mirror of
https://review.haiku-os.org/buildtools
synced 2025-02-15 02:07:42 +01:00
3766 lines
116 KiB
C
3766 lines
116 KiB
C
/*
|
||
* Copyright 2012 Ecole Normale Superieure
|
||
*
|
||
* Use of this software is governed by the MIT license
|
||
*
|
||
* Written by Sven Verdoolaege,
|
||
* Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
|
||
*/
|
||
|
||
#include <limits.h>
|
||
#include <isl/aff.h>
|
||
#include <isl/set.h>
|
||
#include <isl/ilp.h>
|
||
#include <isl/union_map.h>
|
||
#include <isl_sort.h>
|
||
#include <isl_tarjan.h>
|
||
#include <isl_ast_private.h>
|
||
#include <isl_ast_build_expr.h>
|
||
#include <isl_ast_build_private.h>
|
||
#include <isl_ast_graft_private.h>
|
||
|
||
/* Add the constraint to the list that "user" points to, if it is not
|
||
* a div constraint.
|
||
*/
|
||
static int collect_constraint(__isl_take isl_constraint *constraint,
|
||
void *user)
|
||
{
|
||
isl_constraint_list **list = user;
|
||
|
||
if (isl_constraint_is_div_constraint(constraint))
|
||
isl_constraint_free(constraint);
|
||
else
|
||
*list = isl_constraint_list_add(*list, constraint);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Extract the constraints of "bset" (except the div constraints)
|
||
* and collect them in an isl_constraint_list.
|
||
*/
|
||
static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
|
||
__isl_take isl_basic_set *bset)
|
||
{
|
||
int n;
|
||
isl_ctx *ctx;
|
||
isl_constraint_list *list;
|
||
|
||
if (!bset)
|
||
return NULL;
|
||
|
||
ctx = isl_basic_set_get_ctx(bset);
|
||
|
||
n = isl_basic_set_n_constraint(bset);
|
||
list = isl_constraint_list_alloc(ctx, n);
|
||
if (isl_basic_set_foreach_constraint(bset,
|
||
&collect_constraint, &list) < 0)
|
||
list = isl_constraint_list_free(list);
|
||
|
||
isl_basic_set_free(bset);
|
||
return list;
|
||
}
|
||
|
||
/* Data used in generate_domain.
|
||
*
|
||
* "build" is the input build.
|
||
* "list" collects the results.
|
||
*/
|
||
struct isl_generate_domain_data {
|
||
isl_ast_build *build;
|
||
|
||
isl_ast_graft_list *list;
|
||
};
|
||
|
||
static __isl_give isl_ast_graft_list *generate_next_level(
|
||
__isl_take isl_union_map *executed,
|
||
__isl_take isl_ast_build *build);
|
||
static __isl_give isl_ast_graft_list *generate_code(
|
||
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
|
||
int internal);
|
||
|
||
/* Generate an AST for a single domain based on
|
||
* the (non single valued) inverse schedule "executed".
|
||
*
|
||
* We extend the schedule with the iteration domain
|
||
* and continue generating through a call to generate_code.
|
||
*
|
||
* In particular, if executed has the form
|
||
*
|
||
* S -> D
|
||
*
|
||
* then we continue generating code on
|
||
*
|
||
* [S -> D] -> D
|
||
*
|
||
* The extended inverse schedule is clearly single valued
|
||
* ensuring that the nested generate_code will not reach this function,
|
||
* but will instead create calls to all elements of D that need
|
||
* to be executed from the current schedule domain.
|
||
*/
|
||
static int generate_non_single_valued(__isl_take isl_map *executed,
|
||
struct isl_generate_domain_data *data)
|
||
{
|
||
isl_map *identity;
|
||
isl_ast_build *build;
|
||
isl_ast_graft_list *list;
|
||
|
||
build = isl_ast_build_copy(data->build);
|
||
|
||
identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
|
||
executed = isl_map_domain_product(executed, identity);
|
||
build = isl_ast_build_set_single_valued(build, 1);
|
||
|
||
list = generate_code(isl_union_map_from_map(executed), build, 1);
|
||
|
||
data->list = isl_ast_graft_list_concat(data->list, list);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Call the at_each_domain callback, if requested by the user,
|
||
* after recording the current inverse schedule in the build.
|
||
*/
|
||
static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
|
||
__isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
|
||
{
|
||
if (!graft || !build)
|
||
return isl_ast_graft_free(graft);
|
||
if (!build->at_each_domain)
|
||
return graft;
|
||
|
||
build = isl_ast_build_copy(build);
|
||
build = isl_ast_build_set_executed(build,
|
||
isl_union_map_from_map(isl_map_copy(executed)));
|
||
if (!build)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
graft->node = build->at_each_domain(graft->node,
|
||
build, build->at_each_domain_user);
|
||
isl_ast_build_free(build);
|
||
|
||
if (!graft->node)
|
||
graft = isl_ast_graft_free(graft);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Generate an AST for a single domain based on
|
||
* the inverse schedule "executed".
|
||
*
|
||
* If there is more than one domain element associated to the current
|
||
* schedule "time", then we need to continue the generation process
|
||
* in generate_non_single_valued.
|
||
* Note that the inverse schedule being single-valued may depend
|
||
* on constraints that are only available in the original context
|
||
* domain specified by the user. We therefore first introduce
|
||
* the constraints from data->build->domain.
|
||
* On the other hand, we only perform the test after having taken the gist
|
||
* of the domain as the resulting map is the one from which the call
|
||
* expression is constructed. Using this map to construct the call
|
||
* expression usually yields simpler results.
|
||
* Because we perform the single-valuedness test on the gisted map,
|
||
* we may in rare cases fail to recognize that the inverse schedule
|
||
* is single-valued. This becomes problematic if this happens
|
||
* from the recursive call through generate_non_single_valued
|
||
* as we would then end up in an infinite recursion.
|
||
* We therefore check if we are inside a call to generate_non_single_valued
|
||
* and revert to the ungisted map if the gisted map turns out not to be
|
||
* single-valued.
|
||
*
|
||
* Otherwise, we generate a call expression for the single executed
|
||
* domain element and put a guard around it based on the (simplified)
|
||
* domain of "executed".
|
||
*
|
||
* If the user has set an at_each_domain callback, it is called
|
||
* on the constructed call expression node.
|
||
*/
|
||
static int generate_domain(__isl_take isl_map *executed, void *user)
|
||
{
|
||
struct isl_generate_domain_data *data = user;
|
||
isl_ast_graft *graft;
|
||
isl_ast_graft_list *list;
|
||
isl_set *guard;
|
||
isl_map *map;
|
||
int sv;
|
||
|
||
executed = isl_map_intersect_domain(executed,
|
||
isl_set_copy(data->build->domain));
|
||
|
||
executed = isl_map_coalesce(executed);
|
||
map = isl_map_copy(executed);
|
||
map = isl_ast_build_compute_gist_map_domain(data->build, map);
|
||
sv = isl_map_is_single_valued(map);
|
||
if (sv < 0)
|
||
goto error;
|
||
if (!sv) {
|
||
isl_map_free(map);
|
||
if (data->build->single_valued)
|
||
map = isl_map_copy(executed);
|
||
else
|
||
return generate_non_single_valued(executed, data);
|
||
}
|
||
guard = isl_map_domain(isl_map_copy(map));
|
||
guard = isl_set_coalesce(guard);
|
||
guard = isl_ast_build_compute_gist(data->build, guard);
|
||
graft = isl_ast_graft_alloc_domain(map, data->build);
|
||
graft = at_each_domain(graft, executed, data->build);
|
||
|
||
isl_map_free(executed);
|
||
graft = isl_ast_graft_add_guard(graft, guard, data->build);
|
||
|
||
list = isl_ast_graft_list_from_ast_graft(graft);
|
||
data->list = isl_ast_graft_list_concat(data->list, list);
|
||
|
||
return 0;
|
||
error:
|
||
isl_map_free(map);
|
||
isl_map_free(executed);
|
||
return -1;
|
||
}
|
||
|
||
/* Call build->create_leaf to a create "leaf" node in the AST,
|
||
* encapsulate the result in an isl_ast_graft and return the result
|
||
* as a 1-element list.
|
||
*
|
||
* Note that the node returned by the user may be an entire tree.
|
||
*
|
||
* Before we pass control to the user, we first clear some information
|
||
* from the build that is (presumbably) only meaningful
|
||
* for the current code generation.
|
||
* This includes the create_leaf callback itself, so we make a copy
|
||
* of the build first.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *call_create_leaf(
|
||
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
|
||
{
|
||
isl_ast_node *node;
|
||
isl_ast_graft *graft;
|
||
isl_ast_build *user_build;
|
||
|
||
user_build = isl_ast_build_copy(build);
|
||
user_build = isl_ast_build_set_executed(user_build, executed);
|
||
user_build = isl_ast_build_clear_local_info(user_build);
|
||
if (!user_build)
|
||
node = NULL;
|
||
else
|
||
node = build->create_leaf(user_build, build->create_leaf_user);
|
||
graft = isl_ast_graft_alloc(node, build);
|
||
isl_ast_build_free(build);
|
||
return isl_ast_graft_list_from_ast_graft(graft);
|
||
}
|
||
|
||
/* Generate an AST after having handled the complete schedule
|
||
* of this call to the code generator.
|
||
*
|
||
* If the user has specified a create_leaf callback, control
|
||
* is passed to the user in call_create_leaf.
|
||
*
|
||
* Otherwise, we generate one or more calls for each individual
|
||
* domain in generate_domain.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_inner_level(
|
||
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
|
||
{
|
||
isl_ctx *ctx;
|
||
struct isl_generate_domain_data data = { build };
|
||
|
||
if (!build || !executed)
|
||
goto error;
|
||
|
||
if (build->create_leaf)
|
||
return call_create_leaf(executed, build);
|
||
|
||
ctx = isl_union_map_get_ctx(executed);
|
||
data.list = isl_ast_graft_list_alloc(ctx, 0);
|
||
if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
|
||
data.list = isl_ast_graft_list_free(data.list);
|
||
|
||
if (0)
|
||
error: data.list = NULL;
|
||
isl_ast_build_free(build);
|
||
isl_union_map_free(executed);
|
||
return data.list;
|
||
}
|
||
|
||
/* Call the before_each_for callback, if requested by the user.
|
||
*/
|
||
static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
isl_id *id;
|
||
|
||
if (!node || !build)
|
||
return isl_ast_node_free(node);
|
||
if (!build->before_each_for)
|
||
return node;
|
||
id = build->before_each_for(build, build->before_each_for_user);
|
||
node = isl_ast_node_set_annotation(node, id);
|
||
return node;
|
||
}
|
||
|
||
/* Call the after_each_for callback, if requested by the user.
|
||
*/
|
||
static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
if (!graft || !build)
|
||
return isl_ast_graft_free(graft);
|
||
if (!build->after_each_for)
|
||
return graft;
|
||
graft->node = build->after_each_for(graft->node, build,
|
||
build->after_each_for_user);
|
||
if (!graft->node)
|
||
return isl_ast_graft_free(graft);
|
||
return graft;
|
||
}
|
||
|
||
/* Plug in all the know values of the current and outer dimensions
|
||
* in the domain of "executed". In principle, we only need to plug
|
||
* in the known value of the current dimension since the values of
|
||
* outer dimensions have been plugged in already.
|
||
* However, it turns out to be easier to just plug in all known values.
|
||
*/
|
||
static __isl_give isl_union_map *plug_in_values(
|
||
__isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
|
||
{
|
||
return isl_ast_build_substitute_values_union_map_domain(build,
|
||
executed);
|
||
}
|
||
|
||
/* Check if the constraint "c" is a lower bound on dimension "pos",
|
||
* an upper bound, or independent of dimension "pos".
|
||
*/
|
||
static int constraint_type(isl_constraint *c, int pos)
|
||
{
|
||
if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
|
||
return 1;
|
||
if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
|
||
return 2;
|
||
return 0;
|
||
}
|
||
|
||
/* Compare the types of the constraints "a" and "b",
|
||
* resulting in constraints that are independent of "depth"
|
||
* to be sorted before the lower bounds on "depth", which in
|
||
* turn are sorted before the upper bounds on "depth".
|
||
*/
|
||
static int cmp_constraint(__isl_keep isl_constraint *a,
|
||
__isl_keep isl_constraint *b, void *user)
|
||
{
|
||
int *depth = user;
|
||
int t1 = constraint_type(a, *depth);
|
||
int t2 = constraint_type(b, *depth);
|
||
|
||
return t1 - t2;
|
||
}
|
||
|
||
/* Extract a lower bound on dimension "pos" from constraint "c".
|
||
*
|
||
* If the constraint is of the form
|
||
*
|
||
* a x + f(...) >= 0
|
||
*
|
||
* then we essentially return
|
||
*
|
||
* l = ceil(-f(...)/a)
|
||
*
|
||
* However, if the current dimension is strided, then we need to make
|
||
* sure that the lower bound we construct is of the form
|
||
*
|
||
* f + s a
|
||
*
|
||
* with f the offset and s the stride.
|
||
* We therefore compute
|
||
*
|
||
* f + s * ceil((l - f)/s)
|
||
*/
|
||
static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
|
||
int pos, __isl_keep isl_ast_build *build)
|
||
{
|
||
isl_aff *aff;
|
||
|
||
aff = isl_constraint_get_bound(c, isl_dim_set, pos);
|
||
aff = isl_aff_ceil(aff);
|
||
|
||
if (isl_ast_build_has_stride(build, pos)) {
|
||
isl_aff *offset;
|
||
isl_val *stride;
|
||
|
||
offset = isl_ast_build_get_offset(build, pos);
|
||
stride = isl_ast_build_get_stride(build, pos);
|
||
|
||
aff = isl_aff_sub(aff, isl_aff_copy(offset));
|
||
aff = isl_aff_scale_down_val(aff, isl_val_copy(stride));
|
||
aff = isl_aff_ceil(aff);
|
||
aff = isl_aff_scale_val(aff, stride);
|
||
aff = isl_aff_add(aff, offset);
|
||
}
|
||
|
||
aff = isl_ast_build_compute_gist_aff(build, aff);
|
||
|
||
return aff;
|
||
}
|
||
|
||
/* Return the exact lower bound (or upper bound if "upper" is set)
|
||
* of "domain" as a piecewise affine expression.
|
||
*
|
||
* If we are computing a lower bound (of a strided dimension), then
|
||
* we need to make sure it is of the form
|
||
*
|
||
* f + s a
|
||
*
|
||
* where f is the offset and s is the stride.
|
||
* We therefore need to include the stride constraint before computing
|
||
* the minimum.
|
||
*/
|
||
static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
|
||
__isl_keep isl_ast_build *build, int upper)
|
||
{
|
||
isl_set *stride;
|
||
isl_map *it_map;
|
||
isl_pw_aff *pa;
|
||
isl_pw_multi_aff *pma;
|
||
|
||
domain = isl_set_copy(domain);
|
||
if (!upper) {
|
||
stride = isl_ast_build_get_stride_constraint(build);
|
||
domain = isl_set_intersect(domain, stride);
|
||
}
|
||
it_map = isl_ast_build_map_to_iterator(build, domain);
|
||
if (upper)
|
||
pma = isl_map_lexmax_pw_multi_aff(it_map);
|
||
else
|
||
pma = isl_map_lexmin_pw_multi_aff(it_map);
|
||
pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
|
||
isl_pw_multi_aff_free(pma);
|
||
pa = isl_ast_build_compute_gist_pw_aff(build, pa);
|
||
pa = isl_pw_aff_coalesce(pa);
|
||
|
||
return pa;
|
||
}
|
||
|
||
/* Extract a lower bound on dimension "pos" from each constraint
|
||
* in "constraints" and return the list of lower bounds.
|
||
* If "constraints" has zero elements, then we extract a lower bound
|
||
* from "domain" instead.
|
||
*/
|
||
static __isl_give isl_pw_aff_list *lower_bounds(
|
||
__isl_keep isl_constraint_list *constraints, int pos,
|
||
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_pw_aff_list *list;
|
||
int i, n;
|
||
|
||
if (!build)
|
||
return NULL;
|
||
|
||
n = isl_constraint_list_n_constraint(constraints);
|
||
if (n == 0) {
|
||
isl_pw_aff *pa;
|
||
pa = exact_bound(domain, build, 0);
|
||
return isl_pw_aff_list_from_pw_aff(pa);
|
||
}
|
||
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
list = isl_pw_aff_list_alloc(ctx,n);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_aff *aff;
|
||
isl_constraint *c;
|
||
|
||
c = isl_constraint_list_get_constraint(constraints, i);
|
||
aff = lower_bound(c, pos, build);
|
||
isl_constraint_free(c);
|
||
list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Extract an upper bound on dimension "pos" from each constraint
|
||
* in "constraints" and return the list of upper bounds.
|
||
* If "constraints" has zero elements, then we extract an upper bound
|
||
* from "domain" instead.
|
||
*/
|
||
static __isl_give isl_pw_aff_list *upper_bounds(
|
||
__isl_keep isl_constraint_list *constraints, int pos,
|
||
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
|
||
{
|
||
isl_ctx *ctx;
|
||
isl_pw_aff_list *list;
|
||
int i, n;
|
||
|
||
n = isl_constraint_list_n_constraint(constraints);
|
||
if (n == 0) {
|
||
isl_pw_aff *pa;
|
||
pa = exact_bound(domain, build, 1);
|
||
return isl_pw_aff_list_from_pw_aff(pa);
|
||
}
|
||
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
list = isl_pw_aff_list_alloc(ctx,n);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_aff *aff;
|
||
isl_constraint *c;
|
||
|
||
c = isl_constraint_list_get_constraint(constraints, i);
|
||
aff = isl_constraint_get_bound(c, isl_dim_set, pos);
|
||
isl_constraint_free(c);
|
||
aff = isl_aff_floor(aff);
|
||
list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Return an isl_ast_expr that performs the reduction of type "type"
|
||
* on AST expressions corresponding to the elements in "list".
|
||
*
|
||
* The list is assumed to contain at least one element.
|
||
* If the list contains exactly one element, then the returned isl_ast_expr
|
||
* simply computes that affine expression.
|
||
*/
|
||
static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
|
||
__isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
|
||
{
|
||
int i, n;
|
||
isl_ctx *ctx;
|
||
isl_ast_expr *expr;
|
||
|
||
if (!list)
|
||
return NULL;
|
||
|
||
n = isl_pw_aff_list_n_pw_aff(list);
|
||
|
||
if (n == 1)
|
||
return isl_ast_build_expr_from_pw_aff_internal(build,
|
||
isl_pw_aff_list_get_pw_aff(list, 0));
|
||
|
||
ctx = isl_pw_aff_list_get_ctx(list);
|
||
expr = isl_ast_expr_alloc_op(ctx, type, n);
|
||
if (!expr)
|
||
return NULL;
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_ast_expr *expr_i;
|
||
|
||
expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
|
||
isl_pw_aff_list_get_pw_aff(list, i));
|
||
if (!expr_i)
|
||
return isl_ast_expr_free(expr);
|
||
expr->u.op.args[i] = expr_i;
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Add a guard to "graft" based on "bound" in the case of a degenerate
|
||
* level (including the special case of an eliminated level).
|
||
*
|
||
* We eliminate the current dimension, simplify the result in the current
|
||
* build and add the result as guards to the graft.
|
||
*
|
||
* Note that we cannot simply drop the constraints on the current dimension
|
||
* even in the eliminated case, because the single affine expression may
|
||
* not be explicitly available in "bounds". Moreover, the single affine
|
||
* expression may only be defined on a subset of the build domain,
|
||
* so we do in some cases need to insert a guard even in the eliminated case.
|
||
*/
|
||
static __isl_give isl_ast_graft *add_degenerate_guard(
|
||
__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
int depth;
|
||
isl_set *dom;
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
|
||
dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
|
||
if (isl_ast_build_has_stride(build, depth)) {
|
||
isl_set *stride;
|
||
|
||
stride = isl_ast_build_get_stride_constraint(build);
|
||
dom = isl_set_intersect(dom, stride);
|
||
}
|
||
dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
|
||
dom = isl_ast_build_compute_gist(build, dom);
|
||
|
||
graft = isl_ast_graft_add_guard(graft, dom, build);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Update "graft" based on "bounds" for the eliminated case.
|
||
*
|
||
* In the eliminated case, no for node is created, so we only need
|
||
* to check if "bounds" imply any guards that need to be inserted.
|
||
*/
|
||
static __isl_give isl_ast_graft *refine_eliminated(
|
||
__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
return add_degenerate_guard(graft, bounds, build);
|
||
}
|
||
|
||
/* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
|
||
*
|
||
* "build" is the build in which graft->node was created
|
||
* "sub_build" contains information about the current level itself,
|
||
* including the single value attained.
|
||
*
|
||
* We first set the initialization part of the for loop to the single
|
||
* value attained by the current dimension.
|
||
* The increment and condition are not strictly needed as the are known
|
||
* to be "1" and "iterator <= value" respectively.
|
||
* Then we set the size of the iterator and
|
||
* check if "bounds" imply any guards that need to be inserted.
|
||
*/
|
||
static __isl_give isl_ast_graft *refine_degenerate(
|
||
__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
|
||
__isl_keep isl_ast_build *build,
|
||
__isl_keep isl_ast_build *sub_build)
|
||
{
|
||
isl_pw_aff *value;
|
||
|
||
if (!graft || !sub_build)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
value = isl_pw_aff_copy(sub_build->value);
|
||
|
||
graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
|
||
value);
|
||
if (!graft->node->u.f.init)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
graft = add_degenerate_guard(graft, bounds, build);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Return the intersection of constraints in "list" as a set.
|
||
*/
|
||
static __isl_give isl_set *intersect_constraints(
|
||
__isl_keep isl_constraint_list *list)
|
||
{
|
||
int i, n;
|
||
isl_basic_set *bset;
|
||
|
||
n = isl_constraint_list_n_constraint(list);
|
||
if (n < 1)
|
||
isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
|
||
"expecting at least one constraint", return NULL);
|
||
|
||
bset = isl_basic_set_from_constraint(
|
||
isl_constraint_list_get_constraint(list, 0));
|
||
for (i = 1; i < n; ++i) {
|
||
isl_basic_set *bset_i;
|
||
|
||
bset_i = isl_basic_set_from_constraint(
|
||
isl_constraint_list_get_constraint(list, i));
|
||
bset = isl_basic_set_intersect(bset, bset_i);
|
||
}
|
||
|
||
return isl_set_from_basic_set(bset);
|
||
}
|
||
|
||
/* Compute the constraints on the outer dimensions enforced by
|
||
* graft->node and add those constraints to graft->enforced,
|
||
* in case the upper bound is expressed as a set "upper".
|
||
*
|
||
* In particular, if l(...) is a lower bound in "lower", and
|
||
*
|
||
* -a i + f(...) >= 0 or a i <= f(...)
|
||
*
|
||
* is an upper bound ocnstraint on the current dimension i,
|
||
* then the for loop enforces the constraint
|
||
*
|
||
* -a l(...) + f(...) >= 0 or a l(...) <= f(...)
|
||
*
|
||
* We therefore simply take each lower bound in turn, plug it into
|
||
* the upper bounds and compute the intersection over all lower bounds.
|
||
*
|
||
* If a lower bound is a rational expression, then
|
||
* isl_basic_set_preimage_multi_aff will force this rational
|
||
* expression to have only integer values. However, the loop
|
||
* itself does not enforce this integrality constraint. We therefore
|
||
* use the ceil of the lower bounds instead of the lower bounds themselves.
|
||
* Other constraints will make sure that the for loop is only executed
|
||
* when each of the lower bounds attains an integral value.
|
||
* In particular, potentially rational values only occur in
|
||
* lower_bound if the offset is a (seemingly) rational expression,
|
||
* but then outer conditions will make sure that this rational expression
|
||
* only attains integer values.
|
||
*/
|
||
static __isl_give isl_ast_graft *set_enforced_from_set(
|
||
__isl_take isl_ast_graft *graft,
|
||
__isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
|
||
{
|
||
isl_space *space;
|
||
isl_basic_set *enforced;
|
||
isl_pw_multi_aff *pma;
|
||
int i, n;
|
||
|
||
if (!graft || !lower)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
space = isl_set_get_space(upper);
|
||
enforced = isl_basic_set_universe(isl_space_copy(space));
|
||
|
||
space = isl_space_map_from_set(space);
|
||
pma = isl_pw_multi_aff_identity(space);
|
||
|
||
n = isl_pw_aff_list_n_pw_aff(lower);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa;
|
||
isl_set *enforced_i;
|
||
isl_basic_set *hull;
|
||
isl_pw_multi_aff *pma_i;
|
||
|
||
pa = isl_pw_aff_list_get_pw_aff(lower, i);
|
||
pa = isl_pw_aff_ceil(pa);
|
||
pma_i = isl_pw_multi_aff_copy(pma);
|
||
pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
|
||
enforced_i = isl_set_copy(upper);
|
||
enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
|
||
hull = isl_set_simple_hull(enforced_i);
|
||
enforced = isl_basic_set_intersect(enforced, hull);
|
||
}
|
||
|
||
isl_pw_multi_aff_free(pma);
|
||
|
||
graft = isl_ast_graft_enforce(graft, enforced);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Compute the constraints on the outer dimensions enforced by
|
||
* graft->node and add those constraints to graft->enforced,
|
||
* in case the upper bound is expressed as
|
||
* a list of affine expressions "upper".
|
||
*
|
||
* The enforced condition is that each lower bound expression is less
|
||
* than or equal to each upper bound expression.
|
||
*/
|
||
static __isl_give isl_ast_graft *set_enforced_from_list(
|
||
__isl_take isl_ast_graft *graft,
|
||
__isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
|
||
{
|
||
isl_set *cond;
|
||
isl_basic_set *enforced;
|
||
|
||
lower = isl_pw_aff_list_copy(lower);
|
||
upper = isl_pw_aff_list_copy(upper);
|
||
cond = isl_pw_aff_list_le_set(lower, upper);
|
||
enforced = isl_set_simple_hull(cond);
|
||
graft = isl_ast_graft_enforce(graft, enforced);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Does "aff" have a negative constant term?
|
||
*/
|
||
static int aff_constant_is_negative(__isl_take isl_set *set,
|
||
__isl_take isl_aff *aff, void *user)
|
||
{
|
||
int *neg = user;
|
||
isl_val *v;
|
||
|
||
v = isl_aff_get_constant_val(aff);
|
||
*neg = isl_val_is_neg(v);
|
||
isl_val_free(v);
|
||
isl_set_free(set);
|
||
isl_aff_free(aff);
|
||
|
||
return *neg ? 0 : -1;
|
||
}
|
||
|
||
/* Does "pa" have a negative constant term over its entire domain?
|
||
*/
|
||
static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
|
||
{
|
||
int r;
|
||
int *neg = user;
|
||
|
||
r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
|
||
isl_pw_aff_free(pa);
|
||
|
||
return *neg ? 0 : -1;
|
||
}
|
||
|
||
/* Does each element in "list" have a negative constant term?
|
||
*
|
||
* The callback terminates the iteration as soon an element has been
|
||
* found that does not have a negative constant term.
|
||
*/
|
||
static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
|
||
{
|
||
int neg = 1;
|
||
|
||
if (isl_pw_aff_list_foreach(list,
|
||
&pw_aff_constant_is_negative, &neg) < 0 && neg)
|
||
return -1;
|
||
|
||
return neg;
|
||
}
|
||
|
||
/* Add 1 to each of the elements in "list", where each of these elements
|
||
* is defined over the internal schedule space of "build".
|
||
*/
|
||
static __isl_give isl_pw_aff_list *list_add_one(
|
||
__isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
|
||
{
|
||
int i, n;
|
||
isl_space *space;
|
||
isl_aff *aff;
|
||
isl_pw_aff *one;
|
||
|
||
space = isl_ast_build_get_space(build, 1);
|
||
aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
|
||
aff = isl_aff_add_constant_si(aff, 1);
|
||
one = isl_pw_aff_from_aff(aff);
|
||
|
||
n = isl_pw_aff_list_n_pw_aff(list);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_pw_aff *pa;
|
||
pa = isl_pw_aff_list_get_pw_aff(list, i);
|
||
pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
|
||
list = isl_pw_aff_list_set_pw_aff(list, i, pa);
|
||
}
|
||
|
||
isl_pw_aff_free(one);
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Set the condition part of the for node graft->node in case
|
||
* the upper bound is represented as a list of piecewise affine expressions.
|
||
*
|
||
* In particular, set the condition to
|
||
*
|
||
* iterator <= min(list of upper bounds)
|
||
*
|
||
* If each of the upper bounds has a negative constant term, then
|
||
* set the condition to
|
||
*
|
||
* iterator < min(list of (upper bound + 1)s)
|
||
*
|
||
*/
|
||
static __isl_give isl_ast_graft *set_for_cond_from_list(
|
||
__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
int neg;
|
||
isl_ast_expr *bound, *iterator, *cond;
|
||
enum isl_ast_op_type type = isl_ast_op_le;
|
||
|
||
if (!graft || !list)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
neg = list_constant_is_negative(list);
|
||
if (neg < 0)
|
||
return isl_ast_graft_free(graft);
|
||
list = isl_pw_aff_list_copy(list);
|
||
if (neg) {
|
||
list = list_add_one(list, build);
|
||
type = isl_ast_op_lt;
|
||
}
|
||
|
||
bound = reduce_list(isl_ast_op_min, list, build);
|
||
iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
|
||
cond = isl_ast_expr_alloc_binary(type, iterator, bound);
|
||
graft->node->u.f.cond = cond;
|
||
|
||
isl_pw_aff_list_free(list);
|
||
if (!graft->node->u.f.cond)
|
||
return isl_ast_graft_free(graft);
|
||
return graft;
|
||
}
|
||
|
||
/* Set the condition part of the for node graft->node in case
|
||
* the upper bound is represented as a set.
|
||
*/
|
||
static __isl_give isl_ast_graft *set_for_cond_from_set(
|
||
__isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
isl_ast_expr *cond;
|
||
|
||
if (!graft)
|
||
return NULL;
|
||
|
||
cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
|
||
graft->node->u.f.cond = cond;
|
||
if (!graft->node->u.f.cond)
|
||
return isl_ast_graft_free(graft);
|
||
return graft;
|
||
}
|
||
|
||
/* Construct an isl_ast_expr for the increment (i.e., stride) of
|
||
* the current dimension.
|
||
*/
|
||
static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
|
||
{
|
||
int depth;
|
||
isl_val *v;
|
||
isl_ctx *ctx;
|
||
|
||
if (!build)
|
||
return NULL;
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
depth = isl_ast_build_get_depth(build);
|
||
|
||
if (!isl_ast_build_has_stride(build, depth))
|
||
return isl_ast_expr_alloc_int_si(ctx, 1);
|
||
|
||
v = isl_ast_build_get_stride(build, depth);
|
||
return isl_ast_expr_from_val(v);
|
||
}
|
||
|
||
/* Should we express the loop condition as
|
||
*
|
||
* iterator <= min(list of upper bounds)
|
||
*
|
||
* or as a conjunction of constraints?
|
||
*
|
||
* The first is constructed from a list of upper bounds.
|
||
* The second is constructed from a set.
|
||
*
|
||
* If there are no upper bounds in "constraints", then this could mean
|
||
* that "domain" simply doesn't have an upper bound or that we didn't
|
||
* pick any upper bound. In the first case, we want to generate the
|
||
* loop condition as a(n empty) conjunction of constraints
|
||
* In the second case, we will compute
|
||
* a single upper bound from "domain" and so we use the list form.
|
||
*
|
||
* If there are upper bounds in "constraints",
|
||
* then we use the list form iff the atomic_upper_bound option is set.
|
||
*/
|
||
static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
|
||
__isl_keep isl_set *domain, int depth)
|
||
{
|
||
if (n_upper > 0)
|
||
return isl_options_get_ast_build_atomic_upper_bound(ctx);
|
||
else
|
||
return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
|
||
}
|
||
|
||
/* Fill in the expressions of the for node in graft->node.
|
||
*
|
||
* In particular,
|
||
* - set the initialization part of the loop to the maximum of the lower bounds
|
||
* - set the size of the iterator based on the values attained by the iterator
|
||
* - extract the increment from the stride of the current dimension
|
||
* - construct the for condition either based on a list of upper bounds
|
||
* or on a set of upper bound constraints.
|
||
*/
|
||
static __isl_give isl_ast_graft *set_for_node_expressions(
|
||
__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
|
||
int use_list, __isl_keep isl_pw_aff_list *upper_list,
|
||
__isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
|
||
{
|
||
isl_ast_node *node;
|
||
|
||
if (!graft)
|
||
return NULL;
|
||
|
||
build = isl_ast_build_copy(build);
|
||
build = isl_ast_build_set_enforced(build,
|
||
isl_ast_graft_get_enforced(graft));
|
||
|
||
node = graft->node;
|
||
node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
|
||
node->u.f.inc = for_inc(build);
|
||
|
||
if (use_list)
|
||
graft = set_for_cond_from_list(graft, upper_list, build);
|
||
else
|
||
graft = set_for_cond_from_set(graft, upper_set, build);
|
||
|
||
isl_ast_build_free(build);
|
||
|
||
if (!node->u.f.iterator || !node->u.f.init ||
|
||
!node->u.f.cond || !node->u.f.inc)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Update "graft" based on "bounds" and "domain" for the generic,
|
||
* non-degenerate, case.
|
||
*
|
||
* "c_lower" and "c_upper" contain the lower and upper bounds
|
||
* that the loop node should express.
|
||
* "domain" is the subset of the intersection of the constraints
|
||
* for which some code is executed.
|
||
*
|
||
* There may be zero lower bounds or zero upper bounds in "constraints"
|
||
* in case the list of constraints was created
|
||
* based on the atomic option or based on separation with explicit bounds.
|
||
* In that case, we use "domain" to derive lower and/or upper bounds.
|
||
*
|
||
* We first compute a list of one or more lower bounds.
|
||
*
|
||
* Then we decide if we want to express the condition as
|
||
*
|
||
* iterator <= min(list of upper bounds)
|
||
*
|
||
* or as a conjunction of constraints.
|
||
*
|
||
* The set of enforced constraints is then computed either based on
|
||
* a list of upper bounds or on a set of upper bound constraints.
|
||
* We do not compute any enforced constraints if we were forced
|
||
* to compute a lower or upper bound using exact_bound. The domains
|
||
* of the resulting expressions may imply some bounds on outer dimensions
|
||
* that we do not want to appear in the enforced constraints since
|
||
* they are not actually enforced by the corresponding code.
|
||
*
|
||
* Finally, we fill in the expressions of the for node.
|
||
*/
|
||
static __isl_give isl_ast_graft *refine_generic_bounds(
|
||
__isl_take isl_ast_graft *graft,
|
||
__isl_take isl_constraint_list *c_lower,
|
||
__isl_take isl_constraint_list *c_upper,
|
||
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
|
||
{
|
||
int depth;
|
||
isl_ctx *ctx;
|
||
isl_pw_aff_list *lower;
|
||
int use_list;
|
||
isl_set *upper_set = NULL;
|
||
isl_pw_aff_list *upper_list = NULL;
|
||
int n_lower, n_upper;
|
||
|
||
if (!graft || !c_lower || !c_upper || !build)
|
||
goto error;
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
ctx = isl_ast_graft_get_ctx(graft);
|
||
|
||
n_lower = isl_constraint_list_n_constraint(c_lower);
|
||
n_upper = isl_constraint_list_n_constraint(c_upper);
|
||
|
||
use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
|
||
|
||
lower = lower_bounds(c_lower, depth, domain, build);
|
||
|
||
if (use_list)
|
||
upper_list = upper_bounds(c_upper, depth, domain, build);
|
||
else if (n_upper > 0)
|
||
upper_set = intersect_constraints(c_upper);
|
||
else
|
||
upper_set = isl_set_universe(isl_set_get_space(domain));
|
||
|
||
if (n_lower == 0 || n_upper == 0)
|
||
;
|
||
else if (use_list)
|
||
graft = set_enforced_from_list(graft, lower, upper_list);
|
||
else
|
||
graft = set_enforced_from_set(graft, lower, depth, upper_set);
|
||
|
||
graft = set_for_node_expressions(graft, lower, use_list, upper_list,
|
||
upper_set, build);
|
||
|
||
isl_pw_aff_list_free(lower);
|
||
isl_pw_aff_list_free(upper_list);
|
||
isl_set_free(upper_set);
|
||
isl_constraint_list_free(c_lower);
|
||
isl_constraint_list_free(c_upper);
|
||
|
||
return graft;
|
||
error:
|
||
isl_constraint_list_free(c_lower);
|
||
isl_constraint_list_free(c_upper);
|
||
return isl_ast_graft_free(graft);
|
||
}
|
||
|
||
/* Internal data structure used inside count_constraints to keep
|
||
* track of the number of constraints that are independent of dimension "pos",
|
||
* the lower bounds in "pos" and the upper bounds in "pos".
|
||
*/
|
||
struct isl_ast_count_constraints_data {
|
||
int pos;
|
||
|
||
int n_indep;
|
||
int n_lower;
|
||
int n_upper;
|
||
};
|
||
|
||
/* Increment data->n_indep, data->lower or data->upper depending
|
||
* on whether "c" is independenct of dimensions data->pos,
|
||
* a lower bound or an upper bound.
|
||
*/
|
||
static int count_constraints(__isl_take isl_constraint *c, void *user)
|
||
{
|
||
struct isl_ast_count_constraints_data *data = user;
|
||
|
||
if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
|
||
data->n_lower++;
|
||
else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
|
||
data->n_upper++;
|
||
else
|
||
data->n_indep++;
|
||
|
||
isl_constraint_free(c);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Update "graft" based on "bounds" and "domain" for the generic,
|
||
* non-degenerate, case.
|
||
*
|
||
* "list" respresent the list of bounds that need to be encoded by
|
||
* the for loop (or a guard around the for loop).
|
||
* "domain" is the subset of the intersection of the constraints
|
||
* for which some code is executed.
|
||
* "build" is the build in which graft->node was created.
|
||
*
|
||
* We separate lower bounds, upper bounds and constraints that
|
||
* are independent of the loop iterator.
|
||
*
|
||
* The actual for loop bounds are generated in refine_generic_bounds.
|
||
* If there are any constraints that are independent of the loop iterator,
|
||
* we need to put a guard around the for loop (which may get hoisted up
|
||
* to higher levels) and we call refine_generic_bounds in a build
|
||
* where this guard is enforced.
|
||
*/
|
||
static __isl_give isl_ast_graft *refine_generic_split(
|
||
__isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
|
||
__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
|
||
{
|
||
isl_ast_build *for_build;
|
||
isl_set *guard;
|
||
struct isl_ast_count_constraints_data data;
|
||
isl_constraint_list *lower;
|
||
isl_constraint_list *upper;
|
||
|
||
if (!list)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
data.pos = isl_ast_build_get_depth(build);
|
||
|
||
list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
|
||
if (!list)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
data.n_indep = data.n_lower = data.n_upper = 0;
|
||
if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
|
||
isl_constraint_list_free(list);
|
||
return isl_ast_graft_free(graft);
|
||
}
|
||
|
||
lower = isl_constraint_list_copy(list);
|
||
lower = isl_constraint_list_drop(lower, 0, data.n_indep);
|
||
upper = isl_constraint_list_copy(lower);
|
||
lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
|
||
upper = isl_constraint_list_drop(upper, 0, data.n_lower);
|
||
|
||
if (data.n_indep == 0) {
|
||
isl_constraint_list_free(list);
|
||
return refine_generic_bounds(graft, lower, upper,
|
||
domain, build);
|
||
}
|
||
|
||
list = isl_constraint_list_drop(list, data.n_indep,
|
||
data.n_lower + data.n_upper);
|
||
guard = intersect_constraints(list);
|
||
isl_constraint_list_free(list);
|
||
|
||
for_build = isl_ast_build_copy(build);
|
||
for_build = isl_ast_build_restrict_pending(for_build,
|
||
isl_set_copy(guard));
|
||
graft = refine_generic_bounds(graft, lower, upper, domain, for_build);
|
||
isl_ast_build_free(for_build);
|
||
|
||
graft = isl_ast_graft_add_guard(graft, guard, build);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Add the guard implied by the current stride constraint (if any),
|
||
* but not (necessarily) enforced by the generated AST to "graft".
|
||
*/
|
||
static __isl_give isl_ast_graft *add_stride_guard(
|
||
__isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
|
||
{
|
||
int depth;
|
||
isl_set *dom;
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
if (!isl_ast_build_has_stride(build, depth))
|
||
return graft;
|
||
|
||
dom = isl_ast_build_get_stride_constraint(build);
|
||
dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
|
||
dom = isl_ast_build_compute_gist(build, dom);
|
||
|
||
graft = isl_ast_graft_add_guard(graft, dom, build);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Update "graft" based on "bounds" and "domain" for the generic,
|
||
* non-degenerate, case.
|
||
*
|
||
* "bounds" respresent the bounds that need to be encoded by
|
||
* the for loop (or a guard around the for loop).
|
||
* "domain" is the subset of "bounds" for which some code is executed.
|
||
* "build" is the build in which graft->node was created.
|
||
*
|
||
* We break up "bounds" into a list of constraints and continue with
|
||
* refine_generic_split.
|
||
*/
|
||
static __isl_give isl_ast_graft *refine_generic(
|
||
__isl_take isl_ast_graft *graft,
|
||
__isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
isl_constraint_list *list;
|
||
|
||
if (!build || !graft)
|
||
return isl_ast_graft_free(graft);
|
||
|
||
bounds = isl_basic_set_copy(bounds);
|
||
bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
|
||
list = isl_constraint_list_from_basic_set(bounds);
|
||
|
||
graft = refine_generic_split(graft, list, domain, build);
|
||
graft = add_stride_guard(graft, build);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Create a for node for the current level.
|
||
*
|
||
* Mark the for node degenerate if "degenerate" is set.
|
||
*/
|
||
static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
|
||
int degenerate)
|
||
{
|
||
int depth;
|
||
isl_id *id;
|
||
isl_ast_node *node;
|
||
|
||
if (!build)
|
||
return NULL;
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
id = isl_ast_build_get_iterator_id(build, depth);
|
||
node = isl_ast_node_alloc_for(id);
|
||
if (degenerate)
|
||
node = isl_ast_node_for_mark_degenerate(node);
|
||
|
||
return node;
|
||
}
|
||
|
||
/* Create an AST node for the current dimension based on
|
||
* the schedule domain "bounds" and return the node encapsulated
|
||
* in an isl_ast_graft.
|
||
*
|
||
* "executed" is the current inverse schedule, taking into account
|
||
* the bounds in "bounds"
|
||
* "domain" is the domain of "executed", with inner dimensions projected out.
|
||
* It may be a strict subset of "bounds" in case "bounds" was created
|
||
* based on the atomic option or based on separation with explicit bounds.
|
||
*
|
||
* "domain" may satisfy additional equalities that result
|
||
* from intersecting "executed" with "bounds" in add_node.
|
||
* It may also satisfy some global constraints that were dropped out because
|
||
* we performed separation with explicit bounds.
|
||
* The very first step is then to copy these constraints to "bounds".
|
||
*
|
||
* Since we may be calling before_each_for and after_each_for
|
||
* callbacks, we record the current inverse schedule in the build.
|
||
*
|
||
* We consider three builds,
|
||
* "build" is the one in which the current level is created,
|
||
* "body_build" is the build in which the next level is created,
|
||
* "sub_build" is essentially the same as "body_build", except that
|
||
* the depth has not been increased yet.
|
||
*
|
||
* "build" already contains information (in strides and offsets)
|
||
* about the strides at the current level, but this information is not
|
||
* reflected in the build->domain.
|
||
* We first add this information and the "bounds" to the sub_build->domain.
|
||
* isl_ast_build_set_loop_bounds checks whether the current dimension attains
|
||
* only a single value and whether this single value can be represented using
|
||
* a single affine expression.
|
||
* In the first case, the current level is considered "degenerate".
|
||
* In the second, sub-case, the current level is considered "eliminated".
|
||
* Eliminated level don't need to be reflected in the AST since we can
|
||
* simply plug in the affine expression. For degenerate, but non-eliminated,
|
||
* levels, we do introduce a for node, but mark is as degenerate so that
|
||
* it can be printed as an assignment of the single value to the loop
|
||
* "iterator".
|
||
*
|
||
* If the current level is eliminated, we explicitly plug in the value
|
||
* for the current level found by isl_ast_build_set_loop_bounds in the
|
||
* inverse schedule. This ensures that if we are working on a slice
|
||
* of the domain based on information available in the inverse schedule
|
||
* and the build domain, that then this information is also reflected
|
||
* in the inverse schedule. This operation also eliminates the current
|
||
* dimension from the inverse schedule making sure no inner dimensions depend
|
||
* on the current dimension. Otherwise, we create a for node, marking
|
||
* it degenerate if appropriate. The initial for node is still incomplete
|
||
* and will be completed in either refine_degenerate or refine_generic.
|
||
*
|
||
* We then generate a sequence of grafts for the next level,
|
||
* create a surrounding graft for the current level and insert
|
||
* the for node we created (if the current level is not eliminated).
|
||
*
|
||
* Finally, we set the bounds of the for loop and insert guards
|
||
* (either in the AST or in the graft) in one of
|
||
* refine_eliminated, refine_degenerate or refine_generic.
|
||
*/
|
||
static __isl_give isl_ast_graft *create_node_scaled(
|
||
__isl_take isl_union_map *executed,
|
||
__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
|
||
__isl_take isl_ast_build *build)
|
||
{
|
||
int depth;
|
||
int degenerate, eliminated;
|
||
isl_basic_set *hull;
|
||
isl_ast_node *node = NULL;
|
||
isl_ast_graft *graft;
|
||
isl_ast_graft_list *children;
|
||
isl_ast_build *sub_build;
|
||
isl_ast_build *body_build;
|
||
|
||
domain = isl_ast_build_eliminate_divs(build, domain);
|
||
domain = isl_set_detect_equalities(domain);
|
||
hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
|
||
bounds = isl_basic_set_intersect(bounds, hull);
|
||
build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
sub_build = isl_ast_build_copy(build);
|
||
sub_build = isl_ast_build_include_stride(sub_build);
|
||
sub_build = isl_ast_build_set_loop_bounds(sub_build,
|
||
isl_basic_set_copy(bounds));
|
||
degenerate = isl_ast_build_has_value(sub_build);
|
||
eliminated = isl_ast_build_has_affine_value(sub_build, depth);
|
||
if (degenerate < 0 || eliminated < 0)
|
||
executed = isl_union_map_free(executed);
|
||
if (eliminated)
|
||
executed = plug_in_values(executed, sub_build);
|
||
else
|
||
node = create_for(build, degenerate);
|
||
|
||
body_build = isl_ast_build_copy(sub_build);
|
||
body_build = isl_ast_build_increase_depth(body_build);
|
||
if (!eliminated)
|
||
node = before_each_for(node, body_build);
|
||
children = generate_next_level(executed,
|
||
isl_ast_build_copy(body_build));
|
||
|
||
graft = isl_ast_graft_alloc_level(children, build, sub_build);
|
||
if (!eliminated)
|
||
graft = isl_ast_graft_insert_for(graft, node);
|
||
if (eliminated)
|
||
graft = refine_eliminated(graft, bounds, build);
|
||
else if (degenerate)
|
||
graft = refine_degenerate(graft, bounds, build, sub_build);
|
||
else
|
||
graft = refine_generic(graft, bounds, domain, build);
|
||
if (!eliminated)
|
||
graft = after_each_for(graft, body_build);
|
||
|
||
isl_ast_build_free(body_build);
|
||
isl_ast_build_free(sub_build);
|
||
isl_ast_build_free(build);
|
||
isl_basic_set_free(bounds);
|
||
isl_set_free(domain);
|
||
|
||
return graft;
|
||
}
|
||
|
||
/* Internal data structure for checking if all constraints involving
|
||
* the input dimension "depth" are such that the other coefficients
|
||
* are multiples of "m", reducing "m" if they are not.
|
||
* If "m" is reduced all the way down to "1", then the check has failed
|
||
* and we break out of the iteration.
|
||
*/
|
||
struct isl_check_scaled_data {
|
||
int depth;
|
||
isl_val *m;
|
||
};
|
||
|
||
/* If constraint "c" involves the input dimension data->depth,
|
||
* then make sure that all the other coefficients are multiples of data->m,
|
||
* reducing data->m if needed.
|
||
* Break out of the iteration if data->m has become equal to "1".
|
||
*/
|
||
static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
|
||
{
|
||
struct isl_check_scaled_data *data = user;
|
||
int i, j, n;
|
||
enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
|
||
isl_dim_div };
|
||
|
||
if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
|
||
isl_constraint_free(c);
|
||
return 0;
|
||
}
|
||
|
||
for (i = 0; i < 4; ++i) {
|
||
n = isl_constraint_dim(c, t[i]);
|
||
for (j = 0; j < n; ++j) {
|
||
isl_val *d;
|
||
|
||
if (t[i] == isl_dim_in && j == data->depth)
|
||
continue;
|
||
if (!isl_constraint_involves_dims(c, t[i], j, 1))
|
||
continue;
|
||
d = isl_constraint_get_coefficient_val(c, t[i], j);
|
||
data->m = isl_val_gcd(data->m, d);
|
||
if (isl_val_is_one(data->m))
|
||
break;
|
||
}
|
||
if (j < n)
|
||
break;
|
||
}
|
||
|
||
isl_constraint_free(c);
|
||
|
||
return i < 4 ? -1 : 0;
|
||
}
|
||
|
||
/* For each constraint of "bmap" that involves the input dimension data->depth,
|
||
* make sure that all the other coefficients are multiples of data->m,
|
||
* reducing data->m if needed.
|
||
* Break out of the iteration if data->m has become equal to "1".
|
||
*/
|
||
static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
|
||
{
|
||
int r;
|
||
|
||
r = isl_basic_map_foreach_constraint(bmap,
|
||
&constraint_check_scaled, user);
|
||
isl_basic_map_free(bmap);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* For each constraint of "map" that involves the input dimension data->depth,
|
||
* make sure that all the other coefficients are multiples of data->m,
|
||
* reducing data->m if needed.
|
||
* Break out of the iteration if data->m has become equal to "1".
|
||
*/
|
||
static int map_check_scaled(__isl_take isl_map *map, void *user)
|
||
{
|
||
int r;
|
||
|
||
r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
|
||
isl_map_free(map);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Create an AST node for the current dimension based on
|
||
* the schedule domain "bounds" and return the node encapsulated
|
||
* in an isl_ast_graft.
|
||
*
|
||
* "executed" is the current inverse schedule, taking into account
|
||
* the bounds in "bounds"
|
||
* "domain" is the domain of "executed", with inner dimensions projected out.
|
||
*
|
||
*
|
||
* Before moving on to the actual AST node construction in create_node_scaled,
|
||
* we first check if the current dimension is strided and if we can scale
|
||
* down this stride. Note that we only do this if the ast_build_scale_strides
|
||
* option is set.
|
||
*
|
||
* In particular, let the current dimension take on values
|
||
*
|
||
* f + s a
|
||
*
|
||
* with a an integer. We check if we can find an integer m that (obviouly)
|
||
* divides both f and s.
|
||
*
|
||
* If so, we check if the current dimension only appears in constraints
|
||
* where the coefficients of the other variables are multiples of m.
|
||
* We perform this extra check to avoid the risk of introducing
|
||
* divisions by scaling down the current dimension.
|
||
*
|
||
* If so, we scale the current dimension down by a factor of m.
|
||
* That is, we plug in
|
||
*
|
||
* i = m i' (1)
|
||
*
|
||
* Note that in principle we could always scale down strided loops
|
||
* by plugging in
|
||
*
|
||
* i = f + s i'
|
||
*
|
||
* but this may result in i' taking on larger values than the original i,
|
||
* due to the shift by "f".
|
||
* By constrast, the scaling in (1) can only reduce the (absolute) value "i".
|
||
*/
|
||
static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
|
||
__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
|
||
__isl_take isl_ast_build *build)
|
||
{
|
||
struct isl_check_scaled_data data;
|
||
isl_ctx *ctx;
|
||
isl_aff *offset;
|
||
isl_val *d;
|
||
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
if (!isl_options_get_ast_build_scale_strides(ctx))
|
||
return create_node_scaled(executed, bounds, domain, build);
|
||
|
||
data.depth = isl_ast_build_get_depth(build);
|
||
if (!isl_ast_build_has_stride(build, data.depth))
|
||
return create_node_scaled(executed, bounds, domain, build);
|
||
|
||
offset = isl_ast_build_get_offset(build, data.depth);
|
||
data.m = isl_ast_build_get_stride(build, data.depth);
|
||
if (!data.m)
|
||
offset = isl_aff_free(offset);
|
||
offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m));
|
||
d = isl_aff_get_denominator_val(offset);
|
||
if (!d)
|
||
executed = isl_union_map_free(executed);
|
||
|
||
if (executed && isl_val_is_divisible_by(data.m, d))
|
||
data.m = isl_val_div(data.m, d);
|
||
else {
|
||
data.m = isl_val_set_si(data.m, 1);
|
||
isl_val_free(d);
|
||
}
|
||
|
||
if (!isl_val_is_one(data.m)) {
|
||
if (isl_union_map_foreach_map(executed, &map_check_scaled,
|
||
&data) < 0 &&
|
||
!isl_val_is_one(data.m))
|
||
executed = isl_union_map_free(executed);
|
||
}
|
||
|
||
if (!isl_val_is_one(data.m)) {
|
||
isl_space *space;
|
||
isl_multi_aff *ma;
|
||
isl_aff *aff;
|
||
isl_map *map;
|
||
isl_union_map *umap;
|
||
|
||
space = isl_ast_build_get_space(build, 1);
|
||
space = isl_space_map_from_set(space);
|
||
ma = isl_multi_aff_identity(space);
|
||
aff = isl_multi_aff_get_aff(ma, data.depth);
|
||
aff = isl_aff_scale_val(aff, isl_val_copy(data.m));
|
||
ma = isl_multi_aff_set_aff(ma, data.depth, aff);
|
||
|
||
bounds = isl_basic_set_preimage_multi_aff(bounds,
|
||
isl_multi_aff_copy(ma));
|
||
domain = isl_set_preimage_multi_aff(domain,
|
||
isl_multi_aff_copy(ma));
|
||
map = isl_map_reverse(isl_map_from_multi_aff(ma));
|
||
umap = isl_union_map_from_map(map);
|
||
executed = isl_union_map_apply_domain(executed,
|
||
isl_union_map_copy(umap));
|
||
build = isl_ast_build_scale_down(build, isl_val_copy(data.m),
|
||
umap);
|
||
}
|
||
isl_aff_free(offset);
|
||
isl_val_free(data.m);
|
||
|
||
return create_node_scaled(executed, bounds, domain, build);
|
||
}
|
||
|
||
/* Add the basic set to the list that "user" points to.
|
||
*/
|
||
static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
|
||
{
|
||
isl_basic_set_list **list = user;
|
||
|
||
*list = isl_basic_set_list_add(*list, bset);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
|
||
*/
|
||
static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
|
||
__isl_take isl_set *set)
|
||
{
|
||
int n;
|
||
isl_ctx *ctx;
|
||
isl_basic_set_list *list;
|
||
|
||
if (!set)
|
||
return NULL;
|
||
|
||
ctx = isl_set_get_ctx(set);
|
||
|
||
n = isl_set_n_basic_set(set);
|
||
list = isl_basic_set_list_alloc(ctx, n);
|
||
if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
|
||
list = isl_basic_set_list_free(list);
|
||
|
||
isl_set_free(set);
|
||
return list;
|
||
}
|
||
|
||
/* Generate code for the schedule domain "bounds"
|
||
* and add the result to "list".
|
||
*
|
||
* We mainly detect strides and additional equalities here
|
||
* and then pass over control to create_node.
|
||
*
|
||
* "bounds" reflects the bounds on the current dimension and possibly
|
||
* some extra conditions on outer dimensions.
|
||
* It does not, however, include any divs involving the current dimension,
|
||
* so it does not capture any stride constraints.
|
||
* We therefore need to compute that part of the schedule domain that
|
||
* intersects with "bounds" and derive the strides from the result.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *add_node(
|
||
__isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
|
||
__isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
|
||
{
|
||
isl_ast_graft *graft;
|
||
isl_set *domain = NULL;
|
||
isl_union_set *uset;
|
||
int empty;
|
||
|
||
uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
|
||
executed = isl_union_map_intersect_domain(executed, uset);
|
||
empty = isl_union_map_is_empty(executed);
|
||
if (empty < 0)
|
||
goto error;
|
||
if (empty)
|
||
goto done;
|
||
|
||
uset = isl_union_map_domain(isl_union_map_copy(executed));
|
||
domain = isl_set_from_union_set(uset);
|
||
domain = isl_ast_build_compute_gist(build, domain);
|
||
empty = isl_set_is_empty(domain);
|
||
if (empty < 0)
|
||
goto error;
|
||
if (empty)
|
||
goto done;
|
||
|
||
domain = isl_ast_build_eliminate_inner(build, domain);
|
||
build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
|
||
|
||
graft = create_node(executed, bounds, domain,
|
||
isl_ast_build_copy(build));
|
||
list = isl_ast_graft_list_add(list, graft);
|
||
isl_ast_build_free(build);
|
||
return list;
|
||
error:
|
||
list = isl_ast_graft_list_free(list);
|
||
done:
|
||
isl_set_free(domain);
|
||
isl_basic_set_free(bounds);
|
||
isl_union_map_free(executed);
|
||
isl_ast_build_free(build);
|
||
return list;
|
||
}
|
||
|
||
/* Does any element of i follow or coincide with any element of j
|
||
* at the current depth for equal values of the outer dimensions?
|
||
*/
|
||
static int domain_follows_at_depth(__isl_keep isl_basic_set *i,
|
||
__isl_keep isl_basic_set *j, void *user)
|
||
{
|
||
int depth = *(int *) user;
|
||
isl_basic_map *test;
|
||
int empty;
|
||
int l;
|
||
|
||
test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
|
||
isl_basic_set_copy(j));
|
||
for (l = 0; l < depth; ++l)
|
||
test = isl_basic_map_equate(test, isl_dim_in, l,
|
||
isl_dim_out, l);
|
||
test = isl_basic_map_order_ge(test, isl_dim_in, depth,
|
||
isl_dim_out, depth);
|
||
empty = isl_basic_map_is_empty(test);
|
||
isl_basic_map_free(test);
|
||
|
||
return empty < 0 ? -1 : !empty;
|
||
}
|
||
|
||
/* Split up each element of "list" into a part that is related to "bset"
|
||
* according to "gt" and a part that is not.
|
||
* Return a list that consist of "bset" and all the pieces.
|
||
*/
|
||
static __isl_give isl_basic_set_list *add_split_on(
|
||
__isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
|
||
__isl_keep isl_basic_map *gt)
|
||
{
|
||
int i, n;
|
||
isl_basic_set_list *res;
|
||
|
||
gt = isl_basic_map_copy(gt);
|
||
gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
|
||
n = isl_basic_set_list_n_basic_set(list);
|
||
res = isl_basic_set_list_from_basic_set(bset);
|
||
for (i = 0; res && i < n; ++i) {
|
||
isl_basic_set *bset;
|
||
isl_set *set1, *set2;
|
||
isl_basic_map *bmap;
|
||
int empty;
|
||
|
||
bset = isl_basic_set_list_get_basic_set(list, i);
|
||
bmap = isl_basic_map_copy(gt);
|
||
bmap = isl_basic_map_intersect_range(bmap, bset);
|
||
bset = isl_basic_map_range(bmap);
|
||
empty = isl_basic_set_is_empty(bset);
|
||
if (empty < 0)
|
||
res = isl_basic_set_list_free(res);
|
||
if (empty) {
|
||
isl_basic_set_free(bset);
|
||
bset = isl_basic_set_list_get_basic_set(list, i);
|
||
res = isl_basic_set_list_add(res, bset);
|
||
continue;
|
||
}
|
||
|
||
res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
|
||
set1 = isl_set_from_basic_set(bset);
|
||
bset = isl_basic_set_list_get_basic_set(list, i);
|
||
set2 = isl_set_from_basic_set(bset);
|
||
set1 = isl_set_subtract(set2, set1);
|
||
set1 = isl_set_make_disjoint(set1);
|
||
|
||
res = isl_basic_set_list_concat(res,
|
||
isl_basic_set_list_from_set(set1));
|
||
}
|
||
isl_basic_map_free(gt);
|
||
isl_basic_set_list_free(list);
|
||
return res;
|
||
}
|
||
|
||
static __isl_give isl_ast_graft_list *generate_sorted_domains(
|
||
__isl_keep isl_basic_set_list *domain_list,
|
||
__isl_keep isl_union_map *executed,
|
||
__isl_keep isl_ast_build *build);
|
||
|
||
/* Internal data structure for add_nodes.
|
||
*
|
||
* "executed" and "build" are extra arguments to be passed to add_node.
|
||
* "list" collects the results.
|
||
*/
|
||
struct isl_add_nodes_data {
|
||
isl_union_map *executed;
|
||
isl_ast_build *build;
|
||
|
||
isl_ast_graft_list *list;
|
||
};
|
||
|
||
/* Generate code for the schedule domains in "scc"
|
||
* and add the results to "list".
|
||
*
|
||
* The domains in "scc" form a strongly connected component in the ordering.
|
||
* If the number of domains in "scc" is larger than 1, then this means
|
||
* that we cannot determine a valid ordering for the domains in the component.
|
||
* This should be fairly rare because the individual domains
|
||
* have been made disjoint first.
|
||
* The problem is that the domains may be integrally disjoint but not
|
||
* rationally disjoint. For example, we may have domains
|
||
*
|
||
* { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
|
||
*
|
||
* These two domains have an empty intersection, but their rational
|
||
* relaxations do intersect. It is impossible to order these domains
|
||
* in the second dimension because the first should be ordered before
|
||
* the second for outer dimension equal to 0, while it should be ordered
|
||
* after for outer dimension equal to 1.
|
||
*
|
||
* This may happen in particular in case of unrolling since the domain
|
||
* of each slice is replaced by its simple hull.
|
||
*
|
||
* For each basic set i in "scc" and for each of the following basic sets j,
|
||
* we split off that part of the basic set i that shares the outer dimensions
|
||
* with j and lies before j in the current dimension.
|
||
* We collect all the pieces in a new list that replaces "scc".
|
||
*/
|
||
static int add_nodes(__isl_take isl_basic_set_list *scc, void *user)
|
||
{
|
||
struct isl_add_nodes_data *data = user;
|
||
int i, n, depth;
|
||
isl_basic_set *bset;
|
||
isl_basic_set_list *list;
|
||
isl_space *space;
|
||
isl_basic_map *gt;
|
||
|
||
n = isl_basic_set_list_n_basic_set(scc);
|
||
bset = isl_basic_set_list_get_basic_set(scc, 0);
|
||
if (n == 1) {
|
||
isl_basic_set_list_free(scc);
|
||
data->list = add_node(data->list,
|
||
isl_union_map_copy(data->executed), bset,
|
||
isl_ast_build_copy(data->build));
|
||
return data->list ? 0 : -1;
|
||
}
|
||
|
||
depth = isl_ast_build_get_depth(data->build);
|
||
space = isl_basic_set_get_space(bset);
|
||
space = isl_space_map_from_set(space);
|
||
gt = isl_basic_map_universe(space);
|
||
for (i = 0; i < depth; ++i)
|
||
gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
|
||
gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
|
||
|
||
list = isl_basic_set_list_from_basic_set(bset);
|
||
for (i = 1; i < n; ++i) {
|
||
bset = isl_basic_set_list_get_basic_set(scc, i);
|
||
list = add_split_on(list, bset, gt);
|
||
}
|
||
isl_basic_map_free(gt);
|
||
isl_basic_set_list_free(scc);
|
||
scc = list;
|
||
data->list = isl_ast_graft_list_concat(data->list,
|
||
generate_sorted_domains(scc, data->executed, data->build));
|
||
isl_basic_set_list_free(scc);
|
||
|
||
return data->list ? 0 : -1;
|
||
}
|
||
|
||
/* Sort the domains in "domain_list" according to the execution order
|
||
* at the current depth (for equal values of the outer dimensions),
|
||
* generate code for each of them, collecting the results in a list.
|
||
* If no code is generated (because the intersection of the inverse schedule
|
||
* with the domains turns out to be empty), then an empty list is returned.
|
||
*
|
||
* The caller is responsible for ensuring that the basic sets in "domain_list"
|
||
* are pair-wise disjoint. It can, however, in principle happen that
|
||
* two basic sets should be ordered one way for one value of the outer
|
||
* dimensions and the other way for some other value of the outer dimensions.
|
||
* We therefore play safe and look for strongly connected components.
|
||
* The function add_nodes takes care of handling non-trivial components.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_sorted_domains(
|
||
__isl_keep isl_basic_set_list *domain_list,
|
||
__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
|
||
{
|
||
isl_ctx *ctx;
|
||
struct isl_add_nodes_data data;
|
||
int depth;
|
||
int n;
|
||
|
||
if (!domain_list)
|
||
return NULL;
|
||
|
||
ctx = isl_basic_set_list_get_ctx(domain_list);
|
||
n = isl_basic_set_list_n_basic_set(domain_list);
|
||
data.list = isl_ast_graft_list_alloc(ctx, n);
|
||
if (n == 0)
|
||
return data.list;
|
||
if (n == 1)
|
||
return add_node(data.list, isl_union_map_copy(executed),
|
||
isl_basic_set_list_get_basic_set(domain_list, 0),
|
||
isl_ast_build_copy(build));
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
data.executed = executed;
|
||
data.build = build;
|
||
if (isl_basic_set_list_foreach_scc(domain_list,
|
||
&domain_follows_at_depth, &depth,
|
||
&add_nodes, &data) < 0)
|
||
data.list = isl_ast_graft_list_free(data.list);
|
||
|
||
return data.list;
|
||
}
|
||
|
||
/* Do i and j share any values for the outer dimensions?
|
||
*/
|
||
static int shared_outer(__isl_keep isl_basic_set *i,
|
||
__isl_keep isl_basic_set *j, void *user)
|
||
{
|
||
int depth = *(int *) user;
|
||
isl_basic_map *test;
|
||
int empty;
|
||
int l;
|
||
|
||
test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
|
||
isl_basic_set_copy(j));
|
||
for (l = 0; l < depth; ++l)
|
||
test = isl_basic_map_equate(test, isl_dim_in, l,
|
||
isl_dim_out, l);
|
||
empty = isl_basic_map_is_empty(test);
|
||
isl_basic_map_free(test);
|
||
|
||
return empty < 0 ? -1 : !empty;
|
||
}
|
||
|
||
/* Internal data structure for generate_sorted_domains_wrap.
|
||
*
|
||
* "n" is the total number of basic sets
|
||
* "executed" and "build" are extra arguments to be passed
|
||
* to generate_sorted_domains.
|
||
*
|
||
* "single" is set to 1 by generate_sorted_domains_wrap if there
|
||
* is only a single component.
|
||
* "list" collects the results.
|
||
*/
|
||
struct isl_ast_generate_parallel_domains_data {
|
||
int n;
|
||
isl_union_map *executed;
|
||
isl_ast_build *build;
|
||
|
||
int single;
|
||
isl_ast_graft_list *list;
|
||
};
|
||
|
||
/* Call generate_sorted_domains on "scc", fuse the result into a list
|
||
* with either zero or one graft and collect the these single element
|
||
* lists into data->list.
|
||
*
|
||
* If there is only one component, i.e., if the number of basic sets
|
||
* in the current component is equal to the total number of basic sets,
|
||
* then data->single is set to 1 and the result of generate_sorted_domains
|
||
* is not fused.
|
||
*/
|
||
static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
|
||
void *user)
|
||
{
|
||
struct isl_ast_generate_parallel_domains_data *data = user;
|
||
isl_ast_graft_list *list;
|
||
|
||
list = generate_sorted_domains(scc, data->executed, data->build);
|
||
data->single = isl_basic_set_list_n_basic_set(scc) == data->n;
|
||
if (!data->single)
|
||
list = isl_ast_graft_list_fuse(list, data->build);
|
||
if (!data->list)
|
||
data->list = list;
|
||
else
|
||
data->list = isl_ast_graft_list_concat(data->list, list);
|
||
|
||
isl_basic_set_list_free(scc);
|
||
if (!data->list)
|
||
return -1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Look for any (weakly connected) components in the "domain_list"
|
||
* of domains that share some values of the outer dimensions.
|
||
* That is, domains in different components do not share any values
|
||
* of the outer dimensions. This means that these components
|
||
* can be freely reordered.
|
||
* Within each of the components, we sort the domains according
|
||
* to the execution order at the current depth.
|
||
*
|
||
* If there is more than one component, then generate_sorted_domains_wrap
|
||
* fuses the result of each call to generate_sorted_domains
|
||
* into a list with either zero or one graft and collects these (at most)
|
||
* single element lists into a bigger list. This means that the elements of the
|
||
* final list can be freely reordered. In particular, we sort them
|
||
* according to an arbitrary but fixed ordering to ease merging of
|
||
* graft lists from different components.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_parallel_domains(
|
||
__isl_keep isl_basic_set_list *domain_list,
|
||
__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
|
||
{
|
||
int depth;
|
||
struct isl_ast_generate_parallel_domains_data data;
|
||
|
||
if (!domain_list)
|
||
return NULL;
|
||
|
||
data.n = isl_basic_set_list_n_basic_set(domain_list);
|
||
if (data.n <= 1)
|
||
return generate_sorted_domains(domain_list, executed, build);
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
data.list = NULL;
|
||
data.executed = executed;
|
||
data.build = build;
|
||
data.single = 0;
|
||
if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
|
||
&generate_sorted_domains_wrap,
|
||
&data) < 0)
|
||
data.list = isl_ast_graft_list_free(data.list);
|
||
|
||
if (!data.single)
|
||
data.list = isl_ast_graft_list_sort_guard(data.list);
|
||
|
||
return data.list;
|
||
}
|
||
|
||
/* Internal data for separate_domain.
|
||
*
|
||
* "explicit" is set if we only want to use explicit bounds.
|
||
*
|
||
* "domain" collects the separated domains.
|
||
*/
|
||
struct isl_separate_domain_data {
|
||
isl_ast_build *build;
|
||
int explicit;
|
||
isl_set *domain;
|
||
};
|
||
|
||
/* Extract implicit bounds on the current dimension for the executed "map".
|
||
*
|
||
* The domain of "map" may involve inner dimensions, so we
|
||
* need to eliminate them.
|
||
*/
|
||
static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
isl_set *domain;
|
||
|
||
domain = isl_map_domain(map);
|
||
domain = isl_ast_build_eliminate(build, domain);
|
||
|
||
return domain;
|
||
}
|
||
|
||
/* Extract explicit bounds on the current dimension for the executed "map".
|
||
*
|
||
* Rather than eliminating the inner dimensions as in implicit_bounds,
|
||
* we simply drop any constraints involving those inner dimensions.
|
||
* The idea is that most bounds that are implied by constraints on the
|
||
* inner dimensions will be enforced by for loops and not by explicit guards.
|
||
* There is then no need to separate along those bounds.
|
||
*/
|
||
static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
isl_set *domain;
|
||
int depth, dim;
|
||
|
||
dim = isl_map_dim(map, isl_dim_out);
|
||
map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
|
||
|
||
domain = isl_map_domain(map);
|
||
depth = isl_ast_build_get_depth(build);
|
||
dim = isl_set_dim(domain, isl_dim_set);
|
||
domain = isl_set_detect_equalities(domain);
|
||
domain = isl_set_drop_constraints_involving_dims(domain,
|
||
isl_dim_set, depth + 1, dim - (depth + 1));
|
||
domain = isl_set_remove_divs_involving_dims(domain,
|
||
isl_dim_set, depth, 1);
|
||
domain = isl_set_remove_unknown_divs(domain);
|
||
|
||
return domain;
|
||
}
|
||
|
||
/* Split data->domain into pieces that intersect with the range of "map"
|
||
* and pieces that do not intersect with the range of "map"
|
||
* and then add that part of the range of "map" that does not intersect
|
||
* with data->domain.
|
||
*/
|
||
static int separate_domain(__isl_take isl_map *map, void *user)
|
||
{
|
||
struct isl_separate_domain_data *data = user;
|
||
isl_set *domain;
|
||
isl_set *d1, *d2;
|
||
|
||
if (data->explicit)
|
||
domain = explicit_bounds(map, data->build);
|
||
else
|
||
domain = implicit_bounds(map, data->build);
|
||
|
||
domain = isl_set_coalesce(domain);
|
||
domain = isl_set_make_disjoint(domain);
|
||
d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
|
||
d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
|
||
data->domain = isl_set_intersect(data->domain, domain);
|
||
data->domain = isl_set_union(data->domain, d1);
|
||
data->domain = isl_set_union(data->domain, d2);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Separate the schedule domains of "executed".
|
||
*
|
||
* That is, break up the domain of "executed" into basic sets,
|
||
* such that for each basic set S, every element in S is associated with
|
||
* the same domain spaces.
|
||
*
|
||
* "space" is the (single) domain space of "executed".
|
||
*/
|
||
static __isl_give isl_set *separate_schedule_domains(
|
||
__isl_take isl_space *space, __isl_take isl_union_map *executed,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
struct isl_separate_domain_data data = { build };
|
||
isl_ctx *ctx;
|
||
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
|
||
ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
|
||
data.domain = isl_set_empty(space);
|
||
if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
|
||
data.domain = isl_set_free(data.domain);
|
||
|
||
isl_union_map_free(executed);
|
||
return data.domain;
|
||
}
|
||
|
||
/* Temporary data used during the search for a lower bound for unrolling.
|
||
*
|
||
* "domain" is the original set for which to find a lower bound
|
||
* "depth" is the dimension for which to find a lower boudn
|
||
*
|
||
* "lower" is the best lower bound found so far. It is NULL if we have not
|
||
* found any yet.
|
||
* "n" is the corresponding size. If lower is NULL, then the value of n
|
||
* is undefined.
|
||
*/
|
||
struct isl_find_unroll_data {
|
||
isl_set *domain;
|
||
int depth;
|
||
|
||
isl_aff *lower;
|
||
int *n;
|
||
};
|
||
|
||
/* Check if we can use "c" as a lower bound and if it is better than
|
||
* any previously found lower bound.
|
||
*
|
||
* If "c" does not involve the dimension at the current depth,
|
||
* then we cannot use it.
|
||
* Otherwise, let "c" be of the form
|
||
*
|
||
* i >= f(j)/a
|
||
*
|
||
* We compute the maximal value of
|
||
*
|
||
* -ceil(f(j)/a)) + i + 1
|
||
*
|
||
* over the domain. If there is such a value "n", then we know
|
||
*
|
||
* -ceil(f(j)/a)) + i + 1 <= n
|
||
*
|
||
* or
|
||
*
|
||
* i < ceil(f(j)/a)) + n
|
||
*
|
||
* meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
|
||
* We just need to check if we have found any lower bound before and
|
||
* if the new lower bound is better (smaller n) than the previously found
|
||
* lower bounds.
|
||
*/
|
||
static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
|
||
__isl_keep isl_constraint *c)
|
||
{
|
||
isl_aff *aff, *lower;
|
||
isl_val *max;
|
||
|
||
if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
|
||
return 0;
|
||
|
||
lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
|
||
lower = isl_aff_ceil(lower);
|
||
aff = isl_aff_copy(lower);
|
||
aff = isl_aff_neg(aff);
|
||
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
|
||
aff = isl_aff_add_constant_si(aff, 1);
|
||
max = isl_set_max_val(data->domain, aff);
|
||
isl_aff_free(aff);
|
||
|
||
if (!max)
|
||
goto error;
|
||
if (isl_val_is_infty(max)) {
|
||
isl_val_free(max);
|
||
isl_aff_free(lower);
|
||
return 0;
|
||
}
|
||
|
||
if (isl_val_cmp_si(max, INT_MAX) <= 0 &&
|
||
(!data->lower || isl_val_cmp_si(max, *data->n) < 0)) {
|
||
isl_aff_free(data->lower);
|
||
data->lower = lower;
|
||
*data->n = isl_val_get_num_si(max);
|
||
} else
|
||
isl_aff_free(lower);
|
||
isl_val_free(max);
|
||
|
||
return 1;
|
||
error:
|
||
isl_aff_free(lower);
|
||
return -1;
|
||
}
|
||
|
||
/* Check if we can use "c" as a lower bound and if it is better than
|
||
* any previously found lower bound.
|
||
*/
|
||
static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
|
||
{
|
||
struct isl_find_unroll_data *data;
|
||
int r;
|
||
|
||
data = (struct isl_find_unroll_data *) user;
|
||
r = update_unrolling_lower_bound(data, c);
|
||
isl_constraint_free(c);
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Look for a lower bound l(i) on the dimension at "depth"
|
||
* and a size n such that "domain" is a subset of
|
||
*
|
||
* { [i] : l(i) <= i_d < l(i) + n }
|
||
*
|
||
* where d is "depth" and l(i) depends only on earlier dimensions.
|
||
* Furthermore, try and find a lower bound such that n is as small as possible.
|
||
* In particular, "n" needs to be finite.
|
||
*
|
||
* Inner dimensions have been eliminated from "domain" by the caller.
|
||
*
|
||
* We first construct a collection of lower bounds on the input set
|
||
* by computing its simple hull. We then iterate through them,
|
||
* discarding those that we cannot use (either because they do not
|
||
* involve the dimension at "depth" or because they have no corresponding
|
||
* upper bound, meaning that "n" would be unbounded) and pick out the
|
||
* best from the remaining ones.
|
||
*
|
||
* If we cannot find a suitable lower bound, then we consider that
|
||
* to be an error.
|
||
*/
|
||
static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
|
||
int depth, int *n)
|
||
{
|
||
struct isl_find_unroll_data data = { domain, depth, NULL, n };
|
||
isl_basic_set *hull;
|
||
|
||
hull = isl_set_simple_hull(isl_set_copy(domain));
|
||
|
||
if (isl_basic_set_foreach_constraint(hull,
|
||
&constraint_find_unroll, &data) < 0)
|
||
goto error;
|
||
|
||
isl_basic_set_free(hull);
|
||
|
||
if (!data.lower)
|
||
isl_die(isl_set_get_ctx(domain), isl_error_invalid,
|
||
"cannot find lower bound for unrolling", return NULL);
|
||
|
||
return data.lower;
|
||
error:
|
||
isl_basic_set_free(hull);
|
||
return isl_aff_free(data.lower);
|
||
}
|
||
|
||
/* Return the constraint
|
||
*
|
||
* i_"depth" = aff + offset
|
||
*/
|
||
static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
|
||
int offset)
|
||
{
|
||
aff = isl_aff_copy(aff);
|
||
aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
|
||
aff = isl_aff_add_constant_si(aff, offset);
|
||
return isl_equality_from_aff(aff);
|
||
}
|
||
|
||
/* Data structure for storing the results and the intermediate objects
|
||
* of compute_domains.
|
||
*
|
||
* "list" is the main result of the function and contains a list
|
||
* of disjoint basic sets for which code should be generated.
|
||
*
|
||
* "executed" and "build" are inputs to compute_domains.
|
||
* "schedule_domain" is the domain of "executed".
|
||
*
|
||
* "option" constains the domains at the current depth that should by
|
||
* atomic, separated or unrolled. These domains are as specified by
|
||
* the user, except that inner dimensions have been eliminated and
|
||
* that they have been made pair-wise disjoint.
|
||
*
|
||
* "sep_class" contains the user-specified split into separation classes
|
||
* specialized to the current depth.
|
||
* "done" contains the union of the separation domains that have already
|
||
* been handled.
|
||
*/
|
||
struct isl_codegen_domains {
|
||
isl_basic_set_list *list;
|
||
|
||
isl_union_map *executed;
|
||
isl_ast_build *build;
|
||
isl_set *schedule_domain;
|
||
|
||
isl_set *option[3];
|
||
|
||
isl_map *sep_class;
|
||
isl_set *done;
|
||
};
|
||
|
||
/* Extend domains->list with a list of basic sets, one for each value
|
||
* of the current dimension in "domain" and remove the corresponding
|
||
* sets from the class domain. Return the updated class domain.
|
||
* The divs that involve the current dimension have not been projected out
|
||
* from this domain.
|
||
*
|
||
* Since we are going to be iterating over the individual values,
|
||
* we first check if there are any strides on the current dimension.
|
||
* If there is, we rewrite the current dimension i as
|
||
*
|
||
* i = stride i' + offset
|
||
*
|
||
* and then iterate over individual values of i' instead.
|
||
*
|
||
* We then look for a lower bound on i' and a size such that the domain
|
||
* is a subset of
|
||
*
|
||
* { [j,i'] : l(j) <= i' < l(j) + n }
|
||
*
|
||
* and then take slices of the domain at values of i'
|
||
* between l(j) and l(j) + n - 1.
|
||
*
|
||
* We compute the unshifted simple hull of each slice to ensure that
|
||
* we have a single basic set per offset. The slicing constraint
|
||
* may get simplified away before the unshifted simple hull is taken
|
||
* and may therefore in some rare cases disappear from the result.
|
||
* We therefore explicitly add the constraint back after computing
|
||
* the unshifted simple hull to ensure that the basic sets
|
||
* remain disjoint. The constraints that are dropped by taking the hull
|
||
* will be taken into account at the next level, as in the case of the
|
||
* atomic option.
|
||
*
|
||
* Finally, we map i' back to i and add each basic set to the list.
|
||
* Since we may have dropped some constraints, we intersect with
|
||
* the class domain again to ensure that each element in the list
|
||
* is disjoint from the other class domains.
|
||
*/
|
||
static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
|
||
__isl_take isl_set *domain, __isl_take isl_set *class_domain)
|
||
{
|
||
int i, n;
|
||
int depth;
|
||
isl_ctx *ctx;
|
||
isl_aff *lower;
|
||
isl_multi_aff *expansion;
|
||
isl_basic_map *bmap;
|
||
isl_set *unroll_domain;
|
||
isl_ast_build *build;
|
||
|
||
if (!domain)
|
||
return isl_set_free(class_domain);
|
||
|
||
ctx = isl_set_get_ctx(domain);
|
||
depth = isl_ast_build_get_depth(domains->build);
|
||
build = isl_ast_build_copy(domains->build);
|
||
domain = isl_ast_build_eliminate_inner(build, domain);
|
||
build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
|
||
expansion = isl_ast_build_get_stride_expansion(build);
|
||
|
||
domain = isl_set_preimage_multi_aff(domain,
|
||
isl_multi_aff_copy(expansion));
|
||
domain = isl_ast_build_eliminate_divs(build, domain);
|
||
|
||
isl_ast_build_free(build);
|
||
|
||
lower = find_unroll_lower_bound(domain, depth, &n);
|
||
if (!lower)
|
||
class_domain = isl_set_free(class_domain);
|
||
|
||
bmap = isl_basic_map_from_multi_aff(expansion);
|
||
|
||
unroll_domain = isl_set_empty(isl_set_get_space(domain));
|
||
|
||
for (i = 0; class_domain && i < n; ++i) {
|
||
isl_set *set;
|
||
isl_basic_set *bset;
|
||
isl_constraint *slice;
|
||
isl_basic_set_list *list;
|
||
|
||
slice = at_offset(depth, lower, i);
|
||
set = isl_set_copy(domain);
|
||
set = isl_set_add_constraint(set, isl_constraint_copy(slice));
|
||
bset = isl_set_unshifted_simple_hull(set);
|
||
bset = isl_basic_set_add_constraint(bset, slice);
|
||
bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
|
||
set = isl_set_from_basic_set(bset);
|
||
unroll_domain = isl_set_union(unroll_domain, isl_set_copy(set));
|
||
set = isl_set_intersect(set, isl_set_copy(class_domain));
|
||
set = isl_set_make_disjoint(set);
|
||
list = isl_basic_set_list_from_set(set);
|
||
domains->list = isl_basic_set_list_concat(domains->list, list);
|
||
}
|
||
|
||
class_domain = isl_set_subtract(class_domain, unroll_domain);
|
||
|
||
isl_aff_free(lower);
|
||
isl_set_free(domain);
|
||
isl_basic_map_free(bmap);
|
||
|
||
return class_domain;
|
||
}
|
||
|
||
/* Add domains to domains->list for each individual value of the current
|
||
* dimension, for that part of the schedule domain that lies in the
|
||
* intersection of the option domain and the class domain.
|
||
* Remove the corresponding sets from the class domain and
|
||
* return the updated class domain.
|
||
*
|
||
* We first break up the unroll option domain into individual pieces
|
||
* and then handle each of them separately. The unroll option domain
|
||
* has been made disjoint in compute_domains_init_options,
|
||
*
|
||
* Note that we actively want to combine different pieces of the
|
||
* schedule domain that have the same value at the current dimension.
|
||
* We therefore need to break up the unroll option domain before
|
||
* intersecting with class and schedule domain, hoping that the
|
||
* unroll option domain specified by the user is relatively simple.
|
||
*/
|
||
static __isl_give isl_set *compute_unroll_domains(
|
||
struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
|
||
{
|
||
isl_set *unroll_domain;
|
||
isl_basic_set_list *unroll_list;
|
||
int i, n;
|
||
int empty;
|
||
|
||
empty = isl_set_is_empty(domains->option[unroll]);
|
||
if (empty < 0)
|
||
return isl_set_free(class_domain);
|
||
if (empty)
|
||
return class_domain;
|
||
|
||
unroll_domain = isl_set_copy(domains->option[unroll]);
|
||
unroll_list = isl_basic_set_list_from_set(unroll_domain);
|
||
|
||
n = isl_basic_set_list_n_basic_set(unroll_list);
|
||
for (i = 0; i < n; ++i) {
|
||
isl_basic_set *bset;
|
||
|
||
bset = isl_basic_set_list_get_basic_set(unroll_list, i);
|
||
unroll_domain = isl_set_from_basic_set(bset);
|
||
unroll_domain = isl_set_intersect(unroll_domain,
|
||
isl_set_copy(class_domain));
|
||
unroll_domain = isl_set_intersect(unroll_domain,
|
||
isl_set_copy(domains->schedule_domain));
|
||
|
||
empty = isl_set_is_empty(unroll_domain);
|
||
if (empty >= 0 && empty) {
|
||
isl_set_free(unroll_domain);
|
||
continue;
|
||
}
|
||
|
||
class_domain = do_unroll(domains, unroll_domain, class_domain);
|
||
}
|
||
|
||
isl_basic_set_list_free(unroll_list);
|
||
|
||
return class_domain;
|
||
}
|
||
|
||
/* Try and construct a single basic set that includes the intersection of
|
||
* the schedule domain, the atomic option domain and the class domain.
|
||
* Add the resulting basic set(s) to domains->list and remove them
|
||
* from class_domain. Return the updated class domain.
|
||
*
|
||
* We construct a single domain rather than trying to combine
|
||
* the schedule domains of individual domains because we are working
|
||
* within a single component so that non-overlapping schedule domains
|
||
* should already have been separated.
|
||
* We do however need to make sure that this single domains is a subset
|
||
* of the class domain so that it would not intersect with any other
|
||
* class domains. This means that we may end up splitting up the atomic
|
||
* domain in case separation classes are being used.
|
||
*
|
||
* "domain" is the intersection of the schedule domain and the class domain,
|
||
* with inner dimensions projected out.
|
||
*/
|
||
static __isl_give isl_set *compute_atomic_domain(
|
||
struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
|
||
{
|
||
isl_basic_set *bset;
|
||
isl_basic_set_list *list;
|
||
isl_set *domain, *atomic_domain;
|
||
int empty;
|
||
|
||
domain = isl_set_copy(domains->option[atomic]);
|
||
domain = isl_set_intersect(domain, isl_set_copy(class_domain));
|
||
domain = isl_set_intersect(domain,
|
||
isl_set_copy(domains->schedule_domain));
|
||
empty = isl_set_is_empty(domain);
|
||
if (empty < 0)
|
||
class_domain = isl_set_free(class_domain);
|
||
if (empty) {
|
||
isl_set_free(domain);
|
||
return class_domain;
|
||
}
|
||
|
||
domain = isl_ast_build_eliminate(domains->build, domain);
|
||
domain = isl_set_coalesce(domain);
|
||
bset = isl_set_unshifted_simple_hull(domain);
|
||
domain = isl_set_from_basic_set(bset);
|
||
atomic_domain = isl_set_copy(domain);
|
||
domain = isl_set_intersect(domain, isl_set_copy(class_domain));
|
||
class_domain = isl_set_subtract(class_domain, atomic_domain);
|
||
domain = isl_set_make_disjoint(domain);
|
||
list = isl_basic_set_list_from_set(domain);
|
||
domains->list = isl_basic_set_list_concat(domains->list, list);
|
||
|
||
return class_domain;
|
||
}
|
||
|
||
/* Split up the schedule domain into uniform basic sets,
|
||
* in the sense that each element in a basic set is associated to
|
||
* elements of the same domains, and add the result to domains->list.
|
||
* Do this for that part of the schedule domain that lies in the
|
||
* intersection of "class_domain" and the separate option domain.
|
||
*
|
||
* "class_domain" may or may not include the constraints
|
||
* of the schedule domain, but this does not make a difference
|
||
* since we are going to intersect it with the domain of the inverse schedule.
|
||
* If it includes schedule domain constraints, then they may involve
|
||
* inner dimensions, but we will eliminate them in separation_domain.
|
||
*/
|
||
static int compute_separate_domain(struct isl_codegen_domains *domains,
|
||
__isl_keep isl_set *class_domain)
|
||
{
|
||
isl_space *space;
|
||
isl_set *domain;
|
||
isl_union_map *executed;
|
||
isl_basic_set_list *list;
|
||
int empty;
|
||
|
||
domain = isl_set_copy(domains->option[separate]);
|
||
domain = isl_set_intersect(domain, isl_set_copy(class_domain));
|
||
executed = isl_union_map_copy(domains->executed);
|
||
executed = isl_union_map_intersect_domain(executed,
|
||
isl_union_set_from_set(domain));
|
||
empty = isl_union_map_is_empty(executed);
|
||
if (empty < 0 || empty) {
|
||
isl_union_map_free(executed);
|
||
return empty < 0 ? -1 : 0;
|
||
}
|
||
|
||
space = isl_set_get_space(class_domain);
|
||
domain = separate_schedule_domains(space, executed, domains->build);
|
||
|
||
list = isl_basic_set_list_from_set(domain);
|
||
domains->list = isl_basic_set_list_concat(domains->list, list);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Split up the domain at the current depth into disjoint
|
||
* basic sets for which code should be generated separately
|
||
* for the given separation class domain.
|
||
*
|
||
* If any separation classes have been defined, then "class_domain"
|
||
* is the domain of the current class and does not refer to inner dimensions.
|
||
* Otherwise, "class_domain" is the universe domain.
|
||
*
|
||
* We first make sure that the class domain is disjoint from
|
||
* previously considered class domains.
|
||
*
|
||
* The separate domains can be computed directly from the "class_domain".
|
||
*
|
||
* The unroll, atomic and remainder domains need the constraints
|
||
* from the schedule domain.
|
||
*
|
||
* For unrolling, the actual schedule domain is needed (with divs that
|
||
* may refer to the current dimension) so that stride detection can be
|
||
* performed.
|
||
*
|
||
* For atomic and remainder domains, inner dimensions and divs involving
|
||
* the current dimensions should be eliminated.
|
||
* In case we are working within a separation class, we need to intersect
|
||
* the result with the current "class_domain" to ensure that the domains
|
||
* are disjoint from those generated from other class domains.
|
||
*
|
||
* The domain that has been made atomic may be larger than specified
|
||
* by the user since it needs to be representable as a single basic set.
|
||
* This possibly larger domain is removed from class_domain by
|
||
* compute_atomic_domain. It is computed first so that the extended domain
|
||
* would not overlap with any domains computed before.
|
||
* Similary, the unrolled domains may have some constraints removed and
|
||
* may therefore also be larger than specified by the user.
|
||
*
|
||
* If anything is left after handling separate, unroll and atomic,
|
||
* we split it up into basic sets and append the basic sets to domains->list.
|
||
*/
|
||
static int compute_partial_domains(struct isl_codegen_domains *domains,
|
||
__isl_take isl_set *class_domain)
|
||
{
|
||
isl_basic_set_list *list;
|
||
isl_set *domain;
|
||
|
||
class_domain = isl_set_subtract(class_domain,
|
||
isl_set_copy(domains->done));
|
||
domains->done = isl_set_union(domains->done,
|
||
isl_set_copy(class_domain));
|
||
|
||
class_domain = compute_atomic_domain(domains, class_domain);
|
||
class_domain = compute_unroll_domains(domains, class_domain);
|
||
|
||
domain = isl_set_copy(class_domain);
|
||
|
||
if (compute_separate_domain(domains, domain) < 0)
|
||
goto error;
|
||
domain = isl_set_subtract(domain,
|
||
isl_set_copy(domains->option[separate]));
|
||
|
||
domain = isl_set_intersect(domain,
|
||
isl_set_copy(domains->schedule_domain));
|
||
|
||
domain = isl_ast_build_eliminate(domains->build, domain);
|
||
domain = isl_set_intersect(domain, isl_set_copy(class_domain));
|
||
|
||
domain = isl_set_coalesce(domain);
|
||
domain = isl_set_make_disjoint(domain);
|
||
|
||
list = isl_basic_set_list_from_set(domain);
|
||
domains->list = isl_basic_set_list_concat(domains->list, list);
|
||
|
||
isl_set_free(class_domain);
|
||
|
||
return 0;
|
||
error:
|
||
isl_set_free(domain);
|
||
isl_set_free(class_domain);
|
||
return -1;
|
||
}
|
||
|
||
/* Split up the domain at the current depth into disjoint
|
||
* basic sets for which code should be generated separately
|
||
* for the separation class identified by "pnt".
|
||
*
|
||
* We extract the corresponding class domain from domains->sep_class,
|
||
* eliminate inner dimensions and pass control to compute_partial_domains.
|
||
*/
|
||
static int compute_class_domains(__isl_take isl_point *pnt, void *user)
|
||
{
|
||
struct isl_codegen_domains *domains = user;
|
||
isl_set *class_set;
|
||
isl_set *domain;
|
||
int disjoint;
|
||
|
||
class_set = isl_set_from_point(pnt);
|
||
domain = isl_map_domain(isl_map_intersect_range(
|
||
isl_map_copy(domains->sep_class), class_set));
|
||
domain = isl_ast_build_compute_gist(domains->build, domain);
|
||
domain = isl_ast_build_eliminate(domains->build, domain);
|
||
|
||
disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
|
||
if (disjoint < 0)
|
||
return -1;
|
||
if (disjoint) {
|
||
isl_set_free(domain);
|
||
return 0;
|
||
}
|
||
|
||
return compute_partial_domains(domains, domain);
|
||
}
|
||
|
||
/* Extract the domains at the current depth that should be atomic,
|
||
* separated or unrolled and store them in option.
|
||
*
|
||
* The domains specified by the user might overlap, so we make
|
||
* them disjoint by subtracting earlier domains from later domains.
|
||
*/
|
||
static void compute_domains_init_options(isl_set *option[3],
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
enum isl_ast_build_domain_type type, type2;
|
||
|
||
for (type = atomic; type <= separate; ++type) {
|
||
option[type] = isl_ast_build_get_option_domain(build, type);
|
||
for (type2 = atomic; type2 < type; ++type2)
|
||
option[type] = isl_set_subtract(option[type],
|
||
isl_set_copy(option[type2]));
|
||
}
|
||
|
||
option[unroll] = isl_set_coalesce(option[unroll]);
|
||
option[unroll] = isl_set_make_disjoint(option[unroll]);
|
||
}
|
||
|
||
/* Split up the domain at the current depth into disjoint
|
||
* basic sets for which code should be generated separately,
|
||
* based on the user-specified options.
|
||
* Return the list of disjoint basic sets.
|
||
*
|
||
* There are three kinds of domains that we need to keep track of.
|
||
* - the "schedule domain" is the domain of "executed"
|
||
* - the "class domain" is the domain corresponding to the currrent
|
||
* separation class
|
||
* - the "option domain" is the domain corresponding to one of the options
|
||
* atomic, unroll or separate
|
||
*
|
||
* We first consider the individial values of the separation classes
|
||
* and split up the domain for each of them separately.
|
||
* Finally, we consider the remainder. If no separation classes were
|
||
* specified, then we call compute_partial_domains with the universe
|
||
* "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
|
||
* with inner dimensions removed. We do this because we want to
|
||
* avoid computing the complement of the class domains (i.e., the difference
|
||
* between the universe and domains->done).
|
||
*/
|
||
static __isl_give isl_basic_set_list *compute_domains(
|
||
__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
|
||
{
|
||
struct isl_codegen_domains domains;
|
||
isl_ctx *ctx;
|
||
isl_set *domain;
|
||
isl_union_set *schedule_domain;
|
||
isl_set *classes;
|
||
isl_space *space;
|
||
int n_param;
|
||
enum isl_ast_build_domain_type type;
|
||
int empty;
|
||
|
||
if (!executed)
|
||
return NULL;
|
||
|
||
ctx = isl_union_map_get_ctx(executed);
|
||
domains.list = isl_basic_set_list_alloc(ctx, 0);
|
||
|
||
schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
|
||
domain = isl_set_from_union_set(schedule_domain);
|
||
|
||
compute_domains_init_options(domains.option, build);
|
||
|
||
domains.sep_class = isl_ast_build_get_separation_class(build);
|
||
classes = isl_map_range(isl_map_copy(domains.sep_class));
|
||
n_param = isl_set_dim(classes, isl_dim_param);
|
||
classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
|
||
|
||
space = isl_set_get_space(domain);
|
||
domains.build = build;
|
||
domains.schedule_domain = isl_set_copy(domain);
|
||
domains.executed = executed;
|
||
domains.done = isl_set_empty(space);
|
||
|
||
if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
|
||
domains.list = isl_basic_set_list_free(domains.list);
|
||
isl_set_free(classes);
|
||
|
||
empty = isl_set_is_empty(domains.done);
|
||
if (empty < 0) {
|
||
domains.list = isl_basic_set_list_free(domains.list);
|
||
domain = isl_set_free(domain);
|
||
} else if (empty) {
|
||
isl_set_free(domain);
|
||
domain = isl_set_universe(isl_set_get_space(domains.done));
|
||
} else {
|
||
domain = isl_ast_build_eliminate(build, domain);
|
||
}
|
||
if (compute_partial_domains(&domains, domain) < 0)
|
||
domains.list = isl_basic_set_list_free(domains.list);
|
||
|
||
isl_set_free(domains.schedule_domain);
|
||
isl_set_free(domains.done);
|
||
isl_map_free(domains.sep_class);
|
||
for (type = atomic; type <= separate; ++type)
|
||
isl_set_free(domains.option[type]);
|
||
|
||
return domains.list;
|
||
}
|
||
|
||
/* Generate code for a single component, after shifting (if any)
|
||
* has been applied.
|
||
*
|
||
* We first split up the domain at the current depth into disjoint
|
||
* basic sets based on the user-specified options.
|
||
* Then we generated code for each of them and concatenate the results.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_shifted_component(
|
||
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
|
||
{
|
||
isl_basic_set_list *domain_list;
|
||
isl_ast_graft_list *list = NULL;
|
||
|
||
domain_list = compute_domains(executed, build);
|
||
list = generate_parallel_domains(domain_list, executed, build);
|
||
|
||
isl_basic_set_list_free(domain_list);
|
||
isl_union_map_free(executed);
|
||
isl_ast_build_free(build);
|
||
|
||
return list;
|
||
}
|
||
|
||
struct isl_set_map_pair {
|
||
isl_set *set;
|
||
isl_map *map;
|
||
};
|
||
|
||
/* Given an array "domain" of isl_set_map_pairs and an array "order"
|
||
* of indices into the "domain" array,
|
||
* return the union of the "map" fields of the elements
|
||
* indexed by the first "n" elements of "order".
|
||
*/
|
||
static __isl_give isl_union_map *construct_component_executed(
|
||
struct isl_set_map_pair *domain, int *order, int n)
|
||
{
|
||
int i;
|
||
isl_map *map;
|
||
isl_union_map *executed;
|
||
|
||
map = isl_map_copy(domain[order[0]].map);
|
||
executed = isl_union_map_from_map(map);
|
||
for (i = 1; i < n; ++i) {
|
||
map = isl_map_copy(domain[order[i]].map);
|
||
executed = isl_union_map_add_map(executed, map);
|
||
}
|
||
|
||
return executed;
|
||
}
|
||
|
||
/* Generate code for a single component, after shifting (if any)
|
||
* has been applied.
|
||
*
|
||
* The component inverse schedule is specified as the "map" fields
|
||
* of the elements of "domain" indexed by the first "n" elements of "order".
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
|
||
struct isl_set_map_pair *domain, int *order, int n,
|
||
__isl_take isl_ast_build *build)
|
||
{
|
||
isl_union_map *executed;
|
||
|
||
executed = construct_component_executed(domain, order, n);
|
||
return generate_shifted_component(executed, build);
|
||
}
|
||
|
||
/* Does set dimension "pos" of "set" have an obviously fixed value?
|
||
*/
|
||
static int dim_is_fixed(__isl_keep isl_set *set, int pos)
|
||
{
|
||
int fixed;
|
||
isl_val *v;
|
||
|
||
v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos);
|
||
if (!v)
|
||
return -1;
|
||
fixed = !isl_val_is_nan(v);
|
||
isl_val_free(v);
|
||
|
||
return fixed;
|
||
}
|
||
|
||
/* Given an array "domain" of isl_set_map_pairs and an array "order"
|
||
* of indices into the "domain" array,
|
||
* do all (except for at most one) of the "set" field of the elements
|
||
* indexed by the first "n" elements of "order" have a fixed value
|
||
* at position "depth"?
|
||
*/
|
||
static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
|
||
int *order, int n, int depth)
|
||
{
|
||
int i;
|
||
int non_fixed = -1;
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
int f;
|
||
|
||
f = dim_is_fixed(domain[order[i]].set, depth);
|
||
if (f < 0)
|
||
return -1;
|
||
if (f)
|
||
continue;
|
||
if (non_fixed >= 0)
|
||
return 0;
|
||
non_fixed = i;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Given an array "domain" of isl_set_map_pairs and an array "order"
|
||
* of indices into the "domain" array,
|
||
* eliminate the inner dimensions from the "set" field of the elements
|
||
* indexed by the first "n" elements of "order", provided the current
|
||
* dimension does not have a fixed value.
|
||
*
|
||
* Return the index of the first element in "order" with a corresponding
|
||
* "set" field that does not have an (obviously) fixed value.
|
||
*/
|
||
static int eliminate_non_fixed(struct isl_set_map_pair *domain,
|
||
int *order, int n, int depth, __isl_keep isl_ast_build *build)
|
||
{
|
||
int i;
|
||
int base = -1;
|
||
|
||
for (i = n - 1; i >= 0; --i) {
|
||
int f;
|
||
f = dim_is_fixed(domain[order[i]].set, depth);
|
||
if (f < 0)
|
||
return -1;
|
||
if (f)
|
||
continue;
|
||
domain[order[i]].set = isl_ast_build_eliminate_inner(build,
|
||
domain[order[i]].set);
|
||
base = i;
|
||
}
|
||
|
||
return base;
|
||
}
|
||
|
||
/* Given an array "domain" of isl_set_map_pairs and an array "order"
|
||
* of indices into the "domain" array,
|
||
* find the element of "domain" (amongst those indexed by the first "n"
|
||
* elements of "order") with the "set" field that has the smallest
|
||
* value for the current iterator.
|
||
*
|
||
* Note that the domain with the smallest value may depend on the parameters
|
||
* and/or outer loop dimension. Since the result of this function is only
|
||
* used as heuristic, we only make a reasonable attempt at finding the best
|
||
* domain, one that should work in case a single domain provides the smallest
|
||
* value for the current dimension over all values of the parameters
|
||
* and outer dimensions.
|
||
*
|
||
* In particular, we compute the smallest value of the first domain
|
||
* and replace it by that of any later domain if that later domain
|
||
* has a smallest value that is smaller for at least some value
|
||
* of the parameters and outer dimensions.
|
||
*/
|
||
static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
int i;
|
||
isl_map *min_first;
|
||
int first = 0;
|
||
|
||
min_first = isl_ast_build_map_to_iterator(build,
|
||
isl_set_copy(domain[order[0]].set));
|
||
min_first = isl_map_lexmin(min_first);
|
||
|
||
for (i = 1; i < n; ++i) {
|
||
isl_map *min, *test;
|
||
int empty;
|
||
|
||
min = isl_ast_build_map_to_iterator(build,
|
||
isl_set_copy(domain[order[i]].set));
|
||
min = isl_map_lexmin(min);
|
||
test = isl_map_copy(min);
|
||
test = isl_map_apply_domain(isl_map_copy(min_first), test);
|
||
test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
|
||
empty = isl_map_is_empty(test);
|
||
isl_map_free(test);
|
||
if (empty >= 0 && !empty) {
|
||
isl_map_free(min_first);
|
||
first = i;
|
||
min_first = min;
|
||
} else
|
||
isl_map_free(min);
|
||
|
||
if (empty < 0)
|
||
break;
|
||
}
|
||
|
||
isl_map_free(min_first);
|
||
|
||
return i < n ? -1 : first;
|
||
}
|
||
|
||
/* Construct a shifted inverse schedule based on the original inverse schedule,
|
||
* the stride and the offset.
|
||
*
|
||
* The original inverse schedule is specified as the "map" fields
|
||
* of the elements of "domain" indexed by the first "n" elements of "order".
|
||
*
|
||
* "stride" and "offset" are such that the difference
|
||
* between the values of the current dimension of domain "i"
|
||
* and the values of the current dimension for some reference domain are
|
||
* equal to
|
||
*
|
||
* stride * integer + offset[i]
|
||
*
|
||
* Moreover, 0 <= offset[i] < stride.
|
||
*
|
||
* For each domain, we create a map
|
||
*
|
||
* { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
|
||
*
|
||
* where j refers to the current dimension and the other dimensions are
|
||
* unchanged, and apply this map to the original schedule domain.
|
||
*
|
||
* For example, for the original schedule
|
||
*
|
||
* { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
|
||
*
|
||
* and assuming the offset is 0 for the A domain and 1 for the B domain,
|
||
* we apply the mapping
|
||
*
|
||
* { [j] -> [j, 0] }
|
||
*
|
||
* to the schedule of the "A" domain and the mapping
|
||
*
|
||
* { [j - 1] -> [j, 1] }
|
||
*
|
||
* to the schedule of the "B" domain.
|
||
*
|
||
*
|
||
* Note that after the transformation, the differences between pairs
|
||
* of values of the current dimension over all domains are multiples
|
||
* of stride and that we have therefore exposed the stride.
|
||
*
|
||
*
|
||
* To see that the mapping preserves the lexicographic order,
|
||
* first note that each of the individual maps above preserves the order.
|
||
* If the value of the current iterator is j1 in one domain and j2 in another,
|
||
* then if j1 = j2, we know that the same map is applied to both domains
|
||
* and the order is preserved.
|
||
* Otherwise, let us assume, without loss of generality, that j1 < j2.
|
||
* If c1 >= c2 (with c1 and c2 the corresponding offsets), then
|
||
*
|
||
* j1 - c1 < j2 - c2
|
||
*
|
||
* and the order is preserved.
|
||
* If c1 < c2, then we know
|
||
*
|
||
* 0 <= c2 - c1 < s
|
||
*
|
||
* We also have
|
||
*
|
||
* j2 - j1 = n * s + r
|
||
*
|
||
* with n >= 0 and 0 <= r < s.
|
||
* In other words, r = c2 - c1.
|
||
* If n > 0, then
|
||
*
|
||
* j1 - c1 < j2 - c2
|
||
*
|
||
* If n = 0, then
|
||
*
|
||
* j1 - c1 = j2 - c2
|
||
*
|
||
* and so
|
||
*
|
||
* (j1 - c1, c1) << (j2 - c2, c2)
|
||
*
|
||
* with "<<" the lexicographic order, proving that the order is preserved
|
||
* in all cases.
|
||
*/
|
||
static __isl_give isl_union_map *contruct_shifted_executed(
|
||
struct isl_set_map_pair *domain, int *order, int n,
|
||
__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
|
||
__isl_take isl_ast_build *build)
|
||
{
|
||
int i;
|
||
isl_union_map *executed;
|
||
isl_space *space;
|
||
isl_map *map;
|
||
int depth;
|
||
isl_constraint *c;
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
space = isl_ast_build_get_space(build, 1);
|
||
executed = isl_union_map_empty(isl_space_copy(space));
|
||
space = isl_space_map_from_set(space);
|
||
map = isl_map_identity(isl_space_copy(space));
|
||
map = isl_map_eliminate(map, isl_dim_out, depth, 1);
|
||
map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
|
||
space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
|
||
|
||
c = isl_equality_alloc(isl_local_space_from_space(space));
|
||
c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
|
||
c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
|
||
|
||
for (i = 0; i < n; ++i) {
|
||
isl_map *map_i;
|
||
isl_val *v;
|
||
|
||
v = isl_multi_val_get_val(offset, i);
|
||
if (!v)
|
||
break;
|
||
map_i = isl_map_copy(map);
|
||
map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1,
|
||
isl_val_copy(v));
|
||
v = isl_val_neg(v);
|
||
c = isl_constraint_set_constant_val(c, v);
|
||
map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
|
||
|
||
map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
|
||
map_i);
|
||
executed = isl_union_map_add_map(executed, map_i);
|
||
}
|
||
|
||
isl_constraint_free(c);
|
||
isl_map_free(map);
|
||
|
||
if (i < n)
|
||
executed = isl_union_map_free(executed);
|
||
|
||
return executed;
|
||
}
|
||
|
||
/* Generate code for a single component, after exposing the stride,
|
||
* given that the schedule domain is "shifted strided".
|
||
*
|
||
* The component inverse schedule is specified as the "map" fields
|
||
* of the elements of "domain" indexed by the first "n" elements of "order".
|
||
*
|
||
* The schedule domain being "shifted strided" means that the differences
|
||
* between the values of the current dimension of domain "i"
|
||
* and the values of the current dimension for some reference domain are
|
||
* equal to
|
||
*
|
||
* stride * integer + offset[i]
|
||
*
|
||
* We first look for the domain with the "smallest" value for the current
|
||
* dimension and adjust the offsets such that the offset of the "smallest"
|
||
* domain is equal to zero. The other offsets are reduced modulo stride.
|
||
*
|
||
* Based on this information, we construct a new inverse schedule in
|
||
* contruct_shifted_executed that exposes the stride.
|
||
* Since this involves the introduction of a new schedule dimension,
|
||
* the build needs to be changed accodingly.
|
||
* After computing the AST, the newly introduced dimension needs
|
||
* to be removed again from the list of grafts. We do this by plugging
|
||
* in a mapping that represents the new schedule domain in terms of the
|
||
* old schedule domain.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_shift_component(
|
||
struct isl_set_map_pair *domain, int *order, int n,
|
||
__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
|
||
__isl_take isl_ast_build *build)
|
||
{
|
||
isl_ast_graft_list *list;
|
||
int first;
|
||
int depth;
|
||
isl_ctx *ctx;
|
||
isl_val *val;
|
||
isl_multi_val *mv;
|
||
isl_space *space;
|
||
isl_multi_aff *ma, *zero;
|
||
isl_union_map *executed;
|
||
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
depth = isl_ast_build_get_depth(build);
|
||
|
||
first = first_offset(domain, order, n, build);
|
||
if (first < 0)
|
||
return isl_ast_build_free(build);
|
||
|
||
mv = isl_multi_val_copy(offset);
|
||
val = isl_multi_val_get_val(offset, first);
|
||
val = isl_val_neg(val);
|
||
mv = isl_multi_val_add_val(mv, val);
|
||
mv = isl_multi_val_mod_val(mv, isl_val_copy(stride));
|
||
|
||
executed = contruct_shifted_executed(domain, order, n, stride, mv,
|
||
build);
|
||
space = isl_ast_build_get_space(build, 1);
|
||
space = isl_space_map_from_set(space);
|
||
ma = isl_multi_aff_identity(isl_space_copy(space));
|
||
space = isl_space_from_domain(isl_space_domain(space));
|
||
space = isl_space_add_dims(space, isl_dim_out, 1);
|
||
zero = isl_multi_aff_zero(space);
|
||
ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
|
||
build = isl_ast_build_insert_dim(build, depth + 1);
|
||
list = generate_shifted_component(executed, build);
|
||
|
||
list = isl_ast_graft_list_preimage_multi_aff(list, ma);
|
||
|
||
isl_multi_val_free(mv);
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Generate code for a single component.
|
||
*
|
||
* The component inverse schedule is specified as the "map" fields
|
||
* of the elements of "domain" indexed by the first "n" elements of "order".
|
||
*
|
||
* This function may modify the "set" fields of "domain".
|
||
*
|
||
* Before proceeding with the actual code generation for the component,
|
||
* we first check if there are any "shifted" strides, meaning that
|
||
* the schedule domains of the individual domains are all strided,
|
||
* but that they have different offsets, resulting in the union
|
||
* of schedule domains not being strided anymore.
|
||
*
|
||
* The simplest example is the schedule
|
||
*
|
||
* { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
|
||
*
|
||
* Both schedule domains are strided, but their union is not.
|
||
* This function detects such cases and then rewrites the schedule to
|
||
*
|
||
* { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
|
||
*
|
||
* In the new schedule, the schedule domains have the same offset (modulo
|
||
* the stride), ensuring that the union of schedule domains is also strided.
|
||
*
|
||
*
|
||
* If there is only a single domain in the component, then there is
|
||
* nothing to do. Similarly, if the current schedule dimension has
|
||
* a fixed value for almost all domains then there is nothing to be done.
|
||
* In particular, we need at least two domains where the current schedule
|
||
* dimension does not have a fixed value.
|
||
* Finally, if any of the options refer to the current schedule dimension,
|
||
* then we bail out as well. It would be possible to reformulate the options
|
||
* in terms of the new schedule domain, but that would introduce constraints
|
||
* that separate the domains in the options and that is something we would
|
||
* like to avoid.
|
||
*
|
||
*
|
||
* To see if there is any shifted stride, we look at the differences
|
||
* between the values of the current dimension in pairs of domains
|
||
* for equal values of outer dimensions. These differences should be
|
||
* of the form
|
||
*
|
||
* m x + r
|
||
*
|
||
* with "m" the stride and "r" a constant. Note that we cannot perform
|
||
* this analysis on individual domains as the lower bound in each domain
|
||
* may depend on parameters or outer dimensions and so the current dimension
|
||
* itself may not have a fixed remainder on division by the stride.
|
||
*
|
||
* In particular, we compare the first domain that does not have an
|
||
* obviously fixed value for the current dimension to itself and all
|
||
* other domains and collect the offsets and the gcd of the strides.
|
||
* If the gcd becomes one, then we failed to find shifted strides.
|
||
* If the gcd is zero, then the differences were all fixed, meaning
|
||
* that some domains had non-obviously fixed values for the current dimension.
|
||
* If all the offsets are the same (for those domains that do not have
|
||
* an obviously fixed value for the current dimension), then we do not
|
||
* apply the transformation.
|
||
* If none of the domains were skipped, then there is nothing to do.
|
||
* If some of them were skipped, then if we apply separation, the schedule
|
||
* domain should get split in pieces with a (non-shifted) stride.
|
||
*
|
||
* Otherwise, we apply a shift to expose the stride in
|
||
* generate_shift_component.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_component(
|
||
struct isl_set_map_pair *domain, int *order, int n,
|
||
__isl_take isl_ast_build *build)
|
||
{
|
||
int i, d;
|
||
int depth;
|
||
isl_ctx *ctx;
|
||
isl_map *map;
|
||
isl_set *deltas;
|
||
isl_val *gcd = NULL;
|
||
isl_multi_val *mv;
|
||
int fixed, skip;
|
||
int base;
|
||
isl_ast_graft_list *list;
|
||
int res = 0;
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
|
||
skip = n == 1;
|
||
if (skip >= 0 && !skip)
|
||
skip = at_most_one_non_fixed(domain, order, n, depth);
|
||
if (skip >= 0 && !skip)
|
||
skip = isl_ast_build_options_involve_depth(build);
|
||
if (skip < 0)
|
||
return isl_ast_build_free(build);
|
||
if (skip)
|
||
return generate_shifted_component_from_list(domain,
|
||
order, n, build);
|
||
|
||
base = eliminate_non_fixed(domain, order, n, depth, build);
|
||
if (base < 0)
|
||
return isl_ast_build_free(build);
|
||
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
|
||
mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n));
|
||
|
||
fixed = 1;
|
||
for (i = 0; i < n; ++i) {
|
||
isl_val *r, *m;
|
||
|
||
map = isl_map_from_domain_and_range(
|
||
isl_set_copy(domain[order[base]].set),
|
||
isl_set_copy(domain[order[i]].set));
|
||
for (d = 0; d < depth; ++d)
|
||
map = isl_map_equate(map, isl_dim_in, d,
|
||
isl_dim_out, d);
|
||
deltas = isl_map_deltas(map);
|
||
res = isl_set_dim_residue_class_val(deltas, depth, &m, &r);
|
||
isl_set_free(deltas);
|
||
if (res < 0)
|
||
break;
|
||
|
||
if (i == 0)
|
||
gcd = m;
|
||
else
|
||
gcd = isl_val_gcd(gcd, m);
|
||
if (isl_val_is_one(gcd)) {
|
||
isl_val_free(r);
|
||
break;
|
||
}
|
||
mv = isl_multi_val_set_val(mv, i, r);
|
||
|
||
res = dim_is_fixed(domain[order[i]].set, depth);
|
||
if (res < 0)
|
||
break;
|
||
if (res)
|
||
continue;
|
||
|
||
if (fixed && i > base) {
|
||
isl_val *a, *b;
|
||
a = isl_multi_val_get_val(mv, i);
|
||
b = isl_multi_val_get_val(mv, base);
|
||
if (isl_val_ne(a, b))
|
||
fixed = 0;
|
||
isl_val_free(a);
|
||
isl_val_free(b);
|
||
}
|
||
}
|
||
|
||
if (res < 0 || !gcd) {
|
||
isl_ast_build_free(build);
|
||
list = NULL;
|
||
} else if (i < n || fixed || isl_val_is_zero(gcd)) {
|
||
list = generate_shifted_component_from_list(domain,
|
||
order, n, build);
|
||
} else {
|
||
list = generate_shift_component(domain, order, n, gcd, mv,
|
||
build);
|
||
}
|
||
|
||
isl_val_free(gcd);
|
||
isl_multi_val_free(mv);
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Store both "map" itself and its domain in the
|
||
* structure pointed to by *next and advance to the next array element.
|
||
*/
|
||
static int extract_domain(__isl_take isl_map *map, void *user)
|
||
{
|
||
struct isl_set_map_pair **next = user;
|
||
|
||
(*next)->map = isl_map_copy(map);
|
||
(*next)->set = isl_map_domain(map);
|
||
(*next)++;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Internal data for any_scheduled_after.
|
||
*
|
||
* "depth" is the number of loops that have already been generated
|
||
* "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
|
||
* "domain" is an array of set-map pairs corresponding to the different
|
||
* iteration domains. The set is the schedule domain, i.e., the domain
|
||
* of the inverse schedule, while the map is the inverse schedule itself.
|
||
*/
|
||
struct isl_any_scheduled_after_data {
|
||
int depth;
|
||
int group_coscheduled;
|
||
struct isl_set_map_pair *domain;
|
||
};
|
||
|
||
/* Is any element of domain "i" scheduled after any element of domain "j"
|
||
* (for a common iteration of the first data->depth loops)?
|
||
*
|
||
* data->domain[i].set contains the domain of the inverse schedule
|
||
* for domain "i", i.e., elements in the schedule domain.
|
||
*
|
||
* If data->group_coscheduled is set, then we also return 1 if there
|
||
* is any pair of elements in the two domains that are scheduled together.
|
||
*/
|
||
static int any_scheduled_after(int i, int j, void *user)
|
||
{
|
||
struct isl_any_scheduled_after_data *data = user;
|
||
int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
|
||
int pos;
|
||
|
||
for (pos = data->depth; pos < dim; ++pos) {
|
||
int follows;
|
||
|
||
follows = isl_set_follows_at(data->domain[i].set,
|
||
data->domain[j].set, pos);
|
||
|
||
if (follows < -1)
|
||
return -1;
|
||
if (follows > 0)
|
||
return 1;
|
||
if (follows < 0)
|
||
return 0;
|
||
}
|
||
|
||
return data->group_coscheduled;
|
||
}
|
||
|
||
/* Look for independent components at the current depth and generate code
|
||
* for each component separately. The resulting lists of grafts are
|
||
* merged in an attempt to combine grafts with identical guards.
|
||
*
|
||
* Code for two domains can be generated separately if all the elements
|
||
* of one domain are scheduled before (or together with) all the elements
|
||
* of the other domain. We therefore consider the graph with as nodes
|
||
* the domains and an edge between two nodes if any element of the first
|
||
* node is scheduled after any element of the second node.
|
||
* If the ast_build_group_coscheduled is set, then we also add an edge if
|
||
* there is any pair of elements in the two domains that are scheduled
|
||
* together.
|
||
* Code is then generated (by generate_component)
|
||
* for each of the strongly connected components in this graph
|
||
* in their topological order.
|
||
*
|
||
* Since the test is performed on the domain of the inverse schedules of
|
||
* the different domains, we precompute these domains and store
|
||
* them in data.domain.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_components(
|
||
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
|
||
{
|
||
int i;
|
||
isl_ctx *ctx = isl_ast_build_get_ctx(build);
|
||
int n = isl_union_map_n_map(executed);
|
||
struct isl_any_scheduled_after_data data;
|
||
struct isl_set_map_pair *next;
|
||
struct isl_tarjan_graph *g = NULL;
|
||
isl_ast_graft_list *list = NULL;
|
||
int n_domain = 0;
|
||
|
||
data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
|
||
if (!data.domain)
|
||
goto error;
|
||
n_domain = n;
|
||
|
||
next = data.domain;
|
||
if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
|
||
goto error;
|
||
|
||
if (!build)
|
||
goto error;
|
||
data.depth = isl_ast_build_get_depth(build);
|
||
data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
|
||
g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
|
||
|
||
list = isl_ast_graft_list_alloc(ctx, 0);
|
||
|
||
i = 0;
|
||
while (list && n) {
|
||
isl_ast_graft_list *list_c;
|
||
int first = i;
|
||
|
||
if (g->order[i] == -1)
|
||
isl_die(ctx, isl_error_internal, "cannot happen",
|
||
goto error);
|
||
++i; --n;
|
||
while (g->order[i] != -1) {
|
||
++i; --n;
|
||
}
|
||
|
||
list_c = generate_component(data.domain,
|
||
g->order + first, i - first,
|
||
isl_ast_build_copy(build));
|
||
list = isl_ast_graft_list_merge(list, list_c, build);
|
||
|
||
++i;
|
||
}
|
||
|
||
if (0)
|
||
error: list = isl_ast_graft_list_free(list);
|
||
isl_tarjan_graph_free(g);
|
||
for (i = 0; i < n_domain; ++i) {
|
||
isl_map_free(data.domain[i].map);
|
||
isl_set_free(data.domain[i].set);
|
||
}
|
||
free(data.domain);
|
||
isl_union_map_free(executed);
|
||
isl_ast_build_free(build);
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Generate code for the next level (and all inner levels).
|
||
*
|
||
* If "executed" is empty, i.e., no code needs to be generated,
|
||
* then we return an empty list.
|
||
*
|
||
* If we have already generated code for all loop levels, then we pass
|
||
* control to generate_inner_level.
|
||
*
|
||
* If "executed" lives in a single space, i.e., if code needs to be
|
||
* generated for a single domain, then there can only be a single
|
||
* component and we go directly to generate_shifted_component.
|
||
* Otherwise, we call generate_components to detect the components
|
||
* and to call generate_component on each of them separately.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_next_level(
|
||
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
|
||
{
|
||
int depth;
|
||
|
||
if (!build || !executed)
|
||
goto error;
|
||
|
||
if (isl_union_map_is_empty(executed)) {
|
||
isl_ctx *ctx = isl_ast_build_get_ctx(build);
|
||
isl_union_map_free(executed);
|
||
isl_ast_build_free(build);
|
||
return isl_ast_graft_list_alloc(ctx, 0);
|
||
}
|
||
|
||
depth = isl_ast_build_get_depth(build);
|
||
if (depth >= isl_set_dim(build->domain, isl_dim_set))
|
||
return generate_inner_level(executed, build);
|
||
|
||
if (isl_union_map_n_map(executed) == 1)
|
||
return generate_shifted_component(executed, build);
|
||
|
||
return generate_components(executed, build);
|
||
error:
|
||
isl_union_map_free(executed);
|
||
isl_ast_build_free(build);
|
||
return NULL;
|
||
}
|
||
|
||
/* Internal data structure used by isl_ast_build_ast_from_schedule.
|
||
* internal, executed and build are the inputs to generate_code.
|
||
* list collects the output.
|
||
*/
|
||
struct isl_generate_code_data {
|
||
int internal;
|
||
isl_union_map *executed;
|
||
isl_ast_build *build;
|
||
|
||
isl_ast_graft_list *list;
|
||
};
|
||
|
||
/* Given an inverse schedule in terms of the external build schedule, i.e.,
|
||
*
|
||
* [E -> S] -> D
|
||
*
|
||
* with E the external build schedule and S the additional schedule "space",
|
||
* reformulate the inverse schedule in terms of the internal schedule domain,
|
||
* i.e., return
|
||
*
|
||
* [I -> S] -> D
|
||
*
|
||
* We first obtain a mapping
|
||
*
|
||
* I -> E
|
||
*
|
||
* take the inverse and the product with S -> S, resulting in
|
||
*
|
||
* [I -> S] -> [E -> S]
|
||
*
|
||
* Applying the map to the input produces the desired result.
|
||
*/
|
||
static __isl_give isl_union_map *internal_executed(
|
||
__isl_take isl_union_map *executed, __isl_keep isl_space *space,
|
||
__isl_keep isl_ast_build *build)
|
||
{
|
||
isl_map *id, *proj;
|
||
|
||
proj = isl_ast_build_get_schedule_map(build);
|
||
proj = isl_map_reverse(proj);
|
||
space = isl_space_map_from_set(isl_space_copy(space));
|
||
id = isl_map_identity(space);
|
||
proj = isl_map_product(proj, id);
|
||
executed = isl_union_map_apply_domain(executed,
|
||
isl_union_map_from_map(proj));
|
||
return executed;
|
||
}
|
||
|
||
/* Generate an AST that visits the elements in the range of data->executed
|
||
* in the relative order specified by the corresponding image element(s)
|
||
* for those image elements that belong to "set".
|
||
* Add the result to data->list.
|
||
*
|
||
* The caller ensures that "set" is a universe domain.
|
||
* "space" is the space of the additional part of the schedule.
|
||
* It is equal to the space of "set" if build->domain is parametric.
|
||
* Otherwise, it is equal to the range of the wrapped space of "set".
|
||
*
|
||
* If the build space is not parametric and if isl_ast_build_ast_from_schedule
|
||
* was called from an outside user (data->internal not set), then
|
||
* the (inverse) schedule refers to the external build domain and needs to
|
||
* be transformed to refer to the internal build domain.
|
||
*
|
||
* The build is extended to include the additional part of the schedule.
|
||
* If the original build space was not parametric, then the options
|
||
* in data->build refer only to the additional part of the schedule
|
||
* and they need to be adjusted to refer to the complete AST build
|
||
* domain.
|
||
*
|
||
* After having adjusted inverse schedule and build, we start generating
|
||
* code with the outer loop of the current code generation
|
||
* in generate_next_level.
|
||
*
|
||
* If the original build space was not parametric, we undo the embedding
|
||
* on the resulting isl_ast_node_list so that it can be used within
|
||
* the outer AST build.
|
||
*/
|
||
static int generate_code_in_space(struct isl_generate_code_data *data,
|
||
__isl_take isl_set *set, __isl_take isl_space *space)
|
||
{
|
||
isl_union_map *executed;
|
||
isl_ast_build *build;
|
||
isl_ast_graft_list *list;
|
||
int embed;
|
||
|
||
executed = isl_union_map_copy(data->executed);
|
||
executed = isl_union_map_intersect_domain(executed,
|
||
isl_union_set_from_set(set));
|
||
|
||
embed = !isl_set_is_params(data->build->domain);
|
||
if (embed && !data->internal)
|
||
executed = internal_executed(executed, space, data->build);
|
||
|
||
build = isl_ast_build_copy(data->build);
|
||
build = isl_ast_build_product(build, space);
|
||
|
||
list = generate_next_level(executed, build);
|
||
|
||
list = isl_ast_graft_list_unembed(list, embed);
|
||
|
||
data->list = isl_ast_graft_list_concat(data->list, list);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Generate an AST that visits the elements in the range of data->executed
|
||
* in the relative order specified by the corresponding domain element(s)
|
||
* for those domain elements that belong to "set".
|
||
* Add the result to data->list.
|
||
*
|
||
* The caller ensures that "set" is a universe domain.
|
||
*
|
||
* If the build space S is not parametric, then the space of "set"
|
||
* need to be a wrapped relation with S as domain. That is, it needs
|
||
* to be of the form
|
||
*
|
||
* [S -> T]
|
||
*
|
||
* Check this property and pass control to generate_code_in_space
|
||
* passing along T.
|
||
* If the build space is not parametric, then T is the space of "set".
|
||
*/
|
||
static int generate_code_set(__isl_take isl_set *set, void *user)
|
||
{
|
||
struct isl_generate_code_data *data = user;
|
||
isl_space *space, *build_space;
|
||
int is_domain;
|
||
|
||
space = isl_set_get_space(set);
|
||
|
||
if (isl_set_is_params(data->build->domain))
|
||
return generate_code_in_space(data, set, space);
|
||
|
||
build_space = isl_ast_build_get_space(data->build, data->internal);
|
||
space = isl_space_unwrap(space);
|
||
is_domain = isl_space_is_domain(build_space, space);
|
||
isl_space_free(build_space);
|
||
space = isl_space_range(space);
|
||
|
||
if (is_domain < 0)
|
||
goto error;
|
||
if (!is_domain)
|
||
isl_die(isl_set_get_ctx(set), isl_error_invalid,
|
||
"invalid nested schedule space", goto error);
|
||
|
||
return generate_code_in_space(data, set, space);
|
||
error:
|
||
isl_set_free(set);
|
||
isl_space_free(space);
|
||
return -1;
|
||
}
|
||
|
||
/* Generate an AST that visits the elements in the range of "executed"
|
||
* in the relative order specified by the corresponding domain element(s).
|
||
*
|
||
* "build" is an isl_ast_build that has either been constructed by
|
||
* isl_ast_build_from_context or passed to a callback set by
|
||
* isl_ast_build_set_create_leaf.
|
||
* In the first case, the space of the isl_ast_build is typically
|
||
* a parametric space, although this is currently not enforced.
|
||
* In the second case, the space is never a parametric space.
|
||
* If the space S is not parametric, then the domain space(s) of "executed"
|
||
* need to be wrapped relations with S as domain.
|
||
*
|
||
* If the domain of "executed" consists of several spaces, then an AST
|
||
* is generated for each of them (in arbitrary order) and the results
|
||
* are concatenated.
|
||
*
|
||
* If "internal" is set, then the domain "S" above refers to the internal
|
||
* schedule domain representation. Otherwise, it refers to the external
|
||
* representation, as returned by isl_ast_build_get_schedule_space.
|
||
*
|
||
* We essentially run over all the spaces in the domain of "executed"
|
||
* and call generate_code_set on each of them.
|
||
*/
|
||
static __isl_give isl_ast_graft_list *generate_code(
|
||
__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
|
||
int internal)
|
||
{
|
||
isl_ctx *ctx;
|
||
struct isl_generate_code_data data = { 0 };
|
||
isl_space *space;
|
||
isl_union_set *schedule_domain;
|
||
isl_union_map *universe;
|
||
|
||
if (!build)
|
||
goto error;
|
||
space = isl_ast_build_get_space(build, 1);
|
||
space = isl_space_align_params(space,
|
||
isl_union_map_get_space(executed));
|
||
space = isl_space_align_params(space,
|
||
isl_union_map_get_space(build->options));
|
||
build = isl_ast_build_align_params(build, isl_space_copy(space));
|
||
executed = isl_union_map_align_params(executed, space);
|
||
if (!executed || !build)
|
||
goto error;
|
||
|
||
ctx = isl_ast_build_get_ctx(build);
|
||
|
||
data.internal = internal;
|
||
data.executed = executed;
|
||
data.build = build;
|
||
data.list = isl_ast_graft_list_alloc(ctx, 0);
|
||
|
||
universe = isl_union_map_universe(isl_union_map_copy(executed));
|
||
schedule_domain = isl_union_map_domain(universe);
|
||
if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
|
||
&data) < 0)
|
||
data.list = isl_ast_graft_list_free(data.list);
|
||
|
||
isl_union_set_free(schedule_domain);
|
||
isl_union_map_free(executed);
|
||
|
||
isl_ast_build_free(build);
|
||
return data.list;
|
||
error:
|
||
isl_union_map_free(executed);
|
||
isl_ast_build_free(build);
|
||
return NULL;
|
||
}
|
||
|
||
/* Generate an AST that visits the elements in the domain of "schedule"
|
||
* in the relative order specified by the corresponding image element(s).
|
||
*
|
||
* "build" is an isl_ast_build that has either been constructed by
|
||
* isl_ast_build_from_context or passed to a callback set by
|
||
* isl_ast_build_set_create_leaf.
|
||
* In the first case, the space of the isl_ast_build is typically
|
||
* a parametric space, although this is currently not enforced.
|
||
* In the second case, the space is never a parametric space.
|
||
* If the space S is not parametric, then the range space(s) of "schedule"
|
||
* need to be wrapped relations with S as domain.
|
||
*
|
||
* If the range of "schedule" consists of several spaces, then an AST
|
||
* is generated for each of them (in arbitrary order) and the results
|
||
* are concatenated.
|
||
*
|
||
* We first initialize the local copies of the relevant options.
|
||
* We do this here rather than when the isl_ast_build is created
|
||
* because the options may have changed between the construction
|
||
* of the isl_ast_build and the call to isl_generate_code.
|
||
*
|
||
* The main computation is performed on an inverse schedule (with
|
||
* the schedule domain in the domain and the elements to be executed
|
||
* in the range) called "executed".
|
||
*/
|
||
__isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
|
||
__isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
|
||
{
|
||
isl_ast_graft_list *list;
|
||
isl_ast_node *node;
|
||
isl_union_map *executed;
|
||
|
||
build = isl_ast_build_copy(build);
|
||
build = isl_ast_build_set_single_valued(build, 0);
|
||
executed = isl_union_map_reverse(schedule);
|
||
list = generate_code(executed, isl_ast_build_copy(build), 0);
|
||
node = isl_ast_node_from_graft_list(list, build);
|
||
isl_ast_build_free(build);
|
||
|
||
return node;
|
||
}
|