Jérôme Duval b58ddff026 * modified gcc Makefile.in to copy gmp-impl.h and longlong.h headers to build gmp directory (see http://gcc.gnu.org/bugzilla/show_bug.cgi?id=44455 ).
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk


git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
2010-07-03 15:21:01 +00:00

297 lines
11 KiB
C

/* mpfr_fms -- Floating multiply-subtract
Copyright 2001, 2002, 2004, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* The fused-multiply-subtract (fms) of x, y and z is defined by:
fms(x,y,z)= x*y - z
Note: this is neither in IEEE754R, nor in LIA-2, but both the
PowerPC and the Itanium define fms as x*y - z.
*/
int
mpfr_fms (mpfr_ptr s, mpfr_srcptr x, mpfr_srcptr y, mpfr_srcptr z,
mpfr_rnd_t rnd_mode)
{
int inexact;
mpfr_t u;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL(group);
/* particular cases */
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ||
MPFR_IS_SINGULAR(y) ||
MPFR_IS_SINGULAR(z) ))
{
if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y) || MPFR_IS_NAN(z))
{
MPFR_SET_NAN(s);
MPFR_RET_NAN;
}
/* now neither x, y or z is NaN */
else if (MPFR_IS_INF(x) || MPFR_IS_INF(y))
{
/* cases Inf*0-z, 0*Inf-z, Inf-Inf */
if ((MPFR_IS_ZERO(y)) ||
(MPFR_IS_ZERO(x)) ||
(MPFR_IS_INF(z) &&
((MPFR_MULT_SIGN(MPFR_SIGN(x), MPFR_SIGN(y))) == MPFR_SIGN(z))))
{
MPFR_SET_NAN(s);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(z)) /* case Inf-Inf already checked above */
{
MPFR_SET_INF(s);
MPFR_SET_OPPOSITE_SIGN(s, z);
MPFR_RET(0);
}
else /* z is finite */
{
MPFR_SET_INF(s);
MPFR_SET_SIGN(s, MPFR_MULT_SIGN(MPFR_SIGN(x) , MPFR_SIGN(y)));
MPFR_RET(0);
}
}
/* now x and y are finite */
else if (MPFR_IS_INF(z))
{
MPFR_SET_INF(s);
MPFR_SET_OPPOSITE_SIGN(s, z);
MPFR_RET(0);
}
else if (MPFR_IS_ZERO(x) || MPFR_IS_ZERO(y))
{
if (MPFR_IS_ZERO(z))
{
int sign_p;
sign_p = MPFR_MULT_SIGN( MPFR_SIGN(x) , MPFR_SIGN(y) );
MPFR_SET_SIGN(s,(rnd_mode != MPFR_RNDD ?
((MPFR_IS_NEG_SIGN(sign_p) && MPFR_IS_POS(z))
? -1 : 1) :
((MPFR_IS_POS_SIGN(sign_p) && MPFR_IS_NEG(z))
? 1 : -1)));
MPFR_SET_ZERO(s);
MPFR_RET(0);
}
else
return mpfr_neg (s, z, rnd_mode);
}
else /* necessarily z is zero here */
{
MPFR_ASSERTD(MPFR_IS_ZERO(z));
return mpfr_mul (s, x, y, rnd_mode);
}
}
/* If we take prec(u) >= prec(x) + prec(y), the product u <- x*y
is exact, except in case of overflow or underflow. */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_GROUP_INIT_1 (group, MPFR_PREC(x) + MPFR_PREC(y), u);
if (MPFR_UNLIKELY (mpfr_mul (u, x, y, MPFR_RNDN)))
{
/* overflow or underflow - this case is regarded as rare, thus
does not need to be very efficient (even if some tests below
could have been done earlier).
It is an overflow iff u is an infinity (since MPFR_RNDN was used).
Alternatively, we could test the overflow flag, but in this case,
mpfr_clear_flags would have been necessary. */
if (MPFR_IS_INF (u)) /* overflow */
{
/* Let's eliminate the obvious case where x*y and z have the
same sign. No possible cancellation -> real overflow.
Also, we know that |z| < 2^emax. If E(x) + E(y) >= emax+3,
then |x*y| >= 2^(emax+1), and |x*y - z| >= 2^emax. This case
is also an overflow. */
if (MPFR_SIGN (u) != MPFR_SIGN (z) ||
MPFR_GET_EXP (x) + MPFR_GET_EXP (y) >= __gmpfr_emax + 3)
{
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_overflow (s, rnd_mode, - MPFR_SIGN (z));
}
/* E(x) + E(y) <= emax+2, therefore |x*y| < 2^(emax+2), and
(x/4)*y does not overflow (let's recall that the result
is exact with an unbounded exponent range). It does not
underflow either, because x*y overflows and the exponent
range is large enough. */
inexact = mpfr_div_2ui (u, x, 2, MPFR_RNDN);
MPFR_ASSERTN (inexact == 0);
inexact = mpfr_mul (u, u, y, MPFR_RNDN);
MPFR_ASSERTN (inexact == 0);
/* Now, we need to subtract z/4... But it may underflow! */
{
mpfr_t zo4;
mpfr_srcptr zz;
MPFR_BLOCK_DECL (flags);
if (MPFR_GET_EXP (u) > MPFR_GET_EXP (z) &&
MPFR_GET_EXP (u) - MPFR_GET_EXP (z) > MPFR_PREC (u))
{
/* |z| < ulp(u)/2, therefore one can use z instead of z/4. */
zz = z;
}
else
{
mpfr_init2 (zo4, MPFR_PREC (z));
if (mpfr_div_2ui (zo4, z, 2, MPFR_RNDZ))
{
/* The division by 4 underflowed! */
MPFR_ASSERTN (0); /* TODO... */
}
zz = zo4;
}
/* Let's recall that u = x*y/4 and zz = z/4 (or z if the
following subtraction would give the same result). */
MPFR_BLOCK (flags, inexact = mpfr_sub (s, u, zz, rnd_mode));
/* u and zz have the same sign, so that an overflow
is not possible. But an underflow is theoretically
possible! */
if (MPFR_UNDERFLOW (flags))
{
MPFR_ASSERTN (zz != z);
MPFR_ASSERTN (0); /* TODO... */
mpfr_clears (zo4, u, (mpfr_ptr) 0);
}
else
{
int inex2;
if (zz != z)
mpfr_clear (zo4);
MPFR_GROUP_CLEAR (group);
MPFR_ASSERTN (! MPFR_OVERFLOW (flags));
inex2 = mpfr_mul_2ui (s, s, 2, rnd_mode);
if (inex2) /* overflow */
{
inexact = inex2;
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
}
goto end;
}
}
}
else /* underflow: one has |xy| < 2^(emin-1). */
{
unsigned long scale = 0;
mpfr_t scaled_z;
mpfr_srcptr new_z;
mpfr_exp_t diffexp;
mpfr_prec_t pzs;
int xy_underflows;
/* Let's scale z so that ulp(z) > 2^emin and ulp(s) > 2^emin
(the + 1 on MPFR_PREC (s) is necessary because the exponent
of the result can be EXP(z) - 1). */
diffexp = MPFR_GET_EXP (z) - __gmpfr_emin;
pzs = MAX (MPFR_PREC (z), MPFR_PREC (s) + 1);
if (diffexp <= pzs)
{
mpfr_uexp_t uscale;
mpfr_t scaled_v;
MPFR_BLOCK_DECL (flags);
uscale = (mpfr_uexp_t) pzs - diffexp + 1;
MPFR_ASSERTN (uscale > 0);
MPFR_ASSERTN (uscale <= ULONG_MAX);
scale = uscale;
mpfr_init2 (scaled_z, MPFR_PREC (z));
inexact = mpfr_mul_2ui (scaled_z, z, scale, MPFR_RNDN);
MPFR_ASSERTN (inexact == 0); /* TODO: overflow case */
new_z = scaled_z;
/* Now we need to recompute u = xy * 2^scale. */
MPFR_BLOCK (flags,
if (MPFR_GET_EXP (x) < MPFR_GET_EXP (y))
{
mpfr_init2 (scaled_v, MPFR_PREC (x));
mpfr_mul_2ui (scaled_v, x, scale, MPFR_RNDN);
mpfr_mul (u, scaled_v, y, MPFR_RNDN);
}
else
{
mpfr_init2 (scaled_v, MPFR_PREC (y));
mpfr_mul_2ui (scaled_v, y, scale, MPFR_RNDN);
mpfr_mul (u, x, scaled_v, MPFR_RNDN);
});
mpfr_clear (scaled_v);
MPFR_ASSERTN (! MPFR_OVERFLOW (flags));
xy_underflows = MPFR_UNDERFLOW (flags);
}
else
{
new_z = z;
xy_underflows = 1;
}
if (xy_underflows)
{
/* Let's replace xy by sign(xy) * 2^(emin-1). */
MPFR_PREC (u) = MPFR_PREC_MIN;
mpfr_setmin (u, __gmpfr_emin);
MPFR_SET_SIGN (u, MPFR_MULT_SIGN (MPFR_SIGN (x),
MPFR_SIGN (y)));
}
{
MPFR_BLOCK_DECL (flags);
MPFR_BLOCK (flags, inexact = mpfr_sub (s, u, new_z, rnd_mode));
MPFR_GROUP_CLEAR (group);
if (scale != 0)
{
int inex2;
mpfr_clear (scaled_z);
/* Here an overflow is theoretically possible, in which case
the result may be wrong, hence the assert. An underflow
is not possible, but let's check that anyway. */
MPFR_ASSERTN (! MPFR_OVERFLOW (flags)); /* TODO... */
MPFR_ASSERTN (! MPFR_UNDERFLOW (flags)); /* not possible */
inex2 = mpfr_div_2ui (s, s, scale, MPFR_RNDN);
/* FIXME: this seems incorrect. MPFR_RNDN -> rnd_mode?
Also, handle the double rounding case:
s / 2^scale = 2^(emin - 2) in MPFR_RNDN. */
if (inex2) /* underflow */
inexact = inex2;
}
}
/* FIXME/TODO: I'm not sure that the following is correct.
Check for possible spurious exceptions due to intermediate
computations. */
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
goto end;
}
}
inexact = mpfr_sub (s, u, z, rnd_mode);
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (s, inexact, rnd_mode);
}