buildtools/ppl/tests/MIP_Problem/exceptions1.cc
Jerome Duval 5873a060ca imported PPL 0.11.1 and CLooG 0.18.0.
* these are dependencies for gcc 4 Graphite engine build.
* CLooG 0.18.0 includes ISL 0.11.1 which is the backend that the build script enables.
* PPL is needed by GCC build even if it isn't the chosen backend.
2013-04-06 15:10:34 +02:00

509 lines
11 KiB
C++

/* Test that the right exceptions are thrown in case of incorrect uses.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include "ppl_test.hh"
namespace {
bool
test01() {
Variable A(0);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(A > -6);
MIP_Problem mip(cs.space_dimension());
try {
// This tries to build an invalid MIP_Problem object: the feasible
// region can not be defined using strict inequalities.
mip.add_constraints(cs);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test02() {
Variable A(0);
MIP_Problem mip;
try {
// This tries to build an invalid MIP_Problem object: the space dimension
// of the objective function can not be greater than the space dimension
// of the feasible region.
mip.set_objective_function(A);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test03() {
Variable A(0);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(A <= 0);
MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION);
try {
// We cannot extract a feasible point from an unsatisfiable MIP_Problem.
Generator fp = mip.feasible_point();
}
catch (std::domain_error& e) {
nout << "domain_error: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test04() {
Variable A(0);
Constraint_System cs;
cs.insert(A >= 6);
MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION);
try {
// We cannot extract an optimizing point from an unbounded MIP_Problem.
Generator fp = mip.optimizing_point();
}
catch (std::domain_error& e) {
nout << "domain_error: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test05() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION);
Generator p = point(A + B);
Coefficient num;
Coefficient den;
try {
// This tries to evaluate the objective function on a space-dimension
// incompatible generator.
mip.evaluate_objective_function(p, num, den);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test06() {
Variable A(0);
Constraint_System cs;
cs.insert(A >= 6);
MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION);
Generator r = ray(A);
Coefficient num;
Coefficient den;
try {
// This tries to evaluate the objective function on a ray.
mip.evaluate_objective_function(r, num, den);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test07() {
try {
// This tries to overflow the maximum space dimension.
MIP_Problem mip(MIP_Problem::max_space_dimension() + 1);
}
catch (std::length_error& e) {
nout << "length_error: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test08() {
MIP_Problem mip(1);
try {
// This tries to overflow the maximum space dimension.
mip.add_space_dimensions_and_embed(MIP_Problem::max_space_dimension());
}
catch (std::length_error& e) {
nout << "length_error: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test09() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(A <= 0);
dimension_type cs_space_dimension = cs.space_dimension();
Linear_Expression cost(A + B);
try {
// This tries to make the cost function incompatible with the MIP_Problem
// space dimension.
MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test10() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(A <= 0);
Linear_Expression cost(A + B);
try {
// This tries to overflow the maximum space dimension.
MIP_Problem mip(MIP_Problem::max_space_dimension() + 1,
cs, cost, MAXIMIZATION);
}
catch (std::length_error& e) {
nout << "length_error: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test11() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(A < 0);
dimension_type cs_space_dimension = cs.space_dimension();
Linear_Expression cost(A + B);
try {
// This tries to build an MIP_Problem with strict inequalities.
MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test12() {
Variable A(0);
Variable B(1);
Variable C(2);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B <= 0);
dimension_type cs_space_dimension = cs.space_dimension();
Linear_Expression cost(A + B);
MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION);
try {
// This tries to add Constraint that exceeds the MIP_Problem
// space dimension.
mip.add_constraint(C >= 0);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test13() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B <= 0);
dimension_type cs_space_dimension = cs.space_dimension();
Linear_Expression cost(A + B);
MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION);
try {
// This tries to add a strict inequality.
mip.add_constraint(B > 0);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test14() {
Variable A(0);
Variable B(1);
Variable C(2);
Variable D(3);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B <= 0);
dimension_type cs_space_dimension = cs.space_dimension();
Linear_Expression cost(A + B);
Constraint_System incompatible_cs;
incompatible_cs.insert(C >= 6);
incompatible_cs.insert(D <= 0);
MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION);
try {
// Adds a Constraint_System that exceeds the space dimension of the
// MIP_Problem.
mip.add_constraints(incompatible_cs);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test15() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B <= 0);
dimension_type cs_space_dimension = cs.space_dimension();
Linear_Expression cost(A + B);
Constraint_System incompatible_cs;
incompatible_cs.insert(A >= 10);
incompatible_cs.insert(B < 22 );
MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION);
try {
// This tries to add Constraint_System that contains a strict inequality.
mip.add_constraints(incompatible_cs);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test16() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B <= 0);
Linear_Expression cost(A + B);
try {
// This tries to overflow the maximum space dimension.
MIP_Problem mip(MIP_Problem::max_space_dimension() + 1,
cs.begin(), cs.end(),
A + B, MAXIMIZATION);
}
catch (std::length_error& e) {
nout << "length_error: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test17() {
Variable A(0);
Variable B(1);
Variable C(2);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B <= 0);
Linear_Expression cost(A + B);
try {
// This tries to let exceed the objective function space dimension.
MIP_Problem mip(cs.space_dimension(),
cs.begin(), cs.end(),
A + B + C, MAXIMIZATION);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test18() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B < 0);
Linear_Expression cost(A + B);
try {
// This tries to build an MIP_Problem with strict inequalities..
MIP_Problem mip(cs.space_dimension(), cs.begin(), cs.end(),
A + B, MAXIMIZATION);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
bool
test19() {
Variable A(0);
Variable B(1);
Constraint_System cs;
cs.insert(A >= 6);
cs.insert(B <= 0);
Linear_Expression cost(A + B);
try {
// This tries to build an MIP_Problem with a wrong space dimension.
MIP_Problem mip(cs.space_dimension() - 1, cs.begin(), cs.end(),
A + B, MAXIMIZATION);
}
catch (std::invalid_argument& e) {
nout << "invalid_argument: " << e.what() << endl << endl;
return true;
}
catch (...) {
}
return false;
}
} // namespace
BEGIN_MAIN
DO_TEST(test01);
DO_TEST(test02);
DO_TEST(test03);
DO_TEST(test04);
DO_TEST(test05);
DO_TEST(test06);
DO_TEST(test07);
DO_TEST(test08);
DO_TEST(test09);
DO_TEST(test10);
DO_TEST(test11);
DO_TEST(test12);
DO_TEST(test13);
DO_TEST(test14);
DO_TEST(test15);
DO_TEST(test16);
DO_TEST(test17);
DO_TEST(test18);
DO_TEST(test19);
END_MAIN