mirror of
https://review.haiku-os.org/buildtools
synced 2025-02-07 14:34:51 +01:00
* these are dependencies for gcc 4 Graphite engine build. * CLooG 0.18.0 includes ISL 0.11.1 which is the backend that the build script enables. * PPL is needed by GCC build even if it isn't the chosen backend.
219 lines
5.7 KiB
C++
219 lines
5.7 KiB
C++
/* Test Box::add_space_dimensions_and_embed():
|
|
we add two variables to a Box.
|
|
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
|
|
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
|
|
|
|
This file is part of the Parma Polyhedra Library (PPL).
|
|
|
|
The PPL is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The PPL is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
|
|
|
|
For the most up-to-date information see the Parma Polyhedra Library
|
|
site: http://www.cs.unipr.it/ppl/ . */
|
|
|
|
#include "ppl_test.hh"
|
|
#include <complex>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
|
|
namespace {
|
|
|
|
template <typename F>
|
|
struct My_Interval {
|
|
|
|
struct Floating_Point_Real_Interval_Info_Policy {
|
|
const_bool_nodef(store_special, false);
|
|
const_bool_nodef(store_open, true);
|
|
const_bool_nodef(cache_empty, true);
|
|
const_bool_nodef(cache_singleton, true);
|
|
const_bool_nodef(cache_normalized, false);
|
|
const_int_nodef(next_bit, 0);
|
|
const_bool_nodef(may_be_empty, false);
|
|
const_bool_nodef(may_contain_infinity, false);
|
|
const_bool_nodef(check_empty_result, false);
|
|
const_bool_nodef(check_inexact, false);
|
|
};
|
|
|
|
typedef Interval_Restriction_None
|
|
<Interval_Info_Bitset<unsigned int,
|
|
Floating_Point_Real_Interval_Info_Policy> >
|
|
Floating_Point_Real_Interval_Info;
|
|
|
|
typedef Interval<F, Floating_Point_Real_Interval_Info> interval_type;
|
|
};
|
|
|
|
template<typename F>
|
|
bool
|
|
test01() {
|
|
typename My_Interval<F>::interval_type x;
|
|
x = 2;
|
|
typename My_Interval<F>::interval_type two;
|
|
two = 2;
|
|
typename My_Interval<F>::interval_type y;
|
|
|
|
nout << "x = " << x << endl;
|
|
|
|
for (int i = 0; i <= 100; ++i) {
|
|
// Compute x = (x+(2/x))/2.
|
|
y = two;
|
|
y /= x;
|
|
x += y;
|
|
x /= two;
|
|
nout << "x = " << x << endl;
|
|
}
|
|
|
|
typename My_Interval<F>::interval_type z(1.41420757770538330078125);
|
|
z.join_assign(1.41421949863433837890625);
|
|
|
|
nout << "z = " << x << endl;
|
|
|
|
return !x.is_empty()
|
|
#if PPL_CXX_SUPPORTS_IEEE_INEXACT_FLAG
|
|
&& x.is_disjoint_from(1.41420757770538330078125)
|
|
&& x.is_disjoint_from(1.41421949863433837890625)
|
|
&& z.strictly_contains(x)
|
|
#else
|
|
&& x.is_topologically_closed()
|
|
&& z.contains(x)
|
|
#endif
|
|
&& !x.contains_integer_point();
|
|
}
|
|
|
|
// Note: this function works both with interval and native floating
|
|
// point types.
|
|
template <typename N>
|
|
void
|
|
polynomial_evaluate(const std::vector<N>& P,
|
|
const std::complex<N>& x,
|
|
std::complex<N>& P_x) {
|
|
// Note: the coefficient of the leading term is implicitly 1.
|
|
P_x = std::complex<N>(N(1.0), N(0.0));
|
|
for (int i = P.size(); i >= 1; --i)
|
|
P_x = P_x*x + P[i-1];
|
|
}
|
|
|
|
// Note: this function works both with interval and native floating
|
|
// point types.
|
|
template <typename N>
|
|
void
|
|
solve(const std::vector<N>& P,
|
|
std::vector<std::complex<N> >& roots) {
|
|
const int degree = P.size();
|
|
if (degree < 1)
|
|
throw std::invalid_argument("the polynomial must have degree at least 1");
|
|
|
|
// Initial estimates are given by roots of unity.
|
|
std::vector<std::complex<N> > x(5);
|
|
double theta = 2*M_PI/degree;
|
|
for (int i = 0; i < degree; ++i)
|
|
x[i] = std::complex<N>(N(cos(i*theta)),
|
|
N(sin(i*theta)));
|
|
|
|
for (int iteration = 0; iteration < 50; ++iteration) {
|
|
for (int i = 0; i < degree; ++i)
|
|
nout << "x[" << i << "] = " << x[i] << endl;
|
|
for (int i = 0; i < degree; ++i) {
|
|
std::complex<N> P_x_i;
|
|
polynomial_evaluate(P, x[i], P_x_i);
|
|
std::complex<N> d(N(1.0), N(0.0));
|
|
for (int j = 0; j < degree; ++j)
|
|
if (i != j)
|
|
d *= (x[i] - x[j]);
|
|
P_x_i /= d;
|
|
x[i] -= P_x_i;
|
|
}
|
|
}
|
|
roots.resize(degree+1);
|
|
for (int i = 0; i < degree; ++i)
|
|
roots[i] = x[i];
|
|
}
|
|
|
|
template <typename N>
|
|
bool test02() {
|
|
std::vector<N> P(4);
|
|
// x^4 + 5*x^3 + 7*x^2 + 134*x + 1
|
|
P[3] = 5;
|
|
P[2] = 7;
|
|
P[1] = 134;
|
|
P[0] = 1;
|
|
std::vector<std::complex<N> > roots;
|
|
solve(P, roots);
|
|
return true;
|
|
}
|
|
|
|
template <typename N>
|
|
bool test03() {
|
|
std::vector<N> P(2);
|
|
// x^2 - 1
|
|
P[1] = 0;
|
|
P[0] = -1;
|
|
std::vector<std::complex<N> > roots;
|
|
solve(P, roots);
|
|
return true;
|
|
}
|
|
|
|
template <typename N>
|
|
bool test04() {
|
|
std::vector<N> P(2);
|
|
// x^2 - 1
|
|
P[1] = 0;
|
|
P[0] = -1;
|
|
for (double d = 0.0; d <= 10.0; d += 1.0) {
|
|
std::complex<N> P_x_i;
|
|
polynomial_evaluate(P,
|
|
std::complex<N>(N(d), N(0.0)),
|
|
P_x_i);
|
|
nout << d << " " << P_x_i << endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<typename F>
|
|
bool
|
|
test05() {
|
|
typename My_Interval<F>::interval_type x("123.00123");
|
|
nout << "x = " << x << endl;
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
BEGIN_MAIN
|
|
|
|
#if PPL_SUPPORTED_FLOAT
|
|
DO_TEST(test01<float>);
|
|
DO_TEST(test02<float>);
|
|
DO_TEST(test03<float>);
|
|
DO_TEST(test04<float>);
|
|
DO_TEST(test05<float>);
|
|
#endif // PPL_SUPPORTED_FLOAT
|
|
|
|
#if PPL_SUPPORTED_DOUBLE
|
|
DO_TEST(test01<double>);
|
|
DO_TEST(test02<double>);
|
|
DO_TEST(test03<double>);
|
|
DO_TEST(test04<double>);
|
|
DO_TEST(test05<double>);
|
|
#endif // PPL_SUPPORTED_DOUBLE
|
|
|
|
#if PPL_SUPPORTED_LONG_DOUBLE
|
|
DO_TEST(test01<long double>);
|
|
DO_TEST(test02<long double>);
|
|
DO_TEST(test03<long double>);
|
|
DO_TEST(test04<long double>);
|
|
DO_TEST(test05<long double>);
|
|
#endif // PPL_SUPPORTED_LONG_DOUBLE
|
|
|
|
END_MAIN
|