buildtools/ppl/tests/Box/interval1.cc
Jerome Duval 5873a060ca imported PPL 0.11.1 and CLooG 0.18.0.
* these are dependencies for gcc 4 Graphite engine build.
* CLooG 0.18.0 includes ISL 0.11.1 which is the backend that the build script enables.
* PPL is needed by GCC build even if it isn't the chosen backend.
2013-04-06 15:10:34 +02:00

219 lines
5.7 KiB
C++

/* Test Box::add_space_dimensions_and_embed():
we add two variables to a Box.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include "ppl_test.hh"
#include <complex>
#include <cmath>
#include <cstdio>
namespace {
template <typename F>
struct My_Interval {
struct Floating_Point_Real_Interval_Info_Policy {
const_bool_nodef(store_special, false);
const_bool_nodef(store_open, true);
const_bool_nodef(cache_empty, true);
const_bool_nodef(cache_singleton, true);
const_bool_nodef(cache_normalized, false);
const_int_nodef(next_bit, 0);
const_bool_nodef(may_be_empty, false);
const_bool_nodef(may_contain_infinity, false);
const_bool_nodef(check_empty_result, false);
const_bool_nodef(check_inexact, false);
};
typedef Interval_Restriction_None
<Interval_Info_Bitset<unsigned int,
Floating_Point_Real_Interval_Info_Policy> >
Floating_Point_Real_Interval_Info;
typedef Interval<F, Floating_Point_Real_Interval_Info> interval_type;
};
template<typename F>
bool
test01() {
typename My_Interval<F>::interval_type x;
x = 2;
typename My_Interval<F>::interval_type two;
two = 2;
typename My_Interval<F>::interval_type y;
nout << "x = " << x << endl;
for (int i = 0; i <= 100; ++i) {
// Compute x = (x+(2/x))/2.
y = two;
y /= x;
x += y;
x /= two;
nout << "x = " << x << endl;
}
typename My_Interval<F>::interval_type z(1.41420757770538330078125);
z.join_assign(1.41421949863433837890625);
nout << "z = " << x << endl;
return !x.is_empty()
#if PPL_CXX_SUPPORTS_IEEE_INEXACT_FLAG
&& x.is_disjoint_from(1.41420757770538330078125)
&& x.is_disjoint_from(1.41421949863433837890625)
&& z.strictly_contains(x)
#else
&& x.is_topologically_closed()
&& z.contains(x)
#endif
&& !x.contains_integer_point();
}
// Note: this function works both with interval and native floating
// point types.
template <typename N>
void
polynomial_evaluate(const std::vector<N>& P,
const std::complex<N>& x,
std::complex<N>& P_x) {
// Note: the coefficient of the leading term is implicitly 1.
P_x = std::complex<N>(N(1.0), N(0.0));
for (int i = P.size(); i >= 1; --i)
P_x = P_x*x + P[i-1];
}
// Note: this function works both with interval and native floating
// point types.
template <typename N>
void
solve(const std::vector<N>& P,
std::vector<std::complex<N> >& roots) {
const int degree = P.size();
if (degree < 1)
throw std::invalid_argument("the polynomial must have degree at least 1");
// Initial estimates are given by roots of unity.
std::vector<std::complex<N> > x(5);
double theta = 2*M_PI/degree;
for (int i = 0; i < degree; ++i)
x[i] = std::complex<N>(N(cos(i*theta)),
N(sin(i*theta)));
for (int iteration = 0; iteration < 50; ++iteration) {
for (int i = 0; i < degree; ++i)
nout << "x[" << i << "] = " << x[i] << endl;
for (int i = 0; i < degree; ++i) {
std::complex<N> P_x_i;
polynomial_evaluate(P, x[i], P_x_i);
std::complex<N> d(N(1.0), N(0.0));
for (int j = 0; j < degree; ++j)
if (i != j)
d *= (x[i] - x[j]);
P_x_i /= d;
x[i] -= P_x_i;
}
}
roots.resize(degree+1);
for (int i = 0; i < degree; ++i)
roots[i] = x[i];
}
template <typename N>
bool test02() {
std::vector<N> P(4);
// x^4 + 5*x^3 + 7*x^2 + 134*x + 1
P[3] = 5;
P[2] = 7;
P[1] = 134;
P[0] = 1;
std::vector<std::complex<N> > roots;
solve(P, roots);
return true;
}
template <typename N>
bool test03() {
std::vector<N> P(2);
// x^2 - 1
P[1] = 0;
P[0] = -1;
std::vector<std::complex<N> > roots;
solve(P, roots);
return true;
}
template <typename N>
bool test04() {
std::vector<N> P(2);
// x^2 - 1
P[1] = 0;
P[0] = -1;
for (double d = 0.0; d <= 10.0; d += 1.0) {
std::complex<N> P_x_i;
polynomial_evaluate(P,
std::complex<N>(N(d), N(0.0)),
P_x_i);
nout << d << " " << P_x_i << endl;
}
return true;
}
template<typename F>
bool
test05() {
typename My_Interval<F>::interval_type x("123.00123");
nout << "x = " << x << endl;
return true;
}
} // namespace
BEGIN_MAIN
#if PPL_SUPPORTED_FLOAT
DO_TEST(test01<float>);
DO_TEST(test02<float>);
DO_TEST(test03<float>);
DO_TEST(test04<float>);
DO_TEST(test05<float>);
#endif // PPL_SUPPORTED_FLOAT
#if PPL_SUPPORTED_DOUBLE
DO_TEST(test01<double>);
DO_TEST(test02<double>);
DO_TEST(test03<double>);
DO_TEST(test04<double>);
DO_TEST(test05<double>);
#endif // PPL_SUPPORTED_DOUBLE
#if PPL_SUPPORTED_LONG_DOUBLE
DO_TEST(test01<long double>);
DO_TEST(test02<long double>);
DO_TEST(test03<long double>);
DO_TEST(test04<long double>);
DO_TEST(test05<long double>);
#endif // PPL_SUPPORTED_LONG_DOUBLE
END_MAIN