buildtools/gcc/mpfr/tests/tset_ld.c
Fredrik Holmqvist 974e12c1f0 Upgrade mpfr to 4.0.1
Old version was 3.1.2 and is quite old: 2013-03-13
A lot has happened since then 4.0.1 is from 2018-02-07
2018-07-04 20:21:01 +02:00

648 lines
17 KiB
C

/* Test file for mpfr_set_ld and mpfr_get_ld.
Copyright 2002-2018 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <float.h>
#ifdef WITH_FPU_CONTROL
#include <fpu_control.h>
#endif
#include "mpfr-test.h"
static void
check_gcc33_bug (void)
{
volatile long double x;
x = (long double) 9007199254740992.0 + 1.0;
if (x != 0.0)
return; /* OK */
printf
("Detected optimization bug of gcc 3.3 on Alpha concerning long double\n"
"comparisons; set_ld tests might fail (set_ld won't work correctly).\n"
"See https://gcc.gnu.org/ml/gcc-bugs/2003-10/msg00853.html for more\n"
"information.\n");
}
static int
Isnan_ld (long double d)
{
/* Do not convert d to double as this can give an overflow, which
may confuse compilers without IEEE 754 support (such as clang
-fsanitize=undefined), or trigger a trap if enabled.
The DOUBLE_ISNAN macro should work fine on long double. */
if (DOUBLE_ISNAN (d))
return 1;
LONGDOUBLE_NAN_ACTION (d, goto yes);
return 0;
yes:
return 1;
}
/* Return the minimal number of bits to represent d exactly (0 for zero).
If flag is non-zero, also print d. */
/* FIXME: This function doesn't work if the rounding precision is reduced. */
static mpfr_prec_t
print_binary (long double d, int flag)
{
long double e, f, r;
long exp = 1;
mpfr_prec_t prec = 0;
if (Isnan_ld (d))
{
if (flag)
printf ("NaN\n");
return 0;
}
if (d < (long double) 0.0
#if !defined(MPFR_ERRDIVZERO)
|| (d == (long double) 0.0 && (1.0 / (double) d < 0.0))
#endif
)
{
if (flag)
printf ("-");
d = -d;
}
/* now d >= 0 */
/* Use 2 differents tests for Inf, to avoid potential bugs
in implementations. */
if (Isnan_ld (d - d) || (d > 1 && d * 0.5 == d))
{
if (flag)
printf ("Inf\n");
return 0;
}
if (d == (long double) 0.0)
{
if (flag)
printf ("0.0\n");
return prec;
}
MPFR_ASSERTN (d > 0);
e = (long double) 1.0;
while (e > d)
{
e = e * (long double) 0.5;
exp --;
}
if (flag == 2) printf ("1: e=%.36Le\n", e);
MPFR_ASSERTN (d >= e);
/* FIXME: There can be an overflow here, which may not be supported
on all platforms. */
while (f = e + e, d >= f)
{
e = f;
exp ++;
}
if (flag == 2) printf ("2: e=%.36Le\n", e);
MPFR_ASSERTN (e <= d && d < f);
if (flag == 1)
printf ("0.");
if (flag == 2) printf ("3: d=%.36Le e=%.36Le prec=%ld\n", d, e,
(long) prec);
/* Note: the method we use here to extract the bits of d is the following,
to deal with the case where the rounding precision is less than the
precision of d:
(1) we accumulate the upper bits of d into f
(2) when accumulating a new bit into f is not exact, we subtract
f from d and reset f to 0
This is guaranteed to work only when the rounding precision is at least
half the precision of d, since otherwise d-f might not be exact.
This method does not work with flush-to-zero on underflow. */
f = 0.0; /* will hold accumulated powers of 2 */
while (1)
{
prec++;
r = f + e;
/* r is close to f (in particular in the cases where f+e may
not be exact), so that r - f should be exact. */
if (r - f != e) /* f+e is not exact */
{
d -= f; /* should be exact */
f = 0.0;
r = e;
}
if (d >= r)
{
if (flag == 1)
printf ("1");
if (d == r)
break;
f = r;
}
else
{
if (flag == 1)
printf ("0");
}
e *= (long double) 0.5;
MPFR_ASSERTN (e != 0); /* may fail with flush-to-zero on underflow */
if (flag == 2) printf ("4: d=%.36Le e=%.36Le prec=%ld\n", d, e,
(long) prec);
}
if (flag == 1)
printf ("e%ld\n", exp);
return prec;
}
/* Checks that a long double converted exactly to a MPFR number, then
converted back to a long double gives the initial value, or in other
words, mpfr_get_ld(mpfr_set_ld(d)) = d.
*/
static void
check_set_get (long double d)
{
mpfr_exp_t emin, emax;
mpfr_t x;
mpfr_prec_t prec;
int r;
long double e;
int inex;
int red;
emin = mpfr_get_emin ();
emax = mpfr_get_emax ();
/* Select a precision to ensure that the conversion of d to x be exact. */
prec = print_binary (d, 0);
if (prec < MPFR_PREC_MIN)
prec = MPFR_PREC_MIN;
mpfr_init2 (x, prec);
RND_LOOP(r)
{
inex = mpfr_set_ld (x, d, (mpfr_rnd_t) r);
if (inex != 0)
{
printf ("Error: mpfr_set_ld should be exact (rnd = %s)\n",
mpfr_print_rnd_mode ((mpfr_rnd_t) r));
/* We use 36 digits here, as the maximum LDBL_MANT_DIG value
seen in the current implementations is 113 (binary128),
and ceil(1+113*log(2)/log(10)) = 36. But the current glibc
implementation of printf with double-double arithmetic
(e.g. on PowerPC) is not accurate. */
printf (" d ~= %.36Le (output may be wrong!)\n", d);
printf (" inex = %d\n", inex);
if (emin >= LONG_MIN)
printf (" emin = %ld\n", (long) emin);
if (emax <= LONG_MAX)
printf (" emax = %ld\n", (long) emax);
ld_trace (" d", d);
printf (" d = ");
print_binary (d, 1);
printf (" x = ");
mpfr_dump (x);
printf (" MPFR_LDBL_MANT_DIG=%u\n", MPFR_LDBL_MANT_DIG);
printf (" prec=%lu\n", prec);
print_binary (d, 2);
exit (1);
}
for (red = 0; red < 2; red++)
{
if (red)
{
mpfr_exp_t ex;
if (MPFR_IS_SINGULAR (x))
break;
ex = MPFR_GET_EXP (x);
set_emin (ex);
set_emax (ex);
}
e = mpfr_get_ld (x, (mpfr_rnd_t) r);
set_emin (emin);
set_emax (emax);
if (inex == 0 && ((Isnan_ld(d) && ! Isnan_ld(e)) ||
(Isnan_ld(e) && ! Isnan_ld(d)) ||
(e != d && !(Isnan_ld(e) && Isnan_ld(d)))))
{
printf ("Error: mpfr_get_ld o mpfr_set_ld <> Id%s\n",
red ? ", reduced exponent range" : "");
printf (" rnd = %s\n", mpfr_print_rnd_mode ((mpfr_rnd_t) r));
printf (" d ~= %.36Le (output may be wrong!)\n", d);
printf (" e ~= %.36Le (output may be wrong!)\n", e);
ld_trace (" d", d);
printf (" x = "); mpfr_out_str (NULL, 16, 0, x, MPFR_RNDN);
printf ("\n");
ld_trace (" e", e);
printf (" d = ");
print_binary (d, 1);
printf (" x = ");
mpfr_dump (x);
printf (" e = ");
print_binary (e, 1);
printf (" MPFR_LDBL_MANT_DIG=%u\n", MPFR_LDBL_MANT_DIG);
#ifdef MPFR_NANISNAN
if (Isnan_ld(d) || Isnan_ld(e))
printf ("The reason is that NAN == NAN. Please look at the "
"configure output\nand Section \"In case of problem\""
" of the INSTALL file.\n");
#endif
exit (1);
}
}
}
mpfr_clear (x);
}
static void
test_small (void)
{
mpfr_t x, y, z;
long double d;
mpfr_init2 (x, MPFR_LDBL_MANT_DIG);
mpfr_init2 (y, MPFR_LDBL_MANT_DIG);
mpfr_init2 (z, MPFR_LDBL_MANT_DIG);
/* x = 11906603631607553907/2^(16381+64) */
mpfr_set_str (x, "0.1010010100111100110000001110101101000111010110000001111101110011E-16381", 2, MPFR_RNDN);
d = mpfr_get_ld (x, MPFR_RNDN); /* infinite loop? */
mpfr_set_ld (y, d, MPFR_RNDN);
mpfr_sub (z, x, y, MPFR_RNDN);
mpfr_abs (z, z, MPFR_RNDN);
mpfr_clear_erangeflag ();
/* If long double = double, d should be equal to 0;
in this case, everything is OK. */
if (d != 0 && (mpfr_cmp_str (z, "1E-16434", 2, MPFR_RNDN) > 0 ||
mpfr_erangeflag_p ()))
{
printf ("Error with x = ");
mpfr_out_str (NULL, 10, 21, x, MPFR_RNDN);
printf (" = ");
mpfr_out_str (NULL, 16, 0, x, MPFR_RNDN);
printf ("\n -> d = %.33Le", d);
printf ("\n -> y = ");
mpfr_out_str (NULL, 10, 21, y, MPFR_RNDN);
printf (" = ");
mpfr_out_str (NULL, 16, 0, y, MPFR_RNDN);
printf ("\n -> |x-y| = ");
mpfr_out_str (NULL, 16, 0, z, MPFR_RNDN);
printf ("\n");
exit (1);
}
mpfr_clear (x);
mpfr_clear (y);
mpfr_clear (z);
}
static void
test_fixed_bugs (void)
{
mpfr_t x;
long double l, m;
/* bug found by Steve Kargl (2009-03-14) */
mpfr_init2 (x, MPFR_LDBL_MANT_DIG);
mpfr_set_ui_2exp (x, 1, -16447, MPFR_RNDN);
mpfr_get_ld (x, MPFR_RNDN); /* an assertion failed in init2.c:50 */
/* bug reported by Jakub Jelinek (2010-10-17)
https://gforge.inria.fr/tracker/?func=detail&aid=11300 */
mpfr_set_prec (x, MPFR_LDBL_MANT_DIG);
/* l = 0x1.23456789abcdef0123456789abcdp-914L; */
l = 8.215640181713713164092636634579e-276;
mpfr_set_ld (x, l, MPFR_RNDN);
m = mpfr_get_ld (x, MPFR_RNDN);
if (m != l)
{
printf ("Error in get_ld o set_ld for l=%Le\n", l);
printf ("Got m=%Le instead of l\n", m);
exit (1);
}
/* another similar test which failed with extended double precision and the
generic code for mpfr_set_ld */
/* l = 0x1.23456789abcdef0123456789abcdp-968L; */
l = 4.560596445887084662336528403703e-292;
mpfr_set_ld (x, l, MPFR_RNDN);
m = mpfr_get_ld (x, MPFR_RNDN);
if (m != l)
{
printf ("Error in get_ld o set_ld for l=%Le\n", l);
printf ("Got m=%Le instead of l\n", m);
exit (1);
}
mpfr_clear (x);
}
static void
check_subnormal (void)
{
long double d, e;
mpfr_t x;
d = 17.0;
mpfr_init2 (x, MPFR_LDBL_MANT_DIG);
while (d != 0.0)
{
mpfr_set_ld (x, d, MPFR_RNDN);
e = mpfr_get_ld (x, MPFR_RNDN);
if (e != d)
{
printf ("Error for mpfr_get_ld o mpfr_set_ld\n");
printf ("d=%Le\n", d);
printf ("x="); mpfr_dump (x);
printf ("e=%Le\n", e);
exit (1);
}
d *= 0.5;
}
mpfr_clear (x);
}
static void
check_overflow (void)
{
long double d, e;
mpfr_t x;
int i;
mpfr_init2 (x, MPFR_LDBL_MANT_DIG);
for (i = 0; i < 2; i++)
{
d = i == 0 ? LDBL_MAX : -LDBL_MAX;
mpfr_set_ld (x, d, MPFR_RNDN);
mpfr_mul_2ui (x, x, 1, MPFR_RNDN);
e = mpfr_get_ld (x, MPFR_RNDN);
if (! DOUBLE_ISINF (e) || (i == 0 ? (e < 0) : (e > 0)))
{
printf ("Error in check_overflow.\n");
printf ("d=%Le\n", d);
printf ("x="); mpfr_dump (x);
printf ("e=%Le\n", e);
exit (1);
}
}
mpfr_clear (x);
}
/* issue reported by Sisyphus on powerpc */
static void
test_20140212 (void)
{
mpfr_t fr1, fr2;
long double ld, h, l, ld2;
int i, c1, c2;
mpfr_init2 (fr1, 106);
mpfr_init2 (fr2, 2098);
for (h = 1.0L, i = 0; i < 1023; i++)
h *= 2.0L;
for (l = 1.0L, i = 0; i < 1074; i++)
l *= 0.5L;
ld = h + l; /* rounding of 2^1023 + 2^(-1074) */
mpfr_set_ld (fr1, ld, MPFR_RNDN);
mpfr_set_ld (fr2, ld, MPFR_RNDN);
c1 = mpfr_cmp_ld (fr1, ld);
c2 = mpfr_cmp_ld (fr2, ld);
/* If long double is binary64, then ld = fr1 = fr2 = 2^1023.
If long double is double-double, then ld = 2^1023 + 2^(-1074),
fr1 = 2^1023 and fr2 = 2^1023 + 2^(-1074) */
MPFR_ASSERTN(ld == h ? (c1 == 0) : (c1 < 0));
MPFR_ASSERTN(c2 == 0);
ld2 = mpfr_get_ld (fr2, MPFR_RNDN);
MPFR_ASSERTN(ld2 == ld);
mpfr_clear (fr1);
mpfr_clear (fr2);
}
/* bug reported by Walter Mascarenhas
https://sympa.inria.fr/sympa/arc/mpfr/2016-09/msg00005.html */
static void
bug_20160907 (void)
{
#if HAVE_LDOUBLE_IEEE_EXT_LITTLE
long double dn, ld;
mpfr_t mp;
long e;
mpfr_long_double_t x;
/* the following is the encoding of the smallest subnormal number
for HAVE_LDOUBLE_IEEE_EXT_LITTLE */
x.s.manl = 1;
x.s.manh = 0;
x.s.expl = 0;
x.s.exph = 0;
x.s.sign= 0;
dn = x.ld;
e = -16445;
/* dn=2^e is now the smallest subnormal. */
mpfr_init2 (mp, 64);
mpfr_set_ui_2exp (mp, 1, e - 1, MPFR_RNDN);
ld = mpfr_get_ld (mp, MPFR_RNDU);
/* since mp = 2^(e-1) and ld is rounded upwards, we should have
ld = 2^e */
if (ld != dn)
{
printf ("Error, ld = %Le <> dn = %Le\n", ld, dn);
printf ("mp=");
mpfr_out_str (stdout, 10, 0, mp, MPFR_RNDN);
printf ("\n");
printf ("mp="); mpfr_dump (mp);
exit (1);
}
/* check a few more numbers */
for (e = -16446; e <= -16381; e++)
{
mpfr_set_ui_2exp (mp, 1, e, MPFR_RNDN);
ld = mpfr_get_ld (mp, MPFR_RNDU);
mpfr_set_ld (mp, ld, MPFR_RNDU);
/* mp is 2^e rounded up, thus should be >= 2^e */
MPFR_ASSERTN(mpfr_cmp_ui_2exp (mp, 1, e) >= 0);
mpfr_set_ui_2exp (mp, 1, e, MPFR_RNDN);
ld = mpfr_get_ld (mp, MPFR_RNDD);
mpfr_set_ld (mp, ld, MPFR_RNDD);
/* mp is 2^e rounded down, thus should be <= 2^e */
if (mpfr_cmp_ui_2exp (mp, 3, e) > 0)
{
printf ("Error, expected value <= 2^%ld\n", e);
printf ("got "); mpfr_dump (mp);
exit (1);
}
}
mpfr_clear (mp);
#endif
}
int
main (int argc, char *argv[])
{
volatile long double d, e, maxp2;
mpfr_t x;
int i;
mpfr_exp_t emax;
tests_start_mpfr ();
mpfr_test_init ();
check_gcc33_bug ();
test_fixed_bugs ();
mpfr_init2 (x, MPFR_LDBL_MANT_DIG + 64);
#if !defined(MPFR_ERRDIVZERO)
/* check NaN */
mpfr_set_nan (x);
d = mpfr_get_ld (x, MPFR_RNDN);
check_set_get (d);
#endif
/* check +0.0 and -0.0 */
d = 0.0;
check_set_get (d);
d = DBL_NEG_ZERO;
check_set_get (d);
/* check that the sign of -0.0 is set */
mpfr_set_ld (x, DBL_NEG_ZERO, MPFR_RNDN);
if (MPFR_IS_POS (x))
{
#if defined(HAVE_SIGNEDZ)
printf ("Error: sign of -0.0 is not set correctly\n");
exit (1);
#else
/* Non IEEE doesn't support negative zero yet */
printf ("Warning: sign of -0.0 is not set correctly\n");
#endif
}
#if !defined(MPFR_ERRDIVZERO)
/* check +Inf */
mpfr_set_inf (x, 1);
d = mpfr_get_ld (x, MPFR_RNDN);
check_set_get (d);
/* check -Inf */
mpfr_set_inf (x, -1);
d = mpfr_get_ld (x, MPFR_RNDN);
check_set_get (d);
#endif
/* check the largest power of two */
maxp2 = 1.0;
while (maxp2 < LDBL_MAX / 2.0)
maxp2 *= 2.0;
check_set_get (maxp2);
check_set_get (-maxp2);
d = LDBL_MAX;
e = d / 2.0;
if (e != maxp2) /* false under NetBSD/x86 */
{
/* d = LDBL_MAX does not have excess precision. */
check_set_get (d);
check_set_get (-d);
}
/* check the smallest power of two */
d = 1.0;
while ((e = d / 2.0) != (long double) 0.0 && e != d)
d = e;
check_set_get (d);
check_set_get (-d);
/* check that 2^i, 2^i+1, 2^i-1 and 2^i-2^(i-2)-1 are correctly converted */
d = 1.0;
for (i = 1; i < MPFR_LDBL_MANT_DIG + 8; i++)
{
d = 2.0 * d; /* d = 2^i */
check_set_get (d);
if (d + 1.0 != d)
check_set_get (d + 1.0);
else
{
mpfr_set_ui_2exp (x, 1, i, MPFR_RNDN);
mpfr_add_ui (x, x, 1, MPFR_RNDN);
e = mpfr_get_ld (x, MPFR_RNDN);
check_set_get (e);
}
if (d - 1.0 != d)
check_set_get (d - 1.0);
else
{
mpfr_set_ui_2exp (x, 1, i, MPFR_RNDN);
mpfr_sub_ui (x, x, 1, MPFR_RNDN);
e = mpfr_get_ld (x, MPFR_RNDN);
check_set_get (e);
}
if (i < 3)
continue;
/* The following test triggers a failure in r10844 for i = 56,
with gcc -mpc64 on x86 (64-bit ABI). */
mpfr_set_ui_2exp (x, 3, i-2, MPFR_RNDN);
mpfr_sub_ui (x, x, 1, MPFR_RNDN);
e = mpfr_get_ld (x, MPFR_RNDN);
check_set_get (e);
}
for (i = 0; i < 10000; i++)
{
mpfr_urandomb (x, RANDS);
d = mpfr_get_ld (x, MPFR_RNDN);
check_set_get (d);
}
/* check with reduced emax to exercise overflow */
emax = mpfr_get_emax ();
mpfr_set_prec (x, 2);
set_emax (1);
mpfr_set_ld (x, (long double) 2.0, MPFR_RNDN);
MPFR_ASSERTN(mpfr_inf_p (x) && mpfr_sgn (x) > 0);
for (d = (long double) 2.0, i = 0; i < 13; i++, d *= d);
/* now d = 2^8192, or an infinity (e.g. with double or double-double) */
mpfr_set_ld (x, d, MPFR_RNDN);
MPFR_ASSERTN(mpfr_inf_p (x) && mpfr_sgn (x) > 0);
set_emax (emax);
mpfr_clear (x);
test_small ();
check_subnormal ();
#if !defined(MPFR_ERRDIVZERO)
check_overflow ();
#endif
test_20140212 ();
bug_20160907 ();
tests_end_mpfr ();
return 0;
}