mirror of
https://review.haiku-os.org/buildtools
synced 2025-02-07 14:34:51 +01:00
3642 lines
102 KiB
C
3642 lines
102 KiB
C
/*
|
|
* Copyright 2011 INRIA Saclay
|
|
* Copyright 2012-2013 Ecole Normale Superieure
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
|
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
|
* 91893 Orsay, France
|
|
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
|
|
*/
|
|
|
|
#include <isl_ctx_private.h>
|
|
#include <isl_map_private.h>
|
|
#include <isl_space_private.h>
|
|
#include <isl/aff.h>
|
|
#include <isl/hash.h>
|
|
#include <isl/constraint.h>
|
|
#include <isl/schedule.h>
|
|
#include <isl_mat_private.h>
|
|
#include <isl/set.h>
|
|
#include <isl/seq.h>
|
|
#include <isl_tab.h>
|
|
#include <isl_dim_map.h>
|
|
#include <isl_hmap_map_basic_set.h>
|
|
#include <isl_sort.h>
|
|
#include <isl_schedule_private.h>
|
|
#include <isl_band_private.h>
|
|
#include <isl_options_private.h>
|
|
#include <isl_tarjan.h>
|
|
|
|
/*
|
|
* The scheduling algorithm implemented in this file was inspired by
|
|
* Bondhugula et al., "Automatic Transformations for Communication-Minimized
|
|
* Parallelization and Locality Optimization in the Polyhedral Model".
|
|
*/
|
|
|
|
|
|
/* Internal information about a node that is used during the construction
|
|
* of a schedule.
|
|
* dim represents the space in which the domain lives
|
|
* sched is a matrix representation of the schedule being constructed
|
|
* for this node
|
|
* sched_map is an isl_map representation of the same (partial) schedule
|
|
* sched_map may be NULL
|
|
* rank is the number of linearly independent rows in the linear part
|
|
* of sched
|
|
* the columns of cmap represent a change of basis for the schedule
|
|
* coefficients; the first rank columns span the linear part of
|
|
* the schedule rows
|
|
* cinv is the inverse of cmap.
|
|
* start is the first variable in the LP problem in the sequences that
|
|
* represents the schedule coefficients of this node
|
|
* nvar is the dimension of the domain
|
|
* nparam is the number of parameters or 0 if we are not constructing
|
|
* a parametric schedule
|
|
*
|
|
* scc is the index of SCC (or WCC) this node belongs to
|
|
*
|
|
* band contains the band index for each of the rows of the schedule.
|
|
* band_id is used to differentiate between separate bands at the same
|
|
* level within the same parent band, i.e., bands that are separated
|
|
* by the parent band or bands that are independent of each other.
|
|
* zero contains a boolean for each of the rows of the schedule,
|
|
* indicating whether the corresponding scheduling dimension results
|
|
* in zero dependence distances within its band and with respect
|
|
* to the proximity edges.
|
|
*/
|
|
struct isl_sched_node {
|
|
isl_space *dim;
|
|
isl_mat *sched;
|
|
isl_map *sched_map;
|
|
int rank;
|
|
isl_mat *cmap;
|
|
isl_mat *cinv;
|
|
int start;
|
|
int nvar;
|
|
int nparam;
|
|
|
|
int scc;
|
|
|
|
int *band;
|
|
int *band_id;
|
|
int *zero;
|
|
};
|
|
|
|
static int node_has_dim(const void *entry, const void *val)
|
|
{
|
|
struct isl_sched_node *node = (struct isl_sched_node *)entry;
|
|
isl_space *dim = (isl_space *)val;
|
|
|
|
return isl_space_is_equal(node->dim, dim);
|
|
}
|
|
|
|
/* An edge in the dependence graph. An edge may be used to
|
|
* ensure validity of the generated schedule, to minimize the dependence
|
|
* distance or both
|
|
*
|
|
* map is the dependence relation
|
|
* src is the source node
|
|
* dst is the sink node
|
|
* validity is set if the edge is used to ensure correctness
|
|
* proximity is set if the edge is used to minimize dependence distances
|
|
*
|
|
* For validity edges, start and end mark the sequence of inequality
|
|
* constraints in the LP problem that encode the validity constraint
|
|
* corresponding to this edge.
|
|
*/
|
|
struct isl_sched_edge {
|
|
isl_map *map;
|
|
|
|
struct isl_sched_node *src;
|
|
struct isl_sched_node *dst;
|
|
|
|
int validity;
|
|
int proximity;
|
|
|
|
int start;
|
|
int end;
|
|
};
|
|
|
|
enum isl_edge_type {
|
|
isl_edge_validity = 0,
|
|
isl_edge_first = isl_edge_validity,
|
|
isl_edge_proximity,
|
|
isl_edge_last = isl_edge_proximity
|
|
};
|
|
|
|
/* Internal information about the dependence graph used during
|
|
* the construction of the schedule.
|
|
*
|
|
* intra_hmap is a cache, mapping dependence relations to their dual,
|
|
* for dependences from a node to itself
|
|
* inter_hmap is a cache, mapping dependence relations to their dual,
|
|
* for dependences between distinct nodes
|
|
*
|
|
* n is the number of nodes
|
|
* node is the list of nodes
|
|
* maxvar is the maximal number of variables over all nodes
|
|
* max_row is the allocated number of rows in the schedule
|
|
* n_row is the current (maximal) number of linearly independent
|
|
* rows in the node schedules
|
|
* n_total_row is the current number of rows in the node schedules
|
|
* n_band is the current number of completed bands
|
|
* band_start is the starting row in the node schedules of the current band
|
|
* root is set if this graph is the original dependence graph,
|
|
* without any splitting
|
|
*
|
|
* sorted contains a list of node indices sorted according to the
|
|
* SCC to which a node belongs
|
|
*
|
|
* n_edge is the number of edges
|
|
* edge is the list of edges
|
|
* max_edge contains the maximal number of edges of each type;
|
|
* in particular, it contains the number of edges in the inital graph.
|
|
* edge_table contains pointers into the edge array, hashed on the source
|
|
* and sink spaces; there is one such table for each type;
|
|
* a given edge may be referenced from more than one table
|
|
* if the corresponding relation appears in more than of the
|
|
* sets of dependences
|
|
*
|
|
* node_table contains pointers into the node array, hashed on the space
|
|
*
|
|
* region contains a list of variable sequences that should be non-trivial
|
|
*
|
|
* lp contains the (I)LP problem used to obtain new schedule rows
|
|
*
|
|
* src_scc and dst_scc are the source and sink SCCs of an edge with
|
|
* conflicting constraints
|
|
*
|
|
* scc represents the number of components
|
|
*/
|
|
struct isl_sched_graph {
|
|
isl_hmap_map_basic_set *intra_hmap;
|
|
isl_hmap_map_basic_set *inter_hmap;
|
|
|
|
struct isl_sched_node *node;
|
|
int n;
|
|
int maxvar;
|
|
int max_row;
|
|
int n_row;
|
|
|
|
int *sorted;
|
|
|
|
int n_band;
|
|
int n_total_row;
|
|
int band_start;
|
|
|
|
int root;
|
|
|
|
struct isl_sched_edge *edge;
|
|
int n_edge;
|
|
int max_edge[isl_edge_last + 1];
|
|
struct isl_hash_table *edge_table[isl_edge_last + 1];
|
|
|
|
struct isl_hash_table *node_table;
|
|
struct isl_region *region;
|
|
|
|
isl_basic_set *lp;
|
|
|
|
int src_scc;
|
|
int dst_scc;
|
|
|
|
int scc;
|
|
};
|
|
|
|
/* Initialize node_table based on the list of nodes.
|
|
*/
|
|
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
graph->node_table = isl_hash_table_alloc(ctx, graph->n);
|
|
if (!graph->node_table)
|
|
return -1;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_hash_table_entry *entry;
|
|
uint32_t hash;
|
|
|
|
hash = isl_space_get_hash(graph->node[i].dim);
|
|
entry = isl_hash_table_find(ctx, graph->node_table, hash,
|
|
&node_has_dim,
|
|
graph->node[i].dim, 1);
|
|
if (!entry)
|
|
return -1;
|
|
entry->data = &graph->node[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return a pointer to the node that lives within the given space,
|
|
* or NULL if there is no such node.
|
|
*/
|
|
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, __isl_keep isl_space *dim)
|
|
{
|
|
struct isl_hash_table_entry *entry;
|
|
uint32_t hash;
|
|
|
|
hash = isl_space_get_hash(dim);
|
|
entry = isl_hash_table_find(ctx, graph->node_table, hash,
|
|
&node_has_dim, dim, 0);
|
|
|
|
return entry ? entry->data : NULL;
|
|
}
|
|
|
|
static int edge_has_src_and_dst(const void *entry, const void *val)
|
|
{
|
|
const struct isl_sched_edge *edge = entry;
|
|
const struct isl_sched_edge *temp = val;
|
|
|
|
return edge->src == temp->src && edge->dst == temp->dst;
|
|
}
|
|
|
|
/* Add the given edge to graph->edge_table[type].
|
|
*/
|
|
static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
enum isl_edge_type type, struct isl_sched_edge *edge)
|
|
{
|
|
struct isl_hash_table_entry *entry;
|
|
uint32_t hash;
|
|
|
|
hash = isl_hash_init();
|
|
hash = isl_hash_builtin(hash, edge->src);
|
|
hash = isl_hash_builtin(hash, edge->dst);
|
|
entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
|
|
&edge_has_src_and_dst, edge, 1);
|
|
if (!entry)
|
|
return -1;
|
|
entry->data = edge;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate the edge_tables based on the maximal number of edges of
|
|
* each type.
|
|
*/
|
|
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= isl_edge_last; ++i) {
|
|
graph->edge_table[i] = isl_hash_table_alloc(ctx,
|
|
graph->max_edge[i]);
|
|
if (!graph->edge_table[i])
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If graph->edge_table[type] contains an edge from the given source
|
|
* to the given destination, then return the hash table entry of this edge.
|
|
* Otherwise, return NULL.
|
|
*/
|
|
static struct isl_hash_table_entry *graph_find_edge_entry(
|
|
struct isl_sched_graph *graph,
|
|
enum isl_edge_type type,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
isl_ctx *ctx = isl_space_get_ctx(src->dim);
|
|
uint32_t hash;
|
|
struct isl_sched_edge temp = { .src = src, .dst = dst };
|
|
|
|
hash = isl_hash_init();
|
|
hash = isl_hash_builtin(hash, temp.src);
|
|
hash = isl_hash_builtin(hash, temp.dst);
|
|
return isl_hash_table_find(ctx, graph->edge_table[type], hash,
|
|
&edge_has_src_and_dst, &temp, 0);
|
|
}
|
|
|
|
|
|
/* If graph->edge_table[type] contains an edge from the given source
|
|
* to the given destination, then return this edge.
|
|
* Otherwise, return NULL.
|
|
*/
|
|
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
|
|
enum isl_edge_type type,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
struct isl_hash_table_entry *entry;
|
|
|
|
entry = graph_find_edge_entry(graph, type, src, dst);
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
return entry->data;
|
|
}
|
|
|
|
/* Check whether the dependence graph has an edge of the given type
|
|
* between the given two nodes.
|
|
*/
|
|
static int graph_has_edge(struct isl_sched_graph *graph,
|
|
enum isl_edge_type type,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
struct isl_sched_edge *edge;
|
|
int empty;
|
|
|
|
edge = graph_find_edge(graph, type, src, dst);
|
|
if (!edge)
|
|
return 0;
|
|
|
|
empty = isl_map_plain_is_empty(edge->map);
|
|
if (empty < 0)
|
|
return -1;
|
|
|
|
return !empty;
|
|
}
|
|
|
|
/* If there is an edge from the given source to the given destination
|
|
* of any type then return this edge.
|
|
* Otherwise, return NULL.
|
|
*/
|
|
static struct isl_sched_edge *graph_find_any_edge(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
enum isl_edge_type i;
|
|
struct isl_sched_edge *edge;
|
|
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
edge = graph_find_edge(graph, i, src, dst);
|
|
if (edge)
|
|
return edge;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Remove the given edge from all the edge_tables that refer to it.
|
|
*/
|
|
static void graph_remove_edge(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
isl_ctx *ctx = isl_map_get_ctx(edge->map);
|
|
enum isl_edge_type i;
|
|
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
struct isl_hash_table_entry *entry;
|
|
|
|
entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
|
|
if (!entry)
|
|
continue;
|
|
if (entry->data != edge)
|
|
continue;
|
|
isl_hash_table_remove(ctx, graph->edge_table[i], entry);
|
|
}
|
|
}
|
|
|
|
/* Check whether the dependence graph has any edge
|
|
* between the given two nodes.
|
|
*/
|
|
static int graph_has_any_edge(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
enum isl_edge_type i;
|
|
int r;
|
|
|
|
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
|
|
r = graph_has_edge(graph, i, src, dst);
|
|
if (r < 0 || r)
|
|
return r;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Check whether the dependence graph has a validity edge
|
|
* between the given two nodes.
|
|
*/
|
|
static int graph_has_validity_edge(struct isl_sched_graph *graph,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
return graph_has_edge(graph, isl_edge_validity, src, dst);
|
|
}
|
|
|
|
static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
int n_node, int n_edge)
|
|
{
|
|
int i;
|
|
|
|
graph->n = n_node;
|
|
graph->n_edge = n_edge;
|
|
graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
|
|
graph->sorted = isl_calloc_array(ctx, int, graph->n);
|
|
graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
|
|
graph->edge = isl_calloc_array(ctx,
|
|
struct isl_sched_edge, graph->n_edge);
|
|
|
|
graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
|
|
graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
|
|
|
|
if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
|
|
!graph->sorted)
|
|
return -1;
|
|
|
|
for(i = 0; i < graph->n; ++i)
|
|
graph->sorted[i] = i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
|
|
isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
isl_space_free(graph->node[i].dim);
|
|
isl_mat_free(graph->node[i].sched);
|
|
isl_map_free(graph->node[i].sched_map);
|
|
isl_mat_free(graph->node[i].cmap);
|
|
isl_mat_free(graph->node[i].cinv);
|
|
if (graph->root) {
|
|
free(graph->node[i].band);
|
|
free(graph->node[i].band_id);
|
|
free(graph->node[i].zero);
|
|
}
|
|
}
|
|
free(graph->node);
|
|
free(graph->sorted);
|
|
for (i = 0; i < graph->n_edge; ++i)
|
|
isl_map_free(graph->edge[i].map);
|
|
free(graph->edge);
|
|
free(graph->region);
|
|
for (i = 0; i <= isl_edge_last; ++i)
|
|
isl_hash_table_free(ctx, graph->edge_table[i]);
|
|
isl_hash_table_free(ctx, graph->node_table);
|
|
isl_basic_set_free(graph->lp);
|
|
}
|
|
|
|
/* For each "set" on which this function is called, increment
|
|
* graph->n by one and update graph->maxvar.
|
|
*/
|
|
static int init_n_maxvar(__isl_take isl_set *set, void *user)
|
|
{
|
|
struct isl_sched_graph *graph = user;
|
|
int nvar = isl_set_dim(set, isl_dim_set);
|
|
|
|
graph->n++;
|
|
if (nvar > graph->maxvar)
|
|
graph->maxvar = nvar;
|
|
|
|
isl_set_free(set);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compute the number of rows that should be allocated for the schedule.
|
|
* The graph can be split at most "n - 1" times, there can be at most
|
|
* two rows for each dimension in the iteration domains (in particular,
|
|
* we usually have one row, but it may be split by split_scaled),
|
|
* and there can be one extra row for ordering the statements.
|
|
* Note that if we have actually split "n - 1" times, then no ordering
|
|
* is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
|
|
*/
|
|
static int compute_max_row(struct isl_sched_graph *graph,
|
|
__isl_keep isl_union_set *domain)
|
|
{
|
|
graph->n = 0;
|
|
graph->maxvar = 0;
|
|
if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
|
|
return -1;
|
|
graph->max_row = graph->n + 2 * graph->maxvar;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add a new node to the graph representing the given set.
|
|
*/
|
|
static int extract_node(__isl_take isl_set *set, void *user)
|
|
{
|
|
int nvar, nparam;
|
|
isl_ctx *ctx;
|
|
isl_space *dim;
|
|
isl_mat *sched;
|
|
struct isl_sched_graph *graph = user;
|
|
int *band, *band_id, *zero;
|
|
|
|
ctx = isl_set_get_ctx(set);
|
|
dim = isl_set_get_space(set);
|
|
isl_set_free(set);
|
|
nvar = isl_space_dim(dim, isl_dim_set);
|
|
nparam = isl_space_dim(dim, isl_dim_param);
|
|
if (!ctx->opt->schedule_parametric)
|
|
nparam = 0;
|
|
sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
|
|
graph->node[graph->n].dim = dim;
|
|
graph->node[graph->n].nvar = nvar;
|
|
graph->node[graph->n].nparam = nparam;
|
|
graph->node[graph->n].sched = sched;
|
|
graph->node[graph->n].sched_map = NULL;
|
|
band = isl_alloc_array(ctx, int, graph->max_row);
|
|
graph->node[graph->n].band = band;
|
|
band_id = isl_calloc_array(ctx, int, graph->max_row);
|
|
graph->node[graph->n].band_id = band_id;
|
|
zero = isl_calloc_array(ctx, int, graph->max_row);
|
|
graph->node[graph->n].zero = zero;
|
|
graph->n++;
|
|
|
|
if (!sched || (graph->max_row && (!band || !band_id || !zero)))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct isl_extract_edge_data {
|
|
enum isl_edge_type type;
|
|
struct isl_sched_graph *graph;
|
|
};
|
|
|
|
/* Add a new edge to the graph based on the given map
|
|
* and add it to data->graph->edge_table[data->type].
|
|
* If a dependence relation of a given type happens to be identical
|
|
* to one of the dependence relations of a type that was added before,
|
|
* then we don't create a new edge, but instead mark the original edge
|
|
* as also representing a dependence of the current type.
|
|
*/
|
|
static int extract_edge(__isl_take isl_map *map, void *user)
|
|
{
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
struct isl_extract_edge_data *data = user;
|
|
struct isl_sched_graph *graph = data->graph;
|
|
struct isl_sched_node *src, *dst;
|
|
isl_space *dim;
|
|
struct isl_sched_edge *edge;
|
|
int is_equal;
|
|
|
|
dim = isl_space_domain(isl_map_get_space(map));
|
|
src = graph_find_node(ctx, graph, dim);
|
|
isl_space_free(dim);
|
|
dim = isl_space_range(isl_map_get_space(map));
|
|
dst = graph_find_node(ctx, graph, dim);
|
|
isl_space_free(dim);
|
|
|
|
if (!src || !dst) {
|
|
isl_map_free(map);
|
|
return 0;
|
|
}
|
|
|
|
graph->edge[graph->n_edge].src = src;
|
|
graph->edge[graph->n_edge].dst = dst;
|
|
graph->edge[graph->n_edge].map = map;
|
|
if (data->type == isl_edge_validity) {
|
|
graph->edge[graph->n_edge].validity = 1;
|
|
graph->edge[graph->n_edge].proximity = 0;
|
|
}
|
|
if (data->type == isl_edge_proximity) {
|
|
graph->edge[graph->n_edge].validity = 0;
|
|
graph->edge[graph->n_edge].proximity = 1;
|
|
}
|
|
graph->n_edge++;
|
|
|
|
edge = graph_find_any_edge(graph, src, dst);
|
|
if (!edge)
|
|
return graph_edge_table_add(ctx, graph, data->type,
|
|
&graph->edge[graph->n_edge - 1]);
|
|
is_equal = isl_map_plain_is_equal(map, edge->map);
|
|
if (is_equal < 0)
|
|
return -1;
|
|
if (!is_equal)
|
|
return graph_edge_table_add(ctx, graph, data->type,
|
|
&graph->edge[graph->n_edge - 1]);
|
|
|
|
graph->n_edge--;
|
|
edge->validity |= graph->edge[graph->n_edge].validity;
|
|
edge->proximity |= graph->edge[graph->n_edge].proximity;
|
|
isl_map_free(map);
|
|
|
|
return graph_edge_table_add(ctx, graph, data->type, edge);
|
|
}
|
|
|
|
/* Check whether there is any dependence from node[j] to node[i]
|
|
* or from node[i] to node[j].
|
|
*/
|
|
static int node_follows_weak(int i, int j, void *user)
|
|
{
|
|
int f;
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
|
|
if (f < 0 || f)
|
|
return f;
|
|
return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
|
|
}
|
|
|
|
/* Check whether there is a validity dependence from node[j] to node[i],
|
|
* forcing node[i] to follow node[j].
|
|
*/
|
|
static int node_follows_strong(int i, int j, void *user)
|
|
{
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
|
|
}
|
|
|
|
/* Use Tarjan's algorithm for computing the strongly connected components
|
|
* in the dependence graph (only validity edges).
|
|
* If weak is set, we consider the graph to be undirected and
|
|
* we effectively compute the (weakly) connected components.
|
|
* Additionally, we also consider other edges when weak is set.
|
|
*/
|
|
static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
|
|
{
|
|
int i, n;
|
|
struct isl_tarjan_graph *g = NULL;
|
|
|
|
g = isl_tarjan_graph_init(ctx, graph->n,
|
|
weak ? &node_follows_weak : &node_follows_strong, graph);
|
|
if (!g)
|
|
return -1;
|
|
|
|
graph->scc = 0;
|
|
i = 0;
|
|
n = graph->n;
|
|
while (n) {
|
|
while (g->order[i] != -1) {
|
|
graph->node[g->order[i]].scc = graph->scc;
|
|
--n;
|
|
++i;
|
|
}
|
|
++i;
|
|
graph->scc++;
|
|
}
|
|
|
|
isl_tarjan_graph_free(g);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Apply Tarjan's algorithm to detect the strongly connected components
|
|
* in the dependence graph.
|
|
*/
|
|
static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
return detect_ccs(ctx, graph, 0);
|
|
}
|
|
|
|
/* Apply Tarjan's algorithm to detect the (weakly) connected components
|
|
* in the dependence graph.
|
|
*/
|
|
static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
return detect_ccs(ctx, graph, 1);
|
|
}
|
|
|
|
static int cmp_scc(const void *a, const void *b, void *data)
|
|
{
|
|
struct isl_sched_graph *graph = data;
|
|
const int *i1 = a;
|
|
const int *i2 = b;
|
|
|
|
return graph->node[*i1].scc - graph->node[*i2].scc;
|
|
}
|
|
|
|
/* Sort the elements of graph->sorted according to the corresponding SCCs.
|
|
*/
|
|
static int sort_sccs(struct isl_sched_graph *graph)
|
|
{
|
|
return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
|
|
}
|
|
|
|
/* Given a dependence relation R from a node to itself,
|
|
* construct the set of coefficients of valid constraints for elements
|
|
* in that dependence relation.
|
|
* In particular, the result contains tuples of coefficients
|
|
* c_0, c_n, c_x such that
|
|
*
|
|
* c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
|
|
*
|
|
* or, equivalently,
|
|
*
|
|
* c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
|
|
*
|
|
* We choose here to compute the dual of delta R.
|
|
* Alternatively, we could have computed the dual of R, resulting
|
|
* in a set of tuples c_0, c_n, c_x, c_y, and then
|
|
* plugged in (c_0, c_n, c_x, -c_x).
|
|
*/
|
|
static __isl_give isl_basic_set *intra_coefficients(
|
|
struct isl_sched_graph *graph, __isl_take isl_map *map)
|
|
{
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_set *delta;
|
|
isl_basic_set *coef;
|
|
|
|
if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
|
|
return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
|
|
|
|
delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
|
|
coef = isl_set_coefficients(delta);
|
|
isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
|
|
isl_basic_set_copy(coef));
|
|
|
|
return coef;
|
|
}
|
|
|
|
/* Given a dependence relation R, * construct the set of coefficients
|
|
* of valid constraints for elements in that dependence relation.
|
|
* In particular, the result contains tuples of coefficients
|
|
* c_0, c_n, c_x, c_y such that
|
|
*
|
|
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
|
|
*
|
|
*/
|
|
static __isl_give isl_basic_set *inter_coefficients(
|
|
struct isl_sched_graph *graph, __isl_take isl_map *map)
|
|
{
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_set *set;
|
|
isl_basic_set *coef;
|
|
|
|
if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
|
|
return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
|
|
|
|
set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
|
|
coef = isl_set_coefficients(set);
|
|
isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
|
|
isl_basic_set_copy(coef));
|
|
|
|
return coef;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force validity for the given
|
|
* dependence from a node i to itself.
|
|
* That is, add constraints that enforce
|
|
*
|
|
* (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
|
|
* = c_i_x (y - x) >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
|
* of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
|
|
* where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
|
|
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
|
|
*
|
|
* Actually, we do not construct constraints for the c_i_x themselves,
|
|
* but for the coefficients of c_i_x written as a linear combination
|
|
* of the columns in node->cmap.
|
|
*/
|
|
static int add_intra_validity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
unsigned total;
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_space *dim;
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *node = edge->src;
|
|
|
|
coef = intra_coefficients(graph, map);
|
|
|
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
|
|
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
|
|
if (!coef)
|
|
goto error;
|
|
|
|
total = isl_basic_set_total_dim(graph->lp);
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
node->nvar, -1);
|
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
node->nvar, 1);
|
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
|
coef->n_eq, coef->n_ineq);
|
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
|
coef, dim_map);
|
|
isl_space_free(dim);
|
|
|
|
return 0;
|
|
error:
|
|
isl_space_free(dim);
|
|
return -1;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force validity for the given
|
|
* dependence from node i to node j.
|
|
* That is, add constraints that enforce
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
|
|
* of valid constraints for R and then plug in
|
|
* (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
|
|
* c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
|
|
* where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
|
|
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
|
|
*
|
|
* Actually, we do not construct constraints for the c_*_x themselves,
|
|
* but for the coefficients of c_*_x written as a linear combination
|
|
* of the columns in node->cmap.
|
|
*/
|
|
static int add_inter_validity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge)
|
|
{
|
|
unsigned total;
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_space *dim;
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *src = edge->src;
|
|
struct isl_sched_node *dst = edge->dst;
|
|
|
|
coef = inter_coefficients(graph, map);
|
|
|
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
|
|
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
|
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar,
|
|
isl_mat_copy(dst->cmap));
|
|
if (!coef)
|
|
goto error;
|
|
|
|
total = isl_basic_set_total_dim(graph->lp);
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
|
|
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
|
|
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
|
|
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
|
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
|
dst->nvar, -1);
|
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
|
dst->nvar, 1);
|
|
|
|
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
|
|
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
|
|
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
|
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
src->nvar, 1);
|
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
src->nvar, -1);
|
|
|
|
edge->start = graph->lp->n_ineq;
|
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
|
coef->n_eq, coef->n_ineq);
|
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
|
coef, dim_map);
|
|
if (!graph->lp)
|
|
goto error;
|
|
isl_space_free(dim);
|
|
edge->end = graph->lp->n_ineq;
|
|
|
|
return 0;
|
|
error:
|
|
isl_space_free(dim);
|
|
return -1;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that bound the dependence distance for the given
|
|
* dependence from a node i to itself.
|
|
* If s = 1, we add the constraint
|
|
*
|
|
* c_i_x (y - x) <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* -c_i_x (y - x) + m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* If s = -1, we add the constraint
|
|
*
|
|
* -c_i_x (y - x) <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* c_i_x (y - x) + m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
|
* of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
|
|
* with each coefficient (except m_0) represented as a pair of non-negative
|
|
* coefficients.
|
|
*
|
|
* Actually, we do not construct constraints for the c_i_x themselves,
|
|
* but for the coefficients of c_i_x written as a linear combination
|
|
* of the columns in node->cmap.
|
|
*/
|
|
static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, int s)
|
|
{
|
|
unsigned total;
|
|
unsigned nparam;
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_space *dim;
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *node = edge->src;
|
|
|
|
coef = intra_coefficients(graph, map);
|
|
|
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
|
|
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
|
|
if (!coef)
|
|
goto error;
|
|
|
|
nparam = isl_space_dim(node->dim, isl_dim_param);
|
|
total = isl_basic_set_total_dim(graph->lp);
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
|
|
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
|
|
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
|
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
node->nvar, s);
|
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
node->nvar, -s);
|
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
|
coef->n_eq, coef->n_ineq);
|
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
|
coef, dim_map);
|
|
isl_space_free(dim);
|
|
|
|
return 0;
|
|
error:
|
|
isl_space_free(dim);
|
|
return -1;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that bound the dependence distance for the given
|
|
* dependence from node i to node j.
|
|
* If s = 1, we add the constraint
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
|
|
* <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
|
|
* m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* If s = -1, we add the constraint
|
|
*
|
|
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
|
|
* <= m_0 + m_n n
|
|
*
|
|
* or
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
|
|
* m_0 + m_n n >= 0
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
|
|
* of valid constraints for R and then plug in
|
|
* (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
|
|
* -s*c_j_x+s*c_i_x)
|
|
* with each coefficient (except m_0, c_j_0 and c_i_0)
|
|
* represented as a pair of non-negative coefficients.
|
|
*
|
|
* Actually, we do not construct constraints for the c_*_x themselves,
|
|
* but for the coefficients of c_*_x written as a linear combination
|
|
* of the columns in node->cmap.
|
|
*/
|
|
static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, int s)
|
|
{
|
|
unsigned total;
|
|
unsigned nparam;
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_space *dim;
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *src = edge->src;
|
|
struct isl_sched_node *dst = edge->dst;
|
|
|
|
coef = inter_coefficients(graph, map);
|
|
|
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
|
|
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
|
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
|
|
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar,
|
|
isl_mat_copy(dst->cmap));
|
|
if (!coef)
|
|
goto error;
|
|
|
|
nparam = isl_space_dim(src->dim, isl_dim_param);
|
|
total = isl_basic_set_total_dim(graph->lp);
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
|
|
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
|
|
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
|
|
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
|
|
|
|
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
|
|
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
|
|
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
|
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
|
dst->nvar, s);
|
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
|
dst->nvar, -s);
|
|
|
|
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
|
|
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
|
|
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
|
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
src->nvar, -s);
|
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
src->nvar, s);
|
|
|
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
|
coef->n_eq, coef->n_ineq);
|
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
|
coef, dim_map);
|
|
isl_space_free(dim);
|
|
|
|
return 0;
|
|
error:
|
|
isl_space_free(dim);
|
|
return -1;
|
|
}
|
|
|
|
static int add_all_validity_constraints(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge= &graph->edge[i];
|
|
if (!edge->validity)
|
|
continue;
|
|
if (edge->src != edge->dst)
|
|
continue;
|
|
if (add_intra_validity_constraints(graph, edge) < 0)
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
if (!edge->validity)
|
|
continue;
|
|
if (edge->src == edge->dst)
|
|
continue;
|
|
if (add_inter_validity_constraints(graph, edge) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that bound the dependence distance
|
|
* for all dependence relations.
|
|
* If a given proximity dependence is identical to a validity
|
|
* dependence, then the dependence distance is already bounded
|
|
* from below (by zero), so we only need to bound the distance
|
|
* from above.
|
|
* Otherwise, we need to bound the distance both from above and from below.
|
|
*/
|
|
static int add_all_proximity_constraints(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge= &graph->edge[i];
|
|
if (!edge->proximity)
|
|
continue;
|
|
if (edge->src == edge->dst &&
|
|
add_intra_proximity_constraints(graph, edge, 1) < 0)
|
|
return -1;
|
|
if (edge->src != edge->dst &&
|
|
add_inter_proximity_constraints(graph, edge, 1) < 0)
|
|
return -1;
|
|
if (edge->validity)
|
|
continue;
|
|
if (edge->src == edge->dst &&
|
|
add_intra_proximity_constraints(graph, edge, -1) < 0)
|
|
return -1;
|
|
if (edge->src != edge->dst &&
|
|
add_inter_proximity_constraints(graph, edge, -1) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compute a basis for the rows in the linear part of the schedule
|
|
* and extend this basis to a full basis. The remaining rows
|
|
* can then be used to force linear independence from the rows
|
|
* in the schedule.
|
|
*
|
|
* In particular, given the schedule rows S, we compute
|
|
*
|
|
* S = H Q
|
|
* S U = H
|
|
*
|
|
* with H the Hermite normal form of S. That is, all but the
|
|
* first rank columns of Q are zero and so each row in S is
|
|
* a linear combination of the first rank rows of Q.
|
|
* The matrix Q is then transposed because we will write the
|
|
* coefficients of the next schedule row as a column vector s
|
|
* and express this s as a linear combination s = Q c of the
|
|
* computed basis.
|
|
* Similarly, the matrix U is transposed such that we can
|
|
* compute the coefficients c = U s from a schedule row s.
|
|
*/
|
|
static int node_update_cmap(struct isl_sched_node *node)
|
|
{
|
|
isl_mat *H, *U, *Q;
|
|
int n_row = isl_mat_rows(node->sched);
|
|
|
|
H = isl_mat_sub_alloc(node->sched, 0, n_row,
|
|
1 + node->nparam, node->nvar);
|
|
|
|
H = isl_mat_left_hermite(H, 0, &U, &Q);
|
|
isl_mat_free(node->cmap);
|
|
isl_mat_free(node->cinv);
|
|
node->cmap = isl_mat_transpose(Q);
|
|
node->cinv = isl_mat_transpose(U);
|
|
node->rank = isl_mat_initial_non_zero_cols(H);
|
|
isl_mat_free(H);
|
|
|
|
if (!node->cmap || !node->cinv || node->rank < 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Count the number of equality and inequality constraints
|
|
* that will be added for the given map.
|
|
* If carry is set, then we are counting the number of (validity)
|
|
* constraints that will be added in setup_carry_lp and we count
|
|
* each edge exactly once. Otherwise, we count as follows
|
|
* validity -> 1 (>= 0)
|
|
* validity+proximity -> 2 (>= 0 and upper bound)
|
|
* proximity -> 2 (lower and upper bound)
|
|
*/
|
|
static int count_map_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, __isl_take isl_map *map,
|
|
int *n_eq, int *n_ineq, int carry)
|
|
{
|
|
isl_basic_set *coef;
|
|
int f = carry ? 1 : edge->proximity ? 2 : 1;
|
|
|
|
if (carry && !edge->validity) {
|
|
isl_map_free(map);
|
|
return 0;
|
|
}
|
|
|
|
if (edge->src == edge->dst)
|
|
coef = intra_coefficients(graph, map);
|
|
else
|
|
coef = inter_coefficients(graph, map);
|
|
if (!coef)
|
|
return -1;
|
|
*n_eq += f * coef->n_eq;
|
|
*n_ineq += f * coef->n_ineq;
|
|
isl_basic_set_free(coef);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Count the number of equality and inequality constraints
|
|
* that will be added to the main lp problem.
|
|
* We count as follows
|
|
* validity -> 1 (>= 0)
|
|
* validity+proximity -> 2 (>= 0 and upper bound)
|
|
* proximity -> 2 (lower and upper bound)
|
|
*/
|
|
static int count_constraints(struct isl_sched_graph *graph,
|
|
int *n_eq, int *n_ineq)
|
|
{
|
|
int i;
|
|
|
|
*n_eq = *n_ineq = 0;
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge= &graph->edge[i];
|
|
isl_map *map = isl_map_copy(edge->map);
|
|
|
|
if (count_map_constraints(graph, edge, map,
|
|
n_eq, n_ineq, 0) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add constraints that bound the values of the variable and parameter
|
|
* coefficients of the schedule.
|
|
*
|
|
* The maximal value of the coefficients is defined by the option
|
|
* 'schedule_max_coefficient'.
|
|
*/
|
|
static int add_bound_coefficient_constraints(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int i, j, k;
|
|
int max_coefficient;
|
|
int total;
|
|
|
|
max_coefficient = ctx->opt->schedule_max_coefficient;
|
|
|
|
if (max_coefficient == -1)
|
|
return 0;
|
|
|
|
total = isl_basic_set_total_dim(graph->lp);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
|
|
int dim;
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
dim = 1 + node->start + 1 + j;
|
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->ineq[k][dim], -1);
|
|
isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Construct an ILP problem for finding schedule coefficients
|
|
* that result in non-negative, but small dependence distances
|
|
* over all dependences.
|
|
* In particular, the dependence distances over proximity edges
|
|
* are bounded by m_0 + m_n n and we compute schedule coefficients
|
|
* with small values (preferably zero) of m_n and m_0.
|
|
*
|
|
* All variables of the ILP are non-negative. The actual coefficients
|
|
* may be negative, so each coefficient is represented as the difference
|
|
* of two non-negative variables. The negative part always appears
|
|
* immediately before the positive part.
|
|
* Other than that, the variables have the following order
|
|
*
|
|
* - sum of positive and negative parts of m_n coefficients
|
|
* - m_0
|
|
* - sum of positive and negative parts of all c_n coefficients
|
|
* (unconstrained when computing non-parametric schedules)
|
|
* - sum of positive and negative parts of all c_x coefficients
|
|
* - positive and negative parts of m_n coefficients
|
|
* - for each node
|
|
* - c_i_0
|
|
* - positive and negative parts of c_i_n (if parametric)
|
|
* - positive and negative parts of c_i_x
|
|
*
|
|
* The c_i_x are not represented directly, but through the columns of
|
|
* node->cmap. That is, the computed values are for variable t_i_x
|
|
* such that c_i_x = Q t_i_x with Q equal to node->cmap.
|
|
*
|
|
* The constraints are those from the edges plus two or three equalities
|
|
* to express the sums.
|
|
*
|
|
* If force_zero is set, then we add equalities to ensure that
|
|
* the sum of the m_n coefficients and m_0 are both zero.
|
|
*/
|
|
static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
|
|
int force_zero)
|
|
{
|
|
int i, j;
|
|
int k;
|
|
unsigned nparam;
|
|
unsigned total;
|
|
isl_space *dim;
|
|
int parametric;
|
|
int param_pos;
|
|
int n_eq, n_ineq;
|
|
int max_constant_term;
|
|
int max_coefficient;
|
|
|
|
max_constant_term = ctx->opt->schedule_max_constant_term;
|
|
max_coefficient = ctx->opt->schedule_max_coefficient;
|
|
|
|
parametric = ctx->opt->schedule_parametric;
|
|
nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
|
|
param_pos = 4;
|
|
total = param_pos + 2 * nparam;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
|
|
if (node_update_cmap(node) < 0)
|
|
return -1;
|
|
node->start = total;
|
|
total += 1 + 2 * (node->nparam + node->nvar);
|
|
}
|
|
|
|
if (count_constraints(graph, &n_eq, &n_ineq) < 0)
|
|
return -1;
|
|
|
|
dim = isl_space_set_alloc(ctx, 0, total);
|
|
isl_basic_set_free(graph->lp);
|
|
n_eq += 2 + parametric + force_zero;
|
|
if (max_constant_term != -1)
|
|
n_ineq += graph->n;
|
|
if (max_coefficient != -1)
|
|
for (i = 0; i < graph->n; ++i)
|
|
n_ineq += 2 * graph->node[i].nparam +
|
|
2 * graph->node[i].nvar;
|
|
|
|
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
if (!force_zero)
|
|
isl_int_set_si(graph->lp->eq[k][1], -1);
|
|
for (i = 0; i < 2 * nparam; ++i)
|
|
isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
|
|
|
|
if (force_zero) {
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][2], -1);
|
|
}
|
|
|
|
if (parametric) {
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][3], -1);
|
|
for (i = 0; i < graph->n; ++i) {
|
|
int pos = 1 + graph->node[i].start + 1;
|
|
|
|
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
|
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
|
}
|
|
}
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][4], -1);
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int pos = 1 + node->start + 1 + 2 * node->nparam;
|
|
|
|
for (j = 0; j < 2 * node->nvar; ++j)
|
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
|
}
|
|
|
|
if (max_constant_term != -1)
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
|
|
isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
|
|
}
|
|
|
|
if (add_bound_coefficient_constraints(ctx, graph) < 0)
|
|
return -1;
|
|
if (add_all_validity_constraints(graph) < 0)
|
|
return -1;
|
|
if (add_all_proximity_constraints(graph) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Analyze the conflicting constraint found by
|
|
* isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
|
|
* constraint of one of the edges between distinct nodes, living, moreover
|
|
* in distinct SCCs, then record the source and sink SCC as this may
|
|
* be a good place to cut between SCCs.
|
|
*/
|
|
static int check_conflict(int con, void *user)
|
|
{
|
|
int i;
|
|
struct isl_sched_graph *graph = user;
|
|
|
|
if (graph->src_scc >= 0)
|
|
return 0;
|
|
|
|
con -= graph->lp->n_eq;
|
|
|
|
if (con >= graph->lp->n_ineq)
|
|
return 0;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
if (!graph->edge[i].validity)
|
|
continue;
|
|
if (graph->edge[i].src == graph->edge[i].dst)
|
|
continue;
|
|
if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
|
|
continue;
|
|
if (graph->edge[i].start > con)
|
|
continue;
|
|
if (graph->edge[i].end <= con)
|
|
continue;
|
|
graph->src_scc = graph->edge[i].src->scc;
|
|
graph->dst_scc = graph->edge[i].dst->scc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check whether the next schedule row of the given node needs to be
|
|
* non-trivial. Lower-dimensional domains may have some trivial rows,
|
|
* but as soon as the number of remaining required non-trivial rows
|
|
* is as large as the number or remaining rows to be computed,
|
|
* all remaining rows need to be non-trivial.
|
|
*/
|
|
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
|
|
{
|
|
return node->nvar - node->rank >= graph->maxvar - graph->n_row;
|
|
}
|
|
|
|
/* Solve the ILP problem constructed in setup_lp.
|
|
* For each node such that all the remaining rows of its schedule
|
|
* need to be non-trivial, we construct a non-triviality region.
|
|
* This region imposes that the next row is independent of previous rows.
|
|
* In particular the coefficients c_i_x are represented by t_i_x
|
|
* variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
|
|
* its first columns span the rows of the previously computed part
|
|
* of the schedule. The non-triviality region enforces that at least
|
|
* one of the remaining components of t_i_x is non-zero, i.e.,
|
|
* that the new schedule row depends on at least one of the remaining
|
|
* columns of Q.
|
|
*/
|
|
static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
isl_vec *sol;
|
|
isl_basic_set *lp;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int skip = node->rank;
|
|
graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
|
|
if (needs_row(graph, node))
|
|
graph->region[i].len = 2 * (node->nvar - skip);
|
|
else
|
|
graph->region[i].len = 0;
|
|
}
|
|
lp = isl_basic_set_copy(graph->lp);
|
|
sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
|
|
graph->region, &check_conflict, graph);
|
|
return sol;
|
|
}
|
|
|
|
/* Update the schedules of all nodes based on the given solution
|
|
* of the LP problem.
|
|
* The new row is added to the current band.
|
|
* All possibly negative coefficients are encoded as a difference
|
|
* of two non-negative variables, so we need to perform the subtraction
|
|
* here. Moreover, if use_cmap is set, then the solution does
|
|
* not refer to the actual coefficients c_i_x, but instead to variables
|
|
* t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
|
|
* In this case, we then also need to perform this multiplication
|
|
* to obtain the values of c_i_x.
|
|
*
|
|
* If check_zero is set, then the first two coordinates of sol are
|
|
* assumed to correspond to the dependence distance. If these two
|
|
* coordinates are zero, then the corresponding scheduling dimension
|
|
* is marked as being zero distance.
|
|
*/
|
|
static int update_schedule(struct isl_sched_graph *graph,
|
|
__isl_take isl_vec *sol, int use_cmap, int check_zero)
|
|
{
|
|
int i, j;
|
|
int zero = 0;
|
|
isl_vec *csol = NULL;
|
|
|
|
if (!sol)
|
|
goto error;
|
|
if (sol->size == 0)
|
|
isl_die(sol->ctx, isl_error_internal,
|
|
"no solution found", goto error);
|
|
if (graph->n_total_row >= graph->max_row)
|
|
isl_die(sol->ctx, isl_error_internal,
|
|
"too many schedule rows", goto error);
|
|
|
|
if (check_zero)
|
|
zero = isl_int_is_zero(sol->el[1]) &&
|
|
isl_int_is_zero(sol->el[2]);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int pos = node->start;
|
|
int row = isl_mat_rows(node->sched);
|
|
|
|
isl_vec_free(csol);
|
|
csol = isl_vec_alloc(sol->ctx, node->nvar);
|
|
if (!csol)
|
|
goto error;
|
|
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
node->sched = isl_mat_add_rows(node->sched, 1);
|
|
if (!node->sched)
|
|
goto error;
|
|
node->sched = isl_mat_set_element(node->sched, row, 0,
|
|
sol->el[1 + pos]);
|
|
for (j = 0; j < node->nparam + node->nvar; ++j)
|
|
isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
|
|
sol->el[1 + pos + 1 + 2 * j + 1],
|
|
sol->el[1 + pos + 1 + 2 * j]);
|
|
for (j = 0; j < node->nparam; ++j)
|
|
node->sched = isl_mat_set_element(node->sched,
|
|
row, 1 + j, sol->el[1+pos+1+2*j+1]);
|
|
for (j = 0; j < node->nvar; ++j)
|
|
isl_int_set(csol->el[j],
|
|
sol->el[1+pos+1+2*(node->nparam+j)+1]);
|
|
if (use_cmap)
|
|
csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
|
|
csol);
|
|
if (!csol)
|
|
goto error;
|
|
for (j = 0; j < node->nvar; ++j)
|
|
node->sched = isl_mat_set_element(node->sched,
|
|
row, 1 + node->nparam + j, csol->el[j]);
|
|
node->band[graph->n_total_row] = graph->n_band;
|
|
node->zero[graph->n_total_row] = zero;
|
|
}
|
|
isl_vec_free(sol);
|
|
isl_vec_free(csol);
|
|
|
|
graph->n_row++;
|
|
graph->n_total_row++;
|
|
|
|
return 0;
|
|
error:
|
|
isl_vec_free(sol);
|
|
isl_vec_free(csol);
|
|
return -1;
|
|
}
|
|
|
|
/* Convert node->sched into a multi_aff and return this multi_aff.
|
|
*/
|
|
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
|
|
struct isl_sched_node *node)
|
|
{
|
|
int i, j;
|
|
isl_space *space;
|
|
isl_local_space *ls;
|
|
isl_aff *aff;
|
|
isl_multi_aff *ma;
|
|
int nrow, ncol;
|
|
isl_int v;
|
|
|
|
nrow = isl_mat_rows(node->sched);
|
|
ncol = isl_mat_cols(node->sched) - 1;
|
|
space = isl_space_from_domain(isl_space_copy(node->dim));
|
|
space = isl_space_add_dims(space, isl_dim_out, nrow);
|
|
ma = isl_multi_aff_zero(space);
|
|
ls = isl_local_space_from_space(isl_space_copy(node->dim));
|
|
|
|
isl_int_init(v);
|
|
|
|
for (i = 0; i < nrow; ++i) {
|
|
aff = isl_aff_zero_on_domain(isl_local_space_copy(ls));
|
|
isl_mat_get_element(node->sched, i, 0, &v);
|
|
aff = isl_aff_set_constant(aff, v);
|
|
for (j = 0; j < node->nparam; ++j) {
|
|
isl_mat_get_element(node->sched, i, 1 + j, &v);
|
|
aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
|
|
}
|
|
for (j = 0; j < node->nvar; ++j) {
|
|
isl_mat_get_element(node->sched,
|
|
i, 1 + node->nparam + j, &v);
|
|
aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
|
|
}
|
|
ma = isl_multi_aff_set_aff(ma, i, aff);
|
|
}
|
|
|
|
isl_int_clear(v);
|
|
|
|
isl_local_space_free(ls);
|
|
|
|
return ma;
|
|
}
|
|
|
|
/* Convert node->sched into a map and return this map.
|
|
*
|
|
* The result is cached in node->sched_map, which needs to be released
|
|
* whenever node->sched is updated.
|
|
*/
|
|
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
|
|
{
|
|
if (!node->sched_map) {
|
|
isl_multi_aff *ma;
|
|
|
|
ma = node_extract_schedule_multi_aff(node);
|
|
node->sched_map = isl_map_from_multi_aff(ma);
|
|
}
|
|
|
|
return isl_map_copy(node->sched_map);
|
|
}
|
|
|
|
/* Update the given dependence relation based on the current schedule.
|
|
* That is, intersect the dependence relation with a map expressing
|
|
* that source and sink are executed within the same iteration of
|
|
* the current schedule.
|
|
* This is not the most efficient way, but this shouldn't be a critical
|
|
* operation.
|
|
*/
|
|
static __isl_give isl_map *specialize(__isl_take isl_map *map,
|
|
struct isl_sched_node *src, struct isl_sched_node *dst)
|
|
{
|
|
isl_map *src_sched, *dst_sched, *id;
|
|
|
|
src_sched = node_extract_schedule(src);
|
|
dst_sched = node_extract_schedule(dst);
|
|
id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
|
|
return isl_map_intersect(map, id);
|
|
}
|
|
|
|
/* Update the dependence relations of all edges based on the current schedule.
|
|
* If a dependence is carried completely by the current schedule, then
|
|
* it is removed from the edge_tables. It is kept in the list of edges
|
|
* as otherwise all edge_tables would have to be recomputed.
|
|
*/
|
|
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = graph->n_edge - 1; i >= 0; --i) {
|
|
struct isl_sched_edge *edge = &graph->edge[i];
|
|
edge->map = specialize(edge->map, edge->src, edge->dst);
|
|
if (!edge->map)
|
|
return -1;
|
|
|
|
if (isl_map_plain_is_empty(edge->map))
|
|
graph_remove_edge(graph, edge);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void next_band(struct isl_sched_graph *graph)
|
|
{
|
|
graph->band_start = graph->n_total_row;
|
|
graph->n_band++;
|
|
}
|
|
|
|
/* Topologically sort statements mapped to the same schedule iteration
|
|
* and add a row to the schedule corresponding to this order.
|
|
*/
|
|
static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i, j;
|
|
|
|
if (graph->n <= 1)
|
|
return 0;
|
|
|
|
if (update_edges(ctx, graph) < 0)
|
|
return -1;
|
|
|
|
if (graph->n_edge == 0)
|
|
return 0;
|
|
|
|
if (detect_sccs(ctx, graph) < 0)
|
|
return -1;
|
|
|
|
if (graph->n_total_row >= graph->max_row)
|
|
isl_die(ctx, isl_error_internal,
|
|
"too many schedule rows", return -1);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int row = isl_mat_rows(node->sched);
|
|
int cols = isl_mat_cols(node->sched);
|
|
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
node->sched = isl_mat_add_rows(node->sched, 1);
|
|
if (!node->sched)
|
|
return -1;
|
|
node->sched = isl_mat_set_element_si(node->sched, row, 0,
|
|
node->scc);
|
|
for (j = 1; j < cols; ++j)
|
|
node->sched = isl_mat_set_element_si(node->sched,
|
|
row, j, 0);
|
|
node->band[graph->n_total_row] = graph->n_band;
|
|
}
|
|
|
|
graph->n_total_row++;
|
|
next_band(graph);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Construct an isl_schedule based on the computed schedule stored
|
|
* in graph and with parameters specified by dim.
|
|
*/
|
|
static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
|
|
__isl_take isl_space *dim)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
isl_schedule *sched = NULL;
|
|
|
|
if (!dim)
|
|
return NULL;
|
|
|
|
ctx = isl_space_get_ctx(dim);
|
|
sched = isl_calloc(ctx, struct isl_schedule,
|
|
sizeof(struct isl_schedule) +
|
|
(graph->n - 1) * sizeof(struct isl_schedule_node));
|
|
if (!sched)
|
|
goto error;
|
|
|
|
sched->ref = 1;
|
|
sched->n = graph->n;
|
|
sched->n_band = graph->n_band;
|
|
sched->n_total_row = graph->n_total_row;
|
|
|
|
for (i = 0; i < sched->n; ++i) {
|
|
int r, b;
|
|
int *band_end, *band_id, *zero;
|
|
|
|
sched->node[i].sched =
|
|
node_extract_schedule_multi_aff(&graph->node[i]);
|
|
if (!sched->node[i].sched)
|
|
goto error;
|
|
|
|
sched->node[i].n_band = graph->n_band;
|
|
if (graph->n_band == 0)
|
|
continue;
|
|
|
|
band_end = isl_alloc_array(ctx, int, graph->n_band);
|
|
band_id = isl_alloc_array(ctx, int, graph->n_band);
|
|
zero = isl_alloc_array(ctx, int, graph->n_total_row);
|
|
sched->node[i].band_end = band_end;
|
|
sched->node[i].band_id = band_id;
|
|
sched->node[i].zero = zero;
|
|
if (!band_end || !band_id || !zero)
|
|
goto error;
|
|
|
|
for (r = 0; r < graph->n_total_row; ++r)
|
|
zero[r] = graph->node[i].zero[r];
|
|
for (r = b = 0; r < graph->n_total_row; ++r) {
|
|
if (graph->node[i].band[r] == b)
|
|
continue;
|
|
band_end[b++] = r;
|
|
if (graph->node[i].band[r] == -1)
|
|
break;
|
|
}
|
|
if (r == graph->n_total_row)
|
|
band_end[b++] = r;
|
|
sched->node[i].n_band = b;
|
|
for (--b; b >= 0; --b)
|
|
band_id[b] = graph->node[i].band_id[b];
|
|
}
|
|
|
|
sched->dim = dim;
|
|
|
|
return sched;
|
|
error:
|
|
isl_space_free(dim);
|
|
isl_schedule_free(sched);
|
|
return NULL;
|
|
}
|
|
|
|
/* Copy nodes that satisfy node_pred from the src dependence graph
|
|
* to the dst dependence graph.
|
|
*/
|
|
static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
|
|
int (*node_pred)(struct isl_sched_node *node, int data), int data)
|
|
{
|
|
int i;
|
|
|
|
dst->n = 0;
|
|
for (i = 0; i < src->n; ++i) {
|
|
if (!node_pred(&src->node[i], data))
|
|
continue;
|
|
dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
|
|
dst->node[dst->n].nvar = src->node[i].nvar;
|
|
dst->node[dst->n].nparam = src->node[i].nparam;
|
|
dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
|
|
dst->node[dst->n].sched_map =
|
|
isl_map_copy(src->node[i].sched_map);
|
|
dst->node[dst->n].band = src->node[i].band;
|
|
dst->node[dst->n].band_id = src->node[i].band_id;
|
|
dst->node[dst->n].zero = src->node[i].zero;
|
|
dst->n++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
|
|
* to the dst dependence graph.
|
|
* If the source or destination node of the edge is not in the destination
|
|
* graph, then it must be a backward proximity edge and it should simply
|
|
* be ignored.
|
|
*/
|
|
static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
|
|
struct isl_sched_graph *src,
|
|
int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
|
|
{
|
|
int i;
|
|
enum isl_edge_type t;
|
|
|
|
dst->n_edge = 0;
|
|
for (i = 0; i < src->n_edge; ++i) {
|
|
struct isl_sched_edge *edge = &src->edge[i];
|
|
isl_map *map;
|
|
struct isl_sched_node *dst_src, *dst_dst;
|
|
|
|
if (!edge_pred(edge, data))
|
|
continue;
|
|
|
|
if (isl_map_plain_is_empty(edge->map))
|
|
continue;
|
|
|
|
dst_src = graph_find_node(ctx, dst, edge->src->dim);
|
|
dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
|
|
if (!dst_src || !dst_dst) {
|
|
if (edge->validity)
|
|
isl_die(ctx, isl_error_internal,
|
|
"backward validity edge", return -1);
|
|
continue;
|
|
}
|
|
|
|
map = isl_map_copy(edge->map);
|
|
|
|
dst->edge[dst->n_edge].src = dst_src;
|
|
dst->edge[dst->n_edge].dst = dst_dst;
|
|
dst->edge[dst->n_edge].map = map;
|
|
dst->edge[dst->n_edge].validity = edge->validity;
|
|
dst->edge[dst->n_edge].proximity = edge->proximity;
|
|
dst->n_edge++;
|
|
|
|
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
|
|
if (edge !=
|
|
graph_find_edge(src, t, edge->src, edge->dst))
|
|
continue;
|
|
if (graph_edge_table_add(ctx, dst, t,
|
|
&dst->edge[dst->n_edge - 1]) < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Given a "src" dependence graph that contains the nodes from "dst"
|
|
* that satisfy node_pred, copy the schedule computed in "src"
|
|
* for those nodes back to "dst".
|
|
*/
|
|
static int copy_schedule(struct isl_sched_graph *dst,
|
|
struct isl_sched_graph *src,
|
|
int (*node_pred)(struct isl_sched_node *node, int data), int data)
|
|
{
|
|
int i;
|
|
|
|
src->n = 0;
|
|
for (i = 0; i < dst->n; ++i) {
|
|
if (!node_pred(&dst->node[i], data))
|
|
continue;
|
|
isl_mat_free(dst->node[i].sched);
|
|
isl_map_free(dst->node[i].sched_map);
|
|
dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
|
|
dst->node[i].sched_map =
|
|
isl_map_copy(src->node[src->n].sched_map);
|
|
src->n++;
|
|
}
|
|
|
|
dst->max_row = src->max_row;
|
|
dst->n_total_row = src->n_total_row;
|
|
dst->n_band = src->n_band;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compute the maximal number of variables over all nodes.
|
|
* This is the maximal number of linearly independent schedule
|
|
* rows that we need to compute.
|
|
* Just in case we end up in a part of the dependence graph
|
|
* with only lower-dimensional domains, we make sure we will
|
|
* compute the required amount of extra linearly independent rows.
|
|
*/
|
|
static int compute_maxvar(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
graph->maxvar = 0;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int nvar;
|
|
|
|
if (node_update_cmap(node) < 0)
|
|
return -1;
|
|
nvar = node->nvar + graph->n_row - node->rank;
|
|
if (nvar > graph->maxvar)
|
|
graph->maxvar = nvar;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
|
|
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
|
|
|
|
/* Compute a schedule for a subgraph of "graph". In particular, for
|
|
* the graph composed of nodes that satisfy node_pred and edges that
|
|
* that satisfy edge_pred. The caller should precompute the number
|
|
* of nodes and edges that satisfy these predicates and pass them along
|
|
* as "n" and "n_edge".
|
|
* If the subgraph is known to consist of a single component, then wcc should
|
|
* be set and then we call compute_schedule_wcc on the constructed subgraph.
|
|
* Otherwise, we call compute_schedule, which will check whether the subgraph
|
|
* is connected.
|
|
*/
|
|
static int compute_sub_schedule(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph, int n, int n_edge,
|
|
int (*node_pred)(struct isl_sched_node *node, int data),
|
|
int (*edge_pred)(struct isl_sched_edge *edge, int data),
|
|
int data, int wcc)
|
|
{
|
|
struct isl_sched_graph split = { 0 };
|
|
int t;
|
|
|
|
if (graph_alloc(ctx, &split, n, n_edge) < 0)
|
|
goto error;
|
|
if (copy_nodes(&split, graph, node_pred, data) < 0)
|
|
goto error;
|
|
if (graph_init_table(ctx, &split) < 0)
|
|
goto error;
|
|
for (t = 0; t <= isl_edge_last; ++t)
|
|
split.max_edge[t] = graph->max_edge[t];
|
|
if (graph_init_edge_tables(ctx, &split) < 0)
|
|
goto error;
|
|
if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
|
|
goto error;
|
|
split.n_row = graph->n_row;
|
|
split.max_row = graph->max_row;
|
|
split.n_total_row = graph->n_total_row;
|
|
split.n_band = graph->n_band;
|
|
split.band_start = graph->band_start;
|
|
|
|
if (wcc && compute_schedule_wcc(ctx, &split) < 0)
|
|
goto error;
|
|
if (!wcc && compute_schedule(ctx, &split) < 0)
|
|
goto error;
|
|
|
|
copy_schedule(graph, &split, node_pred, data);
|
|
|
|
graph_free(ctx, &split);
|
|
return 0;
|
|
error:
|
|
graph_free(ctx, &split);
|
|
return -1;
|
|
}
|
|
|
|
static int node_scc_exactly(struct isl_sched_node *node, int scc)
|
|
{
|
|
return node->scc == scc;
|
|
}
|
|
|
|
static int node_scc_at_most(struct isl_sched_node *node, int scc)
|
|
{
|
|
return node->scc <= scc;
|
|
}
|
|
|
|
static int node_scc_at_least(struct isl_sched_node *node, int scc)
|
|
{
|
|
return node->scc >= scc;
|
|
}
|
|
|
|
static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
|
|
{
|
|
return edge->src->scc == scc && edge->dst->scc == scc;
|
|
}
|
|
|
|
static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
|
|
{
|
|
return edge->dst->scc <= scc;
|
|
}
|
|
|
|
static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
|
|
{
|
|
return edge->src->scc >= scc;
|
|
}
|
|
|
|
/* Pad the schedules of all nodes with zero rows such that in the end
|
|
* they all have graph->n_total_row rows.
|
|
* The extra rows don't belong to any band, so they get assigned band number -1.
|
|
*/
|
|
static int pad_schedule(struct isl_sched_graph *graph)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int row = isl_mat_rows(node->sched);
|
|
if (graph->n_total_row > row) {
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
}
|
|
node->sched = isl_mat_add_zero_rows(node->sched,
|
|
graph->n_total_row - row);
|
|
if (!node->sched)
|
|
return -1;
|
|
for (j = row; j < graph->n_total_row; ++j)
|
|
node->band[j] = -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Split the current graph into two parts and compute a schedule for each
|
|
* part individually. In particular, one part consists of all SCCs up
|
|
* to and including graph->src_scc, while the other part contains the other
|
|
* SCCS.
|
|
*
|
|
* The split is enforced in the schedule by constant rows with two different
|
|
* values (0 and 1). These constant rows replace the previously computed rows
|
|
* in the current band.
|
|
* It would be possible to reuse them as the first rows in the next
|
|
* band, but recomputing them may result in better rows as we are looking
|
|
* at a smaller part of the dependence graph.
|
|
* compute_split_schedule is only called when no zero-distance schedule row
|
|
* could be found on the entire graph, so we wark the splitting row as
|
|
* non zero-distance.
|
|
*
|
|
* The band_id of the second group is set to n, where n is the number
|
|
* of nodes in the first group. This ensures that the band_ids over
|
|
* the two groups remain disjoint, even if either or both of the two
|
|
* groups contain independent components.
|
|
*/
|
|
static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i, j, n, e1, e2;
|
|
int n_total_row, orig_total_row;
|
|
int n_band, orig_band;
|
|
int drop;
|
|
|
|
if (graph->n_total_row >= graph->max_row)
|
|
isl_die(ctx, isl_error_internal,
|
|
"too many schedule rows", return -1);
|
|
|
|
drop = graph->n_total_row - graph->band_start;
|
|
graph->n_total_row -= drop;
|
|
graph->n_row -= drop;
|
|
|
|
n = 0;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int row = isl_mat_rows(node->sched) - drop;
|
|
int cols = isl_mat_cols(node->sched);
|
|
int before = node->scc <= graph->src_scc;
|
|
|
|
if (before)
|
|
n++;
|
|
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
node->sched = isl_mat_drop_rows(node->sched,
|
|
graph->band_start, drop);
|
|
node->sched = isl_mat_add_rows(node->sched, 1);
|
|
if (!node->sched)
|
|
return -1;
|
|
node->sched = isl_mat_set_element_si(node->sched, row, 0,
|
|
!before);
|
|
for (j = 1; j < cols; ++j)
|
|
node->sched = isl_mat_set_element_si(node->sched,
|
|
row, j, 0);
|
|
node->band[graph->n_total_row] = graph->n_band;
|
|
node->zero[graph->n_total_row] = 0;
|
|
}
|
|
|
|
e1 = e2 = 0;
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
if (graph->edge[i].dst->scc <= graph->src_scc)
|
|
e1++;
|
|
if (graph->edge[i].src->scc > graph->src_scc)
|
|
e2++;
|
|
}
|
|
|
|
graph->n_total_row++;
|
|
next_band(graph);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
if (node->scc > graph->src_scc)
|
|
node->band_id[graph->n_band] = n;
|
|
}
|
|
|
|
orig_total_row = graph->n_total_row;
|
|
orig_band = graph->n_band;
|
|
if (compute_sub_schedule(ctx, graph, n, e1,
|
|
&node_scc_at_most, &edge_dst_scc_at_most,
|
|
graph->src_scc, 0) < 0)
|
|
return -1;
|
|
n_total_row = graph->n_total_row;
|
|
graph->n_total_row = orig_total_row;
|
|
n_band = graph->n_band;
|
|
graph->n_band = orig_band;
|
|
if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
|
|
&node_scc_at_least, &edge_src_scc_at_least,
|
|
graph->src_scc + 1, 0) < 0)
|
|
return -1;
|
|
if (n_total_row > graph->n_total_row)
|
|
graph->n_total_row = n_total_row;
|
|
if (n_band > graph->n_band)
|
|
graph->n_band = n_band;
|
|
|
|
return pad_schedule(graph);
|
|
}
|
|
|
|
/* Compute the next band of the schedule after updating the dependence
|
|
* relations based on the the current schedule.
|
|
*/
|
|
static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
if (update_edges(ctx, graph) < 0)
|
|
return -1;
|
|
next_band(graph);
|
|
|
|
return compute_schedule(ctx, graph);
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force the dependence "map" (which
|
|
* is part of the dependence relation of "edge")
|
|
* to be respected and attempt to carry it, where the edge is one from
|
|
* a node j to itself. "pos" is the sequence number of the given map.
|
|
* That is, add constraints that enforce
|
|
*
|
|
* (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
|
|
* = c_j_x (y - x) >= e_i
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
|
* of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
|
|
* with each coefficient in c_j_x represented as a pair of non-negative
|
|
* coefficients.
|
|
*/
|
|
static int add_intra_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
|
|
{
|
|
unsigned total;
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_space *dim;
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *node = edge->src;
|
|
|
|
coef = intra_coefficients(graph, map);
|
|
if (!coef)
|
|
return -1;
|
|
|
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
|
|
|
total = isl_basic_set_total_dim(graph->lp);
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
|
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
node->nvar, -1);
|
|
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
node->nvar, 1);
|
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
|
coef->n_eq, coef->n_ineq);
|
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
|
coef, dim_map);
|
|
isl_space_free(dim);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force the dependence "map" (which
|
|
* is part of the dependence relation of "edge")
|
|
* to be respected and attempt to carry it, where the edge is one from
|
|
* node j to node k. "pos" is the sequence number of the given map.
|
|
* That is, add constraints that enforce
|
|
*
|
|
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
|
|
*
|
|
* for each (x,y) in R.
|
|
* We obtain general constraints on coefficients (c_0, c_n, c_x)
|
|
* of valid constraints for R and then plug in
|
|
* (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
|
|
* with each coefficient (except e_i, c_k_0 and c_j_0)
|
|
* represented as a pair of non-negative coefficients.
|
|
*/
|
|
static int add_inter_constraints(struct isl_sched_graph *graph,
|
|
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
|
|
{
|
|
unsigned total;
|
|
isl_ctx *ctx = isl_map_get_ctx(map);
|
|
isl_space *dim;
|
|
isl_dim_map *dim_map;
|
|
isl_basic_set *coef;
|
|
struct isl_sched_node *src = edge->src;
|
|
struct isl_sched_node *dst = edge->dst;
|
|
|
|
coef = inter_coefficients(graph, map);
|
|
if (!coef)
|
|
return -1;
|
|
|
|
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
|
|
|
|
total = isl_basic_set_total_dim(graph->lp);
|
|
dim_map = isl_dim_map_alloc(ctx, total);
|
|
|
|
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
|
|
|
|
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
|
|
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
|
|
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
|
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
|
dst->nvar, -1);
|
|
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
|
|
dst->nvar, 1);
|
|
|
|
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
|
|
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
|
|
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
|
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
src->nvar, 1);
|
|
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
|
|
isl_space_dim(dim, isl_dim_set), 1,
|
|
src->nvar, -1);
|
|
|
|
graph->lp = isl_basic_set_extend_constraints(graph->lp,
|
|
coef->n_eq, coef->n_ineq);
|
|
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
|
|
coef, dim_map);
|
|
isl_space_free(dim);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add constraints to graph->lp that force all validity dependences
|
|
* to be respected and attempt to carry them.
|
|
*/
|
|
static int add_all_constraints(struct isl_sched_graph *graph)
|
|
{
|
|
int i, j;
|
|
int pos;
|
|
|
|
pos = 0;
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge= &graph->edge[i];
|
|
|
|
if (!edge->validity)
|
|
continue;
|
|
|
|
for (j = 0; j < edge->map->n; ++j) {
|
|
isl_basic_map *bmap;
|
|
isl_map *map;
|
|
|
|
bmap = isl_basic_map_copy(edge->map->p[j]);
|
|
map = isl_map_from_basic_map(bmap);
|
|
|
|
if (edge->src == edge->dst &&
|
|
add_intra_constraints(graph, edge, map, pos) < 0)
|
|
return -1;
|
|
if (edge->src != edge->dst &&
|
|
add_inter_constraints(graph, edge, map, pos) < 0)
|
|
return -1;
|
|
++pos;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Count the number of equality and inequality constraints
|
|
* that will be added to the carry_lp problem.
|
|
* We count each edge exactly once.
|
|
*/
|
|
static int count_all_constraints(struct isl_sched_graph *graph,
|
|
int *n_eq, int *n_ineq)
|
|
{
|
|
int i, j;
|
|
|
|
*n_eq = *n_ineq = 0;
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
struct isl_sched_edge *edge= &graph->edge[i];
|
|
for (j = 0; j < edge->map->n; ++j) {
|
|
isl_basic_map *bmap;
|
|
isl_map *map;
|
|
|
|
bmap = isl_basic_map_copy(edge->map->p[j]);
|
|
map = isl_map_from_basic_map(bmap);
|
|
|
|
if (count_map_constraints(graph, edge, map,
|
|
n_eq, n_ineq, 1) < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Construct an LP problem for finding schedule coefficients
|
|
* such that the schedule carries as many dependences as possible.
|
|
* In particular, for each dependence i, we bound the dependence distance
|
|
* from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
|
|
* of all e_i's. Dependence with e_i = 0 in the solution are simply
|
|
* respected, while those with e_i > 0 (in practice e_i = 1) are carried.
|
|
* Note that if the dependence relation is a union of basic maps,
|
|
* then we have to consider each basic map individually as it may only
|
|
* be possible to carry the dependences expressed by some of those
|
|
* basic maps and not all off them.
|
|
* Below, we consider each of those basic maps as a separate "edge".
|
|
*
|
|
* All variables of the LP are non-negative. The actual coefficients
|
|
* may be negative, so each coefficient is represented as the difference
|
|
* of two non-negative variables. The negative part always appears
|
|
* immediately before the positive part.
|
|
* Other than that, the variables have the following order
|
|
*
|
|
* - sum of (1 - e_i) over all edges
|
|
* - sum of positive and negative parts of all c_n coefficients
|
|
* (unconstrained when computing non-parametric schedules)
|
|
* - sum of positive and negative parts of all c_x coefficients
|
|
* - for each edge
|
|
* - e_i
|
|
* - for each node
|
|
* - c_i_0
|
|
* - positive and negative parts of c_i_n (if parametric)
|
|
* - positive and negative parts of c_i_x
|
|
*
|
|
* The constraints are those from the (validity) edges plus three equalities
|
|
* to express the sums and n_edge inequalities to express e_i <= 1.
|
|
*/
|
|
static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i, j;
|
|
int k;
|
|
isl_space *dim;
|
|
unsigned total;
|
|
int n_eq, n_ineq;
|
|
int n_edge;
|
|
|
|
n_edge = 0;
|
|
for (i = 0; i < graph->n_edge; ++i)
|
|
n_edge += graph->edge[i].map->n;
|
|
|
|
total = 3 + n_edge;
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
|
|
node->start = total;
|
|
total += 1 + 2 * (node->nparam + node->nvar);
|
|
}
|
|
|
|
if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
|
|
return -1;
|
|
|
|
dim = isl_space_set_alloc(ctx, 0, total);
|
|
isl_basic_set_free(graph->lp);
|
|
n_eq += 3;
|
|
n_ineq += n_edge;
|
|
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
|
|
graph->lp = isl_basic_set_set_rational(graph->lp);
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][0], -n_edge);
|
|
isl_int_set_si(graph->lp->eq[k][1], 1);
|
|
for (i = 0; i < n_edge; ++i)
|
|
isl_int_set_si(graph->lp->eq[k][4 + i], 1);
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][2], -1);
|
|
for (i = 0; i < graph->n; ++i) {
|
|
int pos = 1 + graph->node[i].start + 1;
|
|
|
|
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
|
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
|
}
|
|
|
|
k = isl_basic_set_alloc_equality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->eq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->eq[k][3], -1);
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int pos = 1 + node->start + 1 + 2 * node->nparam;
|
|
|
|
for (j = 0; j < 2 * node->nvar; ++j)
|
|
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
|
|
}
|
|
|
|
for (i = 0; i < n_edge; ++i) {
|
|
k = isl_basic_set_alloc_inequality(graph->lp);
|
|
if (k < 0)
|
|
return -1;
|
|
isl_seq_clr(graph->lp->ineq[k], 1 + total);
|
|
isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
|
|
isl_int_set_si(graph->lp->ineq[k][0], 1);
|
|
}
|
|
|
|
if (add_all_constraints(graph) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If the schedule_split_scaled option is set and if the linear
|
|
* parts of the scheduling rows for all nodes in the graphs have
|
|
* non-trivial common divisor, then split off the constant term
|
|
* from the linear part.
|
|
* The constant term is then placed in a separate band and
|
|
* the linear part is reduced.
|
|
*/
|
|
static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int row;
|
|
isl_int gcd, gcd_i;
|
|
|
|
if (!ctx->opt->schedule_split_scaled)
|
|
return 0;
|
|
if (graph->n <= 1)
|
|
return 0;
|
|
|
|
if (graph->n_total_row >= graph->max_row)
|
|
isl_die(ctx, isl_error_internal,
|
|
"too many schedule rows", return -1);
|
|
|
|
isl_int_init(gcd);
|
|
isl_int_init(gcd_i);
|
|
|
|
isl_int_set_si(gcd, 0);
|
|
|
|
row = isl_mat_rows(graph->node[0].sched) - 1;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int cols = isl_mat_cols(node->sched);
|
|
|
|
isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
|
|
isl_int_gcd(gcd, gcd, gcd_i);
|
|
}
|
|
|
|
isl_int_clear(gcd_i);
|
|
|
|
if (isl_int_cmp_si(gcd, 1) <= 0) {
|
|
isl_int_clear(gcd);
|
|
return 0;
|
|
}
|
|
|
|
next_band(graph);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
node->sched = isl_mat_add_zero_rows(node->sched, 1);
|
|
if (!node->sched)
|
|
goto error;
|
|
isl_int_fdiv_r(node->sched->row[row + 1][0],
|
|
node->sched->row[row][0], gcd);
|
|
isl_int_fdiv_q(node->sched->row[row][0],
|
|
node->sched->row[row][0], gcd);
|
|
isl_int_mul(node->sched->row[row][0],
|
|
node->sched->row[row][0], gcd);
|
|
node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
|
|
if (!node->sched)
|
|
goto error;
|
|
node->band[graph->n_total_row] = graph->n_band;
|
|
}
|
|
|
|
graph->n_total_row++;
|
|
|
|
isl_int_clear(gcd);
|
|
return 0;
|
|
error:
|
|
isl_int_clear(gcd);
|
|
return -1;
|
|
}
|
|
|
|
static int compute_component_schedule(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph);
|
|
|
|
/* Is the schedule row "sol" trivial on node "node"?
|
|
* That is, is the solution zero on the dimensions orthogonal to
|
|
* the previously found solutions?
|
|
* Return 1 if the solution is trivial, 0 if it is not and -1 on error.
|
|
*
|
|
* Each coefficient is represented as the difference between
|
|
* two non-negative values in "sol". "sol" has been computed
|
|
* in terms of the original iterators (i.e., without use of cmap).
|
|
* We construct the schedule row s and write it as a linear
|
|
* combination of (linear combinations of) previously computed schedule rows.
|
|
* s = Q c or c = U s.
|
|
* If the final entries of c are all zero, then the solution is trivial.
|
|
*/
|
|
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
|
|
{
|
|
int i;
|
|
int pos;
|
|
int trivial;
|
|
isl_ctx *ctx;
|
|
isl_vec *node_sol;
|
|
|
|
if (!sol)
|
|
return -1;
|
|
if (node->nvar == node->rank)
|
|
return 0;
|
|
|
|
ctx = isl_vec_get_ctx(sol);
|
|
node_sol = isl_vec_alloc(ctx, node->nvar);
|
|
if (!node_sol)
|
|
return -1;
|
|
|
|
pos = 1 + node->start + 1 + 2 * node->nparam;
|
|
|
|
for (i = 0; i < node->nvar; ++i)
|
|
isl_int_sub(node_sol->el[i],
|
|
sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
|
|
|
|
node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
|
|
|
|
if (!node_sol)
|
|
return -1;
|
|
|
|
trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
|
|
node->nvar - node->rank) == -1;
|
|
|
|
isl_vec_free(node_sol);
|
|
|
|
return trivial;
|
|
}
|
|
|
|
/* Is the schedule row "sol" trivial on any node where it should
|
|
* not be trivial?
|
|
* "sol" has been computed in terms of the original iterators
|
|
* (i.e., without use of cmap).
|
|
* Return 1 if any solution is trivial, 0 if they are not and -1 on error.
|
|
*/
|
|
static int is_any_trivial(struct isl_sched_graph *graph,
|
|
__isl_keep isl_vec *sol)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int trivial;
|
|
|
|
if (!needs_row(graph, node))
|
|
continue;
|
|
trivial = is_trivial(node, sol);
|
|
if (trivial < 0 || trivial)
|
|
return trivial;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Construct a schedule row for each node such that as many dependences
|
|
* as possible are carried and then continue with the next band.
|
|
*
|
|
* If the computed schedule row turns out to be trivial on one or
|
|
* more nodes where it should not be trivial, then we throw it away
|
|
* and try again on each component separately.
|
|
*/
|
|
static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
int n_edge;
|
|
int trivial;
|
|
isl_vec *sol;
|
|
isl_basic_set *lp;
|
|
|
|
n_edge = 0;
|
|
for (i = 0; i < graph->n_edge; ++i)
|
|
n_edge += graph->edge[i].map->n;
|
|
|
|
if (setup_carry_lp(ctx, graph) < 0)
|
|
return -1;
|
|
|
|
lp = isl_basic_set_copy(graph->lp);
|
|
sol = isl_tab_basic_set_non_neg_lexmin(lp);
|
|
if (!sol)
|
|
return -1;
|
|
|
|
if (sol->size == 0) {
|
|
isl_vec_free(sol);
|
|
isl_die(ctx, isl_error_internal,
|
|
"error in schedule construction", return -1);
|
|
}
|
|
|
|
isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
|
|
if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
|
|
isl_vec_free(sol);
|
|
isl_die(ctx, isl_error_unknown,
|
|
"unable to carry dependences", return -1);
|
|
}
|
|
|
|
trivial = is_any_trivial(graph, sol);
|
|
if (trivial < 0) {
|
|
sol = isl_vec_free(sol);
|
|
} else if (trivial) {
|
|
isl_vec_free(sol);
|
|
if (graph->scc > 1)
|
|
return compute_component_schedule(ctx, graph);
|
|
isl_die(ctx, isl_error_unknown,
|
|
"unable to construct non-trivial solution", return -1);
|
|
}
|
|
|
|
if (update_schedule(graph, sol, 0, 0) < 0)
|
|
return -1;
|
|
|
|
if (split_scaled(ctx, graph) < 0)
|
|
return -1;
|
|
|
|
return compute_next_band(ctx, graph);
|
|
}
|
|
|
|
/* Are there any (non-empty) validity edges in the graph?
|
|
*/
|
|
static int has_validity_edges(struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < graph->n_edge; ++i) {
|
|
int empty;
|
|
|
|
empty = isl_map_plain_is_empty(graph->edge[i].map);
|
|
if (empty < 0)
|
|
return -1;
|
|
if (empty)
|
|
continue;
|
|
if (graph->edge[i].validity)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Should we apply a Feautrier step?
|
|
* That is, did the user request the Feautrier algorithm and are
|
|
* there any validity dependences (left)?
|
|
*/
|
|
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
|
|
return 0;
|
|
|
|
return has_validity_edges(graph);
|
|
}
|
|
|
|
/* Compute a schedule for a connected dependence graph using Feautrier's
|
|
* multi-dimensional scheduling algorithm.
|
|
* The original algorithm is described in [1].
|
|
* The main idea is to minimize the number of scheduling dimensions, by
|
|
* trying to satisfy as many dependences as possible per scheduling dimension.
|
|
*
|
|
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
|
|
* Problem, Part II: Multi-Dimensional Time.
|
|
* In Intl. Journal of Parallel Programming, 1992.
|
|
*/
|
|
static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
return carry_dependences(ctx, graph);
|
|
}
|
|
|
|
/* Compute a schedule for a connected dependence graph.
|
|
* We try to find a sequence of as many schedule rows as possible that result
|
|
* in non-negative dependence distances (independent of the previous rows
|
|
* in the sequence, i.e., such that the sequence is tilable).
|
|
* If we can't find any more rows we either
|
|
* - split between SCCs and start over (assuming we found an interesting
|
|
* pair of SCCs between which to split)
|
|
* - continue with the next band (assuming the current band has at least
|
|
* one row)
|
|
* - try to carry as many dependences as possible and continue with the next
|
|
* band
|
|
*
|
|
* If Feautrier's algorithm is selected, we first recursively try to satisfy
|
|
* as many validity dependences as possible. When all validity dependences
|
|
* are satisfied we extend the schedule to a full-dimensional schedule.
|
|
*
|
|
* If we manage to complete the schedule, we finish off by topologically
|
|
* sorting the statements based on the remaining dependences.
|
|
*
|
|
* If ctx->opt->schedule_outer_zero_distance is set, then we force the
|
|
* outermost dimension in the current band to be zero distance. If this
|
|
* turns out to be impossible, we fall back on the general scheme above
|
|
* and try to carry as many dependences as possible.
|
|
*/
|
|
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int force_zero = 0;
|
|
|
|
if (detect_sccs(ctx, graph) < 0)
|
|
return -1;
|
|
if (sort_sccs(graph) < 0)
|
|
return -1;
|
|
|
|
if (compute_maxvar(graph) < 0)
|
|
return -1;
|
|
|
|
if (need_feautrier_step(ctx, graph))
|
|
return compute_schedule_wcc_feautrier(ctx, graph);
|
|
|
|
if (ctx->opt->schedule_outer_zero_distance)
|
|
force_zero = 1;
|
|
|
|
while (graph->n_row < graph->maxvar) {
|
|
isl_vec *sol;
|
|
|
|
graph->src_scc = -1;
|
|
graph->dst_scc = -1;
|
|
|
|
if (setup_lp(ctx, graph, force_zero) < 0)
|
|
return -1;
|
|
sol = solve_lp(graph);
|
|
if (!sol)
|
|
return -1;
|
|
if (sol->size == 0) {
|
|
isl_vec_free(sol);
|
|
if (!ctx->opt->schedule_maximize_band_depth &&
|
|
graph->n_total_row > graph->band_start)
|
|
return compute_next_band(ctx, graph);
|
|
if (graph->src_scc >= 0)
|
|
return compute_split_schedule(ctx, graph);
|
|
if (graph->n_total_row > graph->band_start)
|
|
return compute_next_band(ctx, graph);
|
|
return carry_dependences(ctx, graph);
|
|
}
|
|
if (update_schedule(graph, sol, 1, 1) < 0)
|
|
return -1;
|
|
force_zero = 0;
|
|
}
|
|
|
|
if (graph->n_total_row > graph->band_start)
|
|
next_band(graph);
|
|
return sort_statements(ctx, graph);
|
|
}
|
|
|
|
/* Add a row to the schedules that separates the SCCs and move
|
|
* to the next band.
|
|
*/
|
|
static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
int i;
|
|
|
|
if (graph->n_total_row >= graph->max_row)
|
|
isl_die(ctx, isl_error_internal,
|
|
"too many schedule rows", return -1);
|
|
|
|
for (i = 0; i < graph->n; ++i) {
|
|
struct isl_sched_node *node = &graph->node[i];
|
|
int row = isl_mat_rows(node->sched);
|
|
|
|
isl_map_free(node->sched_map);
|
|
node->sched_map = NULL;
|
|
node->sched = isl_mat_add_zero_rows(node->sched, 1);
|
|
node->sched = isl_mat_set_element_si(node->sched, row, 0,
|
|
node->scc);
|
|
if (!node->sched)
|
|
return -1;
|
|
node->band[graph->n_total_row] = graph->n_band;
|
|
}
|
|
|
|
graph->n_total_row++;
|
|
next_band(graph);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compute a schedule for each component (identified by node->scc)
|
|
* of the dependence graph separately and then combine the results.
|
|
* Depending on the setting of schedule_fuse, a component may be
|
|
* either weakly or strongly connected.
|
|
*
|
|
* The band_id is adjusted such that each component has a separate id.
|
|
* Note that the band_id may have already been set to a value different
|
|
* from zero by compute_split_schedule.
|
|
*/
|
|
static int compute_component_schedule(isl_ctx *ctx,
|
|
struct isl_sched_graph *graph)
|
|
{
|
|
int wcc, i;
|
|
int n, n_edge;
|
|
int n_total_row, orig_total_row;
|
|
int n_band, orig_band;
|
|
|
|
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
|
|
ctx->opt->schedule_separate_components)
|
|
if (split_on_scc(ctx, graph) < 0)
|
|
return -1;
|
|
|
|
n_total_row = 0;
|
|
orig_total_row = graph->n_total_row;
|
|
n_band = 0;
|
|
orig_band = graph->n_band;
|
|
for (i = 0; i < graph->n; ++i)
|
|
graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
|
|
for (wcc = 0; wcc < graph->scc; ++wcc) {
|
|
n = 0;
|
|
for (i = 0; i < graph->n; ++i)
|
|
if (graph->node[i].scc == wcc)
|
|
n++;
|
|
n_edge = 0;
|
|
for (i = 0; i < graph->n_edge; ++i)
|
|
if (graph->edge[i].src->scc == wcc &&
|
|
graph->edge[i].dst->scc == wcc)
|
|
n_edge++;
|
|
|
|
if (compute_sub_schedule(ctx, graph, n, n_edge,
|
|
&node_scc_exactly,
|
|
&edge_scc_exactly, wcc, 1) < 0)
|
|
return -1;
|
|
if (graph->n_total_row > n_total_row)
|
|
n_total_row = graph->n_total_row;
|
|
graph->n_total_row = orig_total_row;
|
|
if (graph->n_band > n_band)
|
|
n_band = graph->n_band;
|
|
graph->n_band = orig_band;
|
|
}
|
|
|
|
graph->n_total_row = n_total_row;
|
|
graph->n_band = n_band;
|
|
|
|
return pad_schedule(graph);
|
|
}
|
|
|
|
/* Compute a schedule for the given dependence graph.
|
|
* We first check if the graph is connected (through validity dependences)
|
|
* and, if not, compute a schedule for each component separately.
|
|
* If schedule_fuse is set to minimal fusion, then we check for strongly
|
|
* connected components instead and compute a separate schedule for
|
|
* each such strongly connected component.
|
|
*/
|
|
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
|
|
{
|
|
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
|
|
if (detect_sccs(ctx, graph) < 0)
|
|
return -1;
|
|
} else {
|
|
if (detect_wccs(ctx, graph) < 0)
|
|
return -1;
|
|
}
|
|
|
|
if (graph->scc > 1)
|
|
return compute_component_schedule(ctx, graph);
|
|
|
|
return compute_schedule_wcc(ctx, graph);
|
|
}
|
|
|
|
/* Compute a schedule for the given union of domains that respects
|
|
* all the validity dependences.
|
|
* If the default isl scheduling algorithm is used, it tries to minimize
|
|
* the dependence distances over the proximity dependences.
|
|
* If Feautrier's scheduling algorithm is used, the proximity dependence
|
|
* distances are only minimized during the extension to a full-dimensional
|
|
* schedule.
|
|
*/
|
|
__isl_give isl_schedule *isl_union_set_compute_schedule(
|
|
__isl_take isl_union_set *domain,
|
|
__isl_take isl_union_map *validity,
|
|
__isl_take isl_union_map *proximity)
|
|
{
|
|
isl_ctx *ctx = isl_union_set_get_ctx(domain);
|
|
isl_space *dim;
|
|
struct isl_sched_graph graph = { 0 };
|
|
isl_schedule *sched;
|
|
struct isl_extract_edge_data data;
|
|
|
|
domain = isl_union_set_align_params(domain,
|
|
isl_union_map_get_space(validity));
|
|
domain = isl_union_set_align_params(domain,
|
|
isl_union_map_get_space(proximity));
|
|
dim = isl_union_set_get_space(domain);
|
|
validity = isl_union_map_align_params(validity, isl_space_copy(dim));
|
|
proximity = isl_union_map_align_params(proximity, dim);
|
|
|
|
if (!domain)
|
|
goto error;
|
|
|
|
graph.n = isl_union_set_n_set(domain);
|
|
if (graph.n == 0)
|
|
goto empty;
|
|
if (graph_alloc(ctx, &graph, graph.n,
|
|
isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
|
|
goto error;
|
|
if (compute_max_row(&graph, domain) < 0)
|
|
goto error;
|
|
graph.root = 1;
|
|
graph.n = 0;
|
|
if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
|
|
goto error;
|
|
if (graph_init_table(ctx, &graph) < 0)
|
|
goto error;
|
|
graph.max_edge[isl_edge_validity] = isl_union_map_n_map(validity);
|
|
graph.max_edge[isl_edge_proximity] = isl_union_map_n_map(proximity);
|
|
if (graph_init_edge_tables(ctx, &graph) < 0)
|
|
goto error;
|
|
graph.n_edge = 0;
|
|
data.graph = &graph;
|
|
data.type = isl_edge_validity;
|
|
if (isl_union_map_foreach_map(validity, &extract_edge, &data) < 0)
|
|
goto error;
|
|
data.type = isl_edge_proximity;
|
|
if (isl_union_map_foreach_map(proximity, &extract_edge, &data) < 0)
|
|
goto error;
|
|
|
|
if (compute_schedule(ctx, &graph) < 0)
|
|
goto error;
|
|
|
|
empty:
|
|
sched = extract_schedule(&graph, isl_union_set_get_space(domain));
|
|
|
|
graph_free(ctx, &graph);
|
|
isl_union_set_free(domain);
|
|
isl_union_map_free(validity);
|
|
isl_union_map_free(proximity);
|
|
|
|
return sched;
|
|
error:
|
|
graph_free(ctx, &graph);
|
|
isl_union_set_free(domain);
|
|
isl_union_map_free(validity);
|
|
isl_union_map_free(proximity);
|
|
return NULL;
|
|
}
|
|
|
|
void *isl_schedule_free(__isl_take isl_schedule *sched)
|
|
{
|
|
int i;
|
|
if (!sched)
|
|
return NULL;
|
|
|
|
if (--sched->ref > 0)
|
|
return NULL;
|
|
|
|
for (i = 0; i < sched->n; ++i) {
|
|
isl_multi_aff_free(sched->node[i].sched);
|
|
free(sched->node[i].band_end);
|
|
free(sched->node[i].band_id);
|
|
free(sched->node[i].zero);
|
|
}
|
|
isl_space_free(sched->dim);
|
|
isl_band_list_free(sched->band_forest);
|
|
free(sched);
|
|
return NULL;
|
|
}
|
|
|
|
isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
|
|
{
|
|
return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
|
|
}
|
|
|
|
/* Set max_out to the maximal number of output dimensions over
|
|
* all maps.
|
|
*/
|
|
static int update_max_out(__isl_take isl_map *map, void *user)
|
|
{
|
|
int *max_out = user;
|
|
int n_out = isl_map_dim(map, isl_dim_out);
|
|
|
|
if (n_out > *max_out)
|
|
*max_out = n_out;
|
|
|
|
isl_map_free(map);
|
|
return 0;
|
|
}
|
|
|
|
/* Internal data structure for map_pad_range.
|
|
*
|
|
* "max_out" is the maximal schedule dimension.
|
|
* "res" collects the results.
|
|
*/
|
|
struct isl_pad_schedule_map_data {
|
|
int max_out;
|
|
isl_union_map *res;
|
|
};
|
|
|
|
/* Pad the range of the given map with zeros to data->max_out and
|
|
* then add the result to data->res.
|
|
*/
|
|
static int map_pad_range(__isl_take isl_map *map, void *user)
|
|
{
|
|
struct isl_pad_schedule_map_data *data = user;
|
|
int i;
|
|
int n_out = isl_map_dim(map, isl_dim_out);
|
|
|
|
map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
|
|
for (i = n_out; i < data->max_out; ++i)
|
|
map = isl_map_fix_si(map, isl_dim_out, i, 0);
|
|
|
|
data->res = isl_union_map_add_map(data->res, map);
|
|
if (!data->res)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Pad the ranges of the maps in the union map with zeros such they all have
|
|
* the same dimension.
|
|
*/
|
|
static __isl_give isl_union_map *pad_schedule_map(
|
|
__isl_take isl_union_map *umap)
|
|
{
|
|
struct isl_pad_schedule_map_data data;
|
|
|
|
if (!umap)
|
|
return NULL;
|
|
if (isl_union_map_n_map(umap) <= 1)
|
|
return umap;
|
|
|
|
data.max_out = 0;
|
|
if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
|
|
return isl_union_map_free(umap);
|
|
|
|
data.res = isl_union_map_empty(isl_union_map_get_space(umap));
|
|
if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
|
|
data.res = isl_union_map_free(data.res);
|
|
|
|
isl_union_map_free(umap);
|
|
return data.res;
|
|
}
|
|
|
|
/* Return an isl_union_map of the schedule. If we have already constructed
|
|
* a band forest, then this band forest may have been modified so we need
|
|
* to extract the isl_union_map from the forest rather than from
|
|
* the originally computed schedule. This reconstructed schedule map
|
|
* then needs to be padded with zeros to unify the schedule space
|
|
* since the result of isl_band_list_get_suffix_schedule may not have
|
|
* a unified schedule space.
|
|
*/
|
|
__isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
|
|
{
|
|
int i;
|
|
isl_union_map *umap;
|
|
|
|
if (!sched)
|
|
return NULL;
|
|
|
|
if (sched->band_forest) {
|
|
umap = isl_band_list_get_suffix_schedule(sched->band_forest);
|
|
return pad_schedule_map(umap);
|
|
}
|
|
|
|
umap = isl_union_map_empty(isl_space_copy(sched->dim));
|
|
for (i = 0; i < sched->n; ++i) {
|
|
isl_multi_aff *ma;
|
|
|
|
ma = isl_multi_aff_copy(sched->node[i].sched);
|
|
umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
|
|
}
|
|
|
|
return umap;
|
|
}
|
|
|
|
static __isl_give isl_band_list *construct_band_list(
|
|
__isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
|
|
int band_nr, int *parent_active, int n_active);
|
|
|
|
/* Construct an isl_band structure for the band in the given schedule
|
|
* with sequence number band_nr for the n_active nodes marked by active.
|
|
* If the nodes don't have a band with the given sequence number,
|
|
* then a band without members is created.
|
|
*
|
|
* Because of the way the schedule is constructed, we know that
|
|
* the position of the band inside the schedule of a node is the same
|
|
* for all active nodes.
|
|
*
|
|
* The partial schedule for the band is created before the children
|
|
* are created to that construct_band_list can refer to the partial
|
|
* schedule of the parent.
|
|
*/
|
|
static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
|
|
__isl_keep isl_band *parent,
|
|
int band_nr, int *active, int n_active)
|
|
{
|
|
int i, j;
|
|
isl_ctx *ctx = isl_schedule_get_ctx(schedule);
|
|
isl_band *band;
|
|
unsigned start, end;
|
|
|
|
band = isl_band_alloc(ctx);
|
|
if (!band)
|
|
return NULL;
|
|
|
|
band->schedule = schedule;
|
|
band->parent = parent;
|
|
|
|
for (i = 0; i < schedule->n; ++i)
|
|
if (active[i])
|
|
break;
|
|
|
|
if (i >= schedule->n)
|
|
isl_die(ctx, isl_error_internal,
|
|
"band without active statements", goto error);
|
|
|
|
start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
|
|
end = band_nr < schedule->node[i].n_band ?
|
|
schedule->node[i].band_end[band_nr] : start;
|
|
band->n = end - start;
|
|
|
|
band->zero = isl_alloc_array(ctx, int, band->n);
|
|
if (band->n && !band->zero)
|
|
goto error;
|
|
|
|
for (j = 0; j < band->n; ++j)
|
|
band->zero[j] = schedule->node[i].zero[start + j];
|
|
|
|
band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
|
|
for (i = 0; i < schedule->n; ++i) {
|
|
isl_multi_aff *ma;
|
|
isl_pw_multi_aff *pma;
|
|
unsigned n_out;
|
|
|
|
if (!active[i])
|
|
continue;
|
|
|
|
ma = isl_multi_aff_copy(schedule->node[i].sched);
|
|
n_out = isl_multi_aff_dim(ma, isl_dim_out);
|
|
ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
|
|
ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
|
|
pma = isl_pw_multi_aff_from_multi_aff(ma);
|
|
band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
|
|
pma);
|
|
}
|
|
if (!band->pma)
|
|
goto error;
|
|
|
|
for (i = 0; i < schedule->n; ++i)
|
|
if (active[i] && schedule->node[i].n_band > band_nr + 1)
|
|
break;
|
|
|
|
if (i < schedule->n) {
|
|
band->children = construct_band_list(schedule, band,
|
|
band_nr + 1, active, n_active);
|
|
if (!band->children)
|
|
goto error;
|
|
}
|
|
|
|
return band;
|
|
error:
|
|
isl_band_free(band);
|
|
return NULL;
|
|
}
|
|
|
|
/* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
|
|
*
|
|
* r is set to a negative value if anything goes wrong.
|
|
*
|
|
* c1 stores the result of extract_int.
|
|
* c2 is a temporary value used inside cmp_band_in_ancestor.
|
|
* t is a temporary value used inside extract_int.
|
|
*
|
|
* first and equal are used inside extract_int.
|
|
* first is set if we are looking at the first isl_multi_aff inside
|
|
* the isl_union_pw_multi_aff.
|
|
* equal is set if all the isl_multi_affs have been equal so far.
|
|
*/
|
|
struct isl_cmp_band_data {
|
|
int r;
|
|
|
|
int first;
|
|
int equal;
|
|
|
|
isl_int t;
|
|
isl_int c1;
|
|
isl_int c2;
|
|
};
|
|
|
|
/* Check if "ma" assigns a constant value.
|
|
* Note that this function is only called on isl_multi_affs
|
|
* with a single output dimension.
|
|
*
|
|
* If "ma" assigns a constant value then we compare it to data->c1
|
|
* or assign it to data->c1 if this is the first isl_multi_aff we consider.
|
|
* If "ma" does not assign a constant value or if it assigns a value
|
|
* that is different from data->c1, then we set data->equal to zero
|
|
* and terminate the check.
|
|
*/
|
|
static int multi_aff_extract_int(__isl_take isl_set *set,
|
|
__isl_take isl_multi_aff *ma, void *user)
|
|
{
|
|
isl_aff *aff;
|
|
struct isl_cmp_band_data *data = user;
|
|
|
|
aff = isl_multi_aff_get_aff(ma, 0);
|
|
data->r = isl_aff_is_cst(aff);
|
|
if (data->r >= 0 && data->r) {
|
|
isl_aff_get_constant(aff, &data->t);
|
|
if (data->first) {
|
|
isl_int_set(data->c1, data->t);
|
|
data->first = 0;
|
|
} else if (!isl_int_eq(data->c1, data->t))
|
|
data->equal = 0;
|
|
} else if (data->r >= 0 && !data->r)
|
|
data->equal = 0;
|
|
|
|
isl_aff_free(aff);
|
|
isl_set_free(set);
|
|
isl_multi_aff_free(ma);
|
|
|
|
if (data->r < 0)
|
|
return -1;
|
|
if (!data->equal)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* This function is called for each isl_pw_multi_aff in
|
|
* the isl_union_pw_multi_aff checked by extract_int.
|
|
* Check all the isl_multi_affs inside "pma".
|
|
*/
|
|
static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
|
|
void *user)
|
|
{
|
|
int r;
|
|
|
|
r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
|
|
isl_pw_multi_aff_free(pma);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Check if "upma" assigns a single constant value to its domain.
|
|
* If so, return 1 and store the result in data->c1.
|
|
* If not, return 0.
|
|
*
|
|
* A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
|
|
* means that either an error occurred or that we have broken off the check
|
|
* because we already know the result is going to be negative.
|
|
* In the latter case, data->equal is set to zero.
|
|
*/
|
|
static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
|
|
struct isl_cmp_band_data *data)
|
|
{
|
|
data->first = 1;
|
|
data->equal = 1;
|
|
|
|
if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
|
|
&pw_multi_aff_extract_int, data) < 0) {
|
|
if (!data->equal)
|
|
return 0;
|
|
return -1;
|
|
}
|
|
|
|
return !data->first && data->equal;
|
|
}
|
|
|
|
/* Compare "b1" and "b2" based on the parent schedule of their ancestor
|
|
* "ancestor".
|
|
*
|
|
* If the parent of "ancestor" also has a single member, then we
|
|
* first try to compare the two band based on the partial schedule
|
|
* of this parent.
|
|
*
|
|
* Otherwise, or if the result is inconclusive, we look at the partial schedule
|
|
* of "ancestor" itself.
|
|
* In particular, we specialize the parent schedule based
|
|
* on the domains of the child schedules, check if both assign
|
|
* a single constant value and, if so, compare the two constant values.
|
|
* If the specialized parent schedules do not assign a constant value,
|
|
* then they cannot be used to order the two bands and so in this case
|
|
* we return 0.
|
|
*/
|
|
static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
|
|
__isl_keep isl_band *b2, struct isl_cmp_band_data *data,
|
|
__isl_keep isl_band *ancestor)
|
|
{
|
|
isl_union_pw_multi_aff *upma;
|
|
isl_union_set *domain;
|
|
int r;
|
|
|
|
if (data->r < 0)
|
|
return 0;
|
|
|
|
if (ancestor->parent && ancestor->parent->n == 1) {
|
|
r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
|
|
if (data->r < 0)
|
|
return 0;
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
upma = isl_union_pw_multi_aff_copy(b1->pma);
|
|
domain = isl_union_pw_multi_aff_domain(upma);
|
|
upma = isl_union_pw_multi_aff_copy(ancestor->pma);
|
|
upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
|
|
r = extract_int(upma, data);
|
|
isl_union_pw_multi_aff_free(upma);
|
|
|
|
if (r < 0)
|
|
data->r = -1;
|
|
if (r < 0 || !r)
|
|
return 0;
|
|
|
|
isl_int_set(data->c2, data->c1);
|
|
|
|
upma = isl_union_pw_multi_aff_copy(b2->pma);
|
|
domain = isl_union_pw_multi_aff_domain(upma);
|
|
upma = isl_union_pw_multi_aff_copy(ancestor->pma);
|
|
upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
|
|
r = extract_int(upma, data);
|
|
isl_union_pw_multi_aff_free(upma);
|
|
|
|
if (r < 0)
|
|
data->r = -1;
|
|
if (r < 0 || !r)
|
|
return 0;
|
|
|
|
return isl_int_cmp(data->c2, data->c1);
|
|
}
|
|
|
|
/* Compare "a" and "b" based on the parent schedule of their parent.
|
|
*/
|
|
static int cmp_band(const void *a, const void *b, void *user)
|
|
{
|
|
isl_band *b1 = *(isl_band * const *) a;
|
|
isl_band *b2 = *(isl_band * const *) b;
|
|
struct isl_cmp_band_data *data = user;
|
|
|
|
return cmp_band_in_ancestor(b1, b2, data, b1->parent);
|
|
}
|
|
|
|
/* Sort the elements in "list" based on the partial schedules of its parent
|
|
* (and ancestors). In particular if the parent assigns constant values
|
|
* to the domains of the bands in "list", then the elements are sorted
|
|
* according to that order.
|
|
* This order should be a more "natural" order for the user, but otherwise
|
|
* shouldn't have any effect.
|
|
* If we would be constructing an isl_band forest directly in
|
|
* isl_union_set_compute_schedule then there wouldn't be any need
|
|
* for a reordering, since the children would be added to the list
|
|
* in their natural order automatically.
|
|
*
|
|
* If there is only one element in the list, then there is no need to sort
|
|
* anything.
|
|
* If the partial schedule of the parent has more than one member
|
|
* (or if there is no parent), then it's
|
|
* defnitely not assigning constant values to the different children in
|
|
* the list and so we wouldn't be able to use it to sort the list.
|
|
*/
|
|
static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
|
|
__isl_keep isl_band *parent)
|
|
{
|
|
struct isl_cmp_band_data data;
|
|
|
|
if (!list)
|
|
return NULL;
|
|
if (list->n <= 1)
|
|
return list;
|
|
if (!parent || parent->n != 1)
|
|
return list;
|
|
|
|
data.r = 0;
|
|
isl_int_init(data.c1);
|
|
isl_int_init(data.c2);
|
|
isl_int_init(data.t);
|
|
isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
|
|
if (data.r < 0)
|
|
list = isl_band_list_free(list);
|
|
isl_int_clear(data.c1);
|
|
isl_int_clear(data.c2);
|
|
isl_int_clear(data.t);
|
|
|
|
return list;
|
|
}
|
|
|
|
/* Construct a list of bands that start at the same position (with
|
|
* sequence number band_nr) in the schedules of the nodes that
|
|
* were active in the parent band.
|
|
*
|
|
* A separate isl_band structure is created for each band_id
|
|
* and for each node that does not have a band with sequence
|
|
* number band_nr. In the latter case, a band without members
|
|
* is created.
|
|
* This ensures that if a band has any children, then each node
|
|
* that was active in the band is active in exactly one of the children.
|
|
*/
|
|
static __isl_give isl_band_list *construct_band_list(
|
|
__isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
|
|
int band_nr, int *parent_active, int n_active)
|
|
{
|
|
int i, j;
|
|
isl_ctx *ctx = isl_schedule_get_ctx(schedule);
|
|
int *active;
|
|
int n_band;
|
|
isl_band_list *list;
|
|
|
|
n_band = 0;
|
|
for (i = 0; i < n_active; ++i) {
|
|
for (j = 0; j < schedule->n; ++j) {
|
|
if (!parent_active[j])
|
|
continue;
|
|
if (schedule->node[j].n_band <= band_nr)
|
|
continue;
|
|
if (schedule->node[j].band_id[band_nr] == i) {
|
|
n_band++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (j = 0; j < schedule->n; ++j)
|
|
if (schedule->node[j].n_band <= band_nr)
|
|
n_band++;
|
|
|
|
if (n_band == 1) {
|
|
isl_band *band;
|
|
list = isl_band_list_alloc(ctx, n_band);
|
|
band = construct_band(schedule, parent, band_nr,
|
|
parent_active, n_active);
|
|
return isl_band_list_add(list, band);
|
|
}
|
|
|
|
active = isl_alloc_array(ctx, int, schedule->n);
|
|
if (schedule->n && !active)
|
|
return NULL;
|
|
|
|
list = isl_band_list_alloc(ctx, n_band);
|
|
|
|
for (i = 0; i < n_active; ++i) {
|
|
int n = 0;
|
|
isl_band *band;
|
|
|
|
for (j = 0; j < schedule->n; ++j) {
|
|
active[j] = parent_active[j] &&
|
|
schedule->node[j].n_band > band_nr &&
|
|
schedule->node[j].band_id[band_nr] == i;
|
|
if (active[j])
|
|
n++;
|
|
}
|
|
if (n == 0)
|
|
continue;
|
|
|
|
band = construct_band(schedule, parent, band_nr, active, n);
|
|
|
|
list = isl_band_list_add(list, band);
|
|
}
|
|
for (i = 0; i < schedule->n; ++i) {
|
|
isl_band *band;
|
|
if (!parent_active[i])
|
|
continue;
|
|
if (schedule->node[i].n_band > band_nr)
|
|
continue;
|
|
for (j = 0; j < schedule->n; ++j)
|
|
active[j] = j == i;
|
|
band = construct_band(schedule, parent, band_nr, active, 1);
|
|
list = isl_band_list_add(list, band);
|
|
}
|
|
|
|
free(active);
|
|
|
|
list = sort_band_list(list, parent);
|
|
|
|
return list;
|
|
}
|
|
|
|
/* Construct a band forest representation of the schedule and
|
|
* return the list of roots.
|
|
*/
|
|
static __isl_give isl_band_list *construct_forest(
|
|
__isl_keep isl_schedule *schedule)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx = isl_schedule_get_ctx(schedule);
|
|
isl_band_list *forest;
|
|
int *active;
|
|
|
|
active = isl_alloc_array(ctx, int, schedule->n);
|
|
if (schedule->n && !active)
|
|
return NULL;
|
|
|
|
for (i = 0; i < schedule->n; ++i)
|
|
active[i] = 1;
|
|
|
|
forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
|
|
|
|
free(active);
|
|
|
|
return forest;
|
|
}
|
|
|
|
/* Return the roots of a band forest representation of the schedule.
|
|
*/
|
|
__isl_give isl_band_list *isl_schedule_get_band_forest(
|
|
__isl_keep isl_schedule *schedule)
|
|
{
|
|
if (!schedule)
|
|
return NULL;
|
|
if (!schedule->band_forest)
|
|
schedule->band_forest = construct_forest(schedule);
|
|
return isl_band_list_dup(schedule->band_forest);
|
|
}
|
|
|
|
/* Call "fn" on each band in the schedule in depth-first post-order.
|
|
*/
|
|
int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
|
|
int (*fn)(__isl_keep isl_band *band, void *user), void *user)
|
|
{
|
|
int r;
|
|
isl_band_list *forest;
|
|
|
|
if (!sched)
|
|
return -1;
|
|
|
|
forest = isl_schedule_get_band_forest(sched);
|
|
r = isl_band_list_foreach_band(forest, fn, user);
|
|
isl_band_list_free(forest);
|
|
|
|
return r;
|
|
}
|
|
|
|
static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
|
|
__isl_keep isl_band_list *list);
|
|
|
|
static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
|
|
__isl_keep isl_band *band)
|
|
{
|
|
isl_band_list *children;
|
|
|
|
p = isl_printer_start_line(p);
|
|
p = isl_printer_print_union_pw_multi_aff(p, band->pma);
|
|
p = isl_printer_end_line(p);
|
|
|
|
if (!isl_band_has_children(band))
|
|
return p;
|
|
|
|
children = isl_band_get_children(band);
|
|
|
|
p = isl_printer_indent(p, 4);
|
|
p = print_band_list(p, children);
|
|
p = isl_printer_indent(p, -4);
|
|
|
|
isl_band_list_free(children);
|
|
|
|
return p;
|
|
}
|
|
|
|
static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
|
|
__isl_keep isl_band_list *list)
|
|
{
|
|
int i, n;
|
|
|
|
n = isl_band_list_n_band(list);
|
|
for (i = 0; i < n; ++i) {
|
|
isl_band *band;
|
|
band = isl_band_list_get_band(list, i);
|
|
p = print_band(p, band);
|
|
isl_band_free(band);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
__isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
|
|
__isl_keep isl_schedule *schedule)
|
|
{
|
|
isl_band_list *forest;
|
|
|
|
forest = isl_schedule_get_band_forest(schedule);
|
|
|
|
p = print_band_list(p, forest);
|
|
|
|
isl_band_list_free(forest);
|
|
|
|
return p;
|
|
}
|
|
|
|
void isl_schedule_dump(__isl_keep isl_schedule *schedule)
|
|
{
|
|
isl_printer *printer;
|
|
|
|
if (!schedule)
|
|
return;
|
|
|
|
printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
|
|
printer = isl_printer_print_schedule(printer, schedule);
|
|
|
|
isl_printer_free(printer);
|
|
}
|