = 2; k <= p; k++)
{
mpfr_set_ui (d, k-1, GMP_RNDN);
mpfr_div_ui (d, d, 12*k+6, GMP_RNDN);
for (l=2; l < k; l++)
{
mpfr_div_ui (d, d, 4*(2*k-2*l+3)*(2*k-2*l+2), GMP_RNDN);
mpfr_add (d, d, tc[l], GMP_RNDN);
}
mpfr_div_ui (tc[k], d, 24, GMP_RNDN);
MPFR_CHANGE_SIGN (tc[k]);
}
mpfr_clear (d);
}
}
/* Input: s - a floating-point number
n - an integer
Output: sum - a floating-point number approximating sum(1/i^s, i=1..n-1) */
static void
mpfr_zeta_part_a (mpfr_t sum, mpfr_srcptr s, int n)
{
mpfr_t u, s1;
int i;
MPFR_GROUP_DECL (group);
MPFR_GROUP_INIT_2 (group, MPFR_PREC (sum), u, s1);
mpfr_neg (s1, s, GMP_RNDN);
mpfr_ui_pow (u, n, s1, GMP_RNDN);
mpfr_div_2ui (u, u, 1, GMP_RNDN);
mpfr_set (sum, u, GMP_RNDN);
for (i=n-1; i>1; i--)
{
mpfr_ui_pow (u, i, s1, GMP_RNDN);
mpfr_add (sum, sum, u, GMP_RNDN);
}
mpfr_add (sum, sum, __gmpfr_one, GMP_RNDN);
MPFR_GROUP_CLEAR (group);
}
/* Input: s - a floating-point number >= 1/2.
rnd_mode - a rounding mode.
Assumes s is neither NaN nor Infinite.
Output: z - Zeta(s) rounded to the precision of z with direction rnd_mode
*/
static int
mpfr_zeta_pos (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode)
{
mpfr_t b, c, z_pre, f, s1;
double beta, sd, dnep;
mpfr_t *tc1;
mp_prec_t precz, precs, d, dint;
int p, n, l, add;
int inex;
MPFR_GROUP_DECL (group);
MPFR_ZIV_DECL (loop);
MPFR_ASSERTD (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0);
precz = MPFR_PREC (z);
precs = MPFR_PREC (s);
/* Zeta(x) = 1+1/2^x+1/3^x+1/4^x+1/5^x+O(1/6^x)
so with 2^(EXP(x)-1) <= x < 2^EXP(x)
So for x > 2^3, k^x > k^8, so 2/k^x < 2/k^8
Zeta(x) = 1 + 1/2^x*(1+(2/3)^x+(2/4)^x+...)
= 1 + 1/2^x*(1+sum((2/k)^x,k=3..infinity))
<= 1 + 1/2^x*(1+sum((2/k)^8,k=3..infinity))
And sum((2/k)^8,k=3..infinity) = -257+128*Pi^8/4725 ~= 0.0438035
So Zeta(x) <= 1 + 1/2^x*2 for x >= 8
The error is < 2^(-x+1) <= 2^(-2^(EXP(x)-1)+1) */
if (MPFR_GET_EXP (s) > 3)
{
mp_exp_t err;
err = MPFR_GET_EXP (s) - 1;
if (err > (mp_exp_t) (sizeof (mp_exp_t)*CHAR_BIT-2))
err = MPFR_EMAX_MAX;
else
err = ((mp_exp_t)1) << err;
err = 1 - (-err+1); /* GET_EXP(one) - (-err+1) = err :) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (z, __gmpfr_one, err, 0, 1,
rnd_mode, {});
}
d = precz + MPFR_INT_CEIL_LOG2(precz) + 10;
/* we want that s1 = s-1 is exact, i.e. we should have PREC(s1) >= EXP(s) */
dint = (mpfr_uexp_t) MPFR_GET_EXP (s);
mpfr_init2 (s1, MAX (precs, dint));
inex = mpfr_sub (s1, s, __gmpfr_one, GMP_RNDN);
MPFR_ASSERTD (inex == 0);
/* case s=1 */
if (MPFR_IS_ZERO (s1))
{
MPFR_SET_INF (z);
MPFR_SET_POS (z);
MPFR_ASSERTD (inex == 0);
goto clear_and_return;
}
MPFR_GROUP_INIT_4 (group, MPFR_PREC_MIN, b, c, z_pre, f);
MPFR_ZIV_INIT (loop, d);
for (;;)
{
/* Principal loop: we compute, in z_pre,
an approximation of Zeta(s), that we send to can_round */
if (MPFR_GET_EXP (s1) <= -(mp_exp_t) ((mpfr_prec_t) (d-3)/2))
/* Branch 1: when s-1 is very small, one
uses the approximation Zeta(s)=1/(s-1)+gamma,
where gamma is Euler's constant */
{
dint = MAX (d + 3, precs);
MPFR_TRACE (printf ("branch 1\ninternal precision=%d\n", dint));
MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);
mpfr_div (z_pre, __gmpfr_one, s1, GMP_RNDN);
mpfr_const_euler (f, GMP_RNDN);
mpfr_add (z_pre, z_pre, f, GMP_RNDN);
}
else /* Branch 2 */
{
size_t size;
MPFR_TRACE (printf ("branch 2\n"));
/* Computation of parameters n, p and working precision */
dnep = (double) d * LOG2;
sd = mpfr_get_d (s, GMP_RNDN);
/* beta = dnep + 0.61 + sd * log (6.2832 / sd);
but a larger value is ok */
#define LOG6dot2832 1.83787940484160805532
beta = dnep + 0.61 + sd * (LOG6dot2832 - LOG2 *
__gmpfr_floor_log2 (sd));
if (beta <= 0.0)
{
p = 0;
/* n = 1 + (int) (exp ((dnep - LOG2) / sd)); */
n = 1 + (int) __gmpfr_ceil_exp2 ((d - 1.0) / sd);
}
else
{
p = 1 + (int) beta / 2;
n = 1 + (int) ((sd + 2.0 * (double) p - 1.0) / 6.2832);
}
MPFR_TRACE (printf ("\nn=%d\np=%d\n",n,p));
/* add = 4 + floor(1.5 * log(d) / log (2)).
We should have add >= 10, which is always fulfilled since
d = precz + 11 >= 12, thus ceil(log2(d)) >= 4 */
add = 4 + (3 * MPFR_INT_CEIL_LOG2 (d)) / 2;
MPFR_ASSERTD(add >= 10);
dint = d + add;
if (dint < precs)
dint = precs;
MPFR_TRACE (printf("internal precision=%d\n",dint));
size = (p + 1) * sizeof(mpfr_t);
tc1 = (mpfr_t*) (*__gmp_allocate_func) (size);
for (l=1; l<=p; l++)
mpfr_init2 (tc1[l], dint);
MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);
MPFR_TRACE (printf ("precision of z =%d\n", precz));
/* Computation of the coefficients c_k */
mpfr_zeta_c (p, tc1);
/* Computation of the 3 parts of the fonction Zeta. */
mpfr_zeta_part_a (z_pre, s, n);
mpfr_zeta_part_b (b, s, n, p, tc1);
/* s1 = s-1 is already computed above */
mpfr_div (c, __gmpfr_one, s1, GMP_RNDN);
mpfr_ui_pow (f, n, s1, GMP_RNDN);
mpfr_div (c, c, f, GMP_RNDN);
MPFR_TRACE (MPFR_DUMP (c));
mpfr_add (z_pre, z_pre, c, GMP_RNDN);
mpfr_add (z_pre, z_pre, b, GMP_RNDN);
for (l=1; l<=p; l++)
mpfr_clear (tc1[l]);
(*__gmp_free_func) (tc1, size);
/* End branch 2 */
}
MPFR_TRACE (MPFR_DUMP (z_pre));
if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, d-3, precz, rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, d);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (z, z_pre, rnd_mode);
MPFR_GROUP_CLEAR (group);
clear_and_return:
mpfr_clear (s1);
return inex;
}
int
mpfr_zeta (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode)
{
mpfr_t z_pre, s1, y, p;
double sd, eps, m1, c;
long add;
mp_prec_t precz, prec1, precs, precs1;
int inex;
MPFR_GROUP_DECL (group);
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("s[%#R]=%R rnd=%d", s, s, rnd_mode),
("z[%#R]=%R inexact=%d", z, z, inex));
/* Zero, Nan or Inf ? */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (s)))
{
if (MPFR_IS_NAN (s))
{
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (s))
{
if (MPFR_IS_POS (s))
return mpfr_set_ui (z, 1, GMP_RNDN); /* Zeta(+Inf) = 1 */
MPFR_SET_NAN (z); /* Zeta(-Inf) = NaN */
MPFR_RET_NAN;
}
else /* s iz zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (s));
mpfr_set_ui (z, 1, rnd_mode);
mpfr_div_2ui (z, z, 1, rnd_mode);
MPFR_CHANGE_SIGN (z);
MPFR_RET (0);
}
}
/* s is neither Nan, nor Inf, nor Zero */
/* check tiny s: we have zeta(s) = -1/2 - 1/2 log(2 Pi) s + ... around s=0,
and for |s| <= 0.074, we have |zeta(s) + 1/2| <= |s|.
Thus if |s| <= 1/4*ulp(1/2), we can deduce the correct rounding
(the 1/4 covers the case where |zeta(s)| < 1/2 and rounding to nearest).
A sufficient condition is that EXP(s) + 1 < -PREC(z). */
if (MPFR_EXP(s) + 1 < - (mp_exp_t) MPFR_PREC(z))
{
int signs = MPFR_SIGN(s);
mpfr_set_si_2exp (z, -1, -1, rnd_mode); /* -1/2 */
if ((rnd_mode == GMP_RNDU || rnd_mode == GMP_RNDZ) && signs < 0)
{
mpfr_nextabove (z); /* z = -1/2 + epsilon */
inex = 1;
}
else if (rnd_mode == GMP_RNDD && signs > 0)
{
mpfr_nextbelow (z); /* z = -1/2 - epsilon */
inex = -1;
}
else
{
if (rnd_mode == GMP_RNDU) /* s > 0: z = -1/2 */
inex = 1;
else if (rnd_mode == GMP_RNDD)
inex = -1; /* s < 0: z = -1/2 */
else /* (GMP_RNDZ and s > 0) or GMP_RNDN: z = -1/2 */
inex = (signs > 0) ? 1 : -1;
}
return mpfr_check_range (z, inex, rnd_mode);
}
/* Check for case s= -2n */
if (MPFR_IS_NEG (s))
{
mpfr_t tmp;
tmp[0] = *s;
MPFR_EXP (tmp) = MPFR_EXP (s) - 1;
if (mpfr_integer_p (tmp))
{
MPFR_SET_ZERO (z);
MPFR_SET_POS (z);
MPFR_RET (0);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* Compute Zeta */
if (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0) /* Case s >= 1/2 */
inex = mpfr_zeta_pos (z, s, rnd_mode);
else /* use reflection formula
zeta(s) = 2^s*Pi^(s-1)*sin(Pi*s/2)*gamma(1-s)*zeta(1-s) */
{
precz = MPFR_PREC (z);
precs = MPFR_PREC (s);
/* Precision precs1 needed to represent 1 - s, and s + 2,
without any truncation */
precs1 = precs + 2 + MAX (0, - MPFR_GET_EXP (s));
sd = mpfr_get_d (s, GMP_RNDN) - 1.0;
if (sd < 0.0)
sd = -sd; /* now sd = abs(s-1.0) */
/* Precision prec1 is the precision on elementary computations;
it ensures a final precision prec1 - add for zeta(s) */
/* eps = pow (2.0, - (double) precz - 14.0); */
eps = __gmpfr_ceil_exp2 (- (double) precz - 14.0);
m1 = 1.0 + MAX(1.0 / eps, 2.0 * sd) * (1.0 + eps);
c = (1.0 + eps) * (1.0 + eps * MAX(8.0, m1));
/* add = 1 + floor(log(c*c*c*(13 + m1))/log(2)); */
add = __gmpfr_ceil_log2 (c * c * c * (13.0 + m1));
prec1 = precz + add;
prec1 = MAX (prec1, precs1) + 10;
MPFR_GROUP_INIT_4 (group, prec1, z_pre, s1, y, p);
MPFR_ZIV_INIT (loop, prec1);
for (;;)
{
mpfr_sub (s1, __gmpfr_one, s, GMP_RNDN);/* s1 = 1-s */
mpfr_zeta_pos (z_pre, s1, GMP_RNDN); /* zeta(1-s) */
mpfr_gamma (y, s1, GMP_RNDN); /* gamma(1-s) */
if (MPFR_IS_INF (y)) /* Zeta(s) < 0 for -4k-2 < s < -4k,
Zeta(s) > 0 for -4k < s < -4k+2 */
{
MPFR_SET_INF (z_pre);
mpfr_div_2ui (s1, s, 2, GMP_RNDN); /* s/4, exact */
mpfr_frac (s1, s1, GMP_RNDN); /* exact, -1 < s1 < 0 */
if (mpfr_cmp_si_2exp (s1, -1, -1) > 0)
MPFR_SET_NEG (z_pre);
else
MPFR_SET_POS (z_pre);
break;
}
mpfr_mul (z_pre, z_pre, y, GMP_RNDN); /* gamma(1-s)*zeta(1-s) */
mpfr_const_pi (p, GMP_RNDD);
mpfr_mul (y, s, p, GMP_RNDN);
mpfr_div_2ui (y, y, 1, GMP_RNDN); /* s*Pi/2 */
mpfr_sin (y, y, GMP_RNDN); /* sin(Pi*s/2) */
mpfr_mul (z_pre, z_pre, y, GMP_RNDN);
mpfr_mul_2ui (y, p, 1, GMP_RNDN); /* 2*Pi */
mpfr_neg (s1, s1, GMP_RNDN); /* s-1 */
mpfr_pow (y, y, s1, GMP_RNDN); /* (2*Pi)^(s-1) */
mpfr_mul (z_pre, z_pre, y, GMP_RNDN);
mpfr_mul_2ui (z_pre, z_pre, 1, GMP_RNDN);
if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, prec1 - add, precz,
rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, prec1);
MPFR_GROUP_REPREC_4 (group, prec1, z_pre, s1, y, p);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (z, z_pre, rnd_mode);
MPFR_GROUP_CLEAR (group);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (z, inex, rnd_mode);
}