buildtools/isl/isl_schedule.c
2014-01-27 21:38:34 +01:00

3642 lines
102 KiB
C

/*
* Copyright 2011 INRIA Saclay
* Copyright 2012-2013 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_space_private.h>
#include <isl/aff.h>
#include <isl/hash.h>
#include <isl/constraint.h>
#include <isl/schedule.h>
#include <isl_mat_private.h>
#include <isl/set.h>
#include <isl/seq.h>
#include <isl_tab.h>
#include <isl_dim_map.h>
#include <isl_hmap_map_basic_set.h>
#include <isl_sort.h>
#include <isl_schedule_private.h>
#include <isl_band_private.h>
#include <isl_options_private.h>
#include <isl_tarjan.h>
/*
* The scheduling algorithm implemented in this file was inspired by
* Bondhugula et al., "Automatic Transformations for Communication-Minimized
* Parallelization and Locality Optimization in the Polyhedral Model".
*/
/* Internal information about a node that is used during the construction
* of a schedule.
* dim represents the space in which the domain lives
* sched is a matrix representation of the schedule being constructed
* for this node
* sched_map is an isl_map representation of the same (partial) schedule
* sched_map may be NULL
* rank is the number of linearly independent rows in the linear part
* of sched
* the columns of cmap represent a change of basis for the schedule
* coefficients; the first rank columns span the linear part of
* the schedule rows
* cinv is the inverse of cmap.
* start is the first variable in the LP problem in the sequences that
* represents the schedule coefficients of this node
* nvar is the dimension of the domain
* nparam is the number of parameters or 0 if we are not constructing
* a parametric schedule
*
* scc is the index of SCC (or WCC) this node belongs to
*
* band contains the band index for each of the rows of the schedule.
* band_id is used to differentiate between separate bands at the same
* level within the same parent band, i.e., bands that are separated
* by the parent band or bands that are independent of each other.
* zero contains a boolean for each of the rows of the schedule,
* indicating whether the corresponding scheduling dimension results
* in zero dependence distances within its band and with respect
* to the proximity edges.
*/
struct isl_sched_node {
isl_space *dim;
isl_mat *sched;
isl_map *sched_map;
int rank;
isl_mat *cmap;
isl_mat *cinv;
int start;
int nvar;
int nparam;
int scc;
int *band;
int *band_id;
int *zero;
};
static int node_has_dim(const void *entry, const void *val)
{
struct isl_sched_node *node = (struct isl_sched_node *)entry;
isl_space *dim = (isl_space *)val;
return isl_space_is_equal(node->dim, dim);
}
/* An edge in the dependence graph. An edge may be used to
* ensure validity of the generated schedule, to minimize the dependence
* distance or both
*
* map is the dependence relation
* src is the source node
* dst is the sink node
* validity is set if the edge is used to ensure correctness
* proximity is set if the edge is used to minimize dependence distances
*
* For validity edges, start and end mark the sequence of inequality
* constraints in the LP problem that encode the validity constraint
* corresponding to this edge.
*/
struct isl_sched_edge {
isl_map *map;
struct isl_sched_node *src;
struct isl_sched_node *dst;
int validity;
int proximity;
int start;
int end;
};
enum isl_edge_type {
isl_edge_validity = 0,
isl_edge_first = isl_edge_validity,
isl_edge_proximity,
isl_edge_last = isl_edge_proximity
};
/* Internal information about the dependence graph used during
* the construction of the schedule.
*
* intra_hmap is a cache, mapping dependence relations to their dual,
* for dependences from a node to itself
* inter_hmap is a cache, mapping dependence relations to their dual,
* for dependences between distinct nodes
*
* n is the number of nodes
* node is the list of nodes
* maxvar is the maximal number of variables over all nodes
* max_row is the allocated number of rows in the schedule
* n_row is the current (maximal) number of linearly independent
* rows in the node schedules
* n_total_row is the current number of rows in the node schedules
* n_band is the current number of completed bands
* band_start is the starting row in the node schedules of the current band
* root is set if this graph is the original dependence graph,
* without any splitting
*
* sorted contains a list of node indices sorted according to the
* SCC to which a node belongs
*
* n_edge is the number of edges
* edge is the list of edges
* max_edge contains the maximal number of edges of each type;
* in particular, it contains the number of edges in the inital graph.
* edge_table contains pointers into the edge array, hashed on the source
* and sink spaces; there is one such table for each type;
* a given edge may be referenced from more than one table
* if the corresponding relation appears in more than of the
* sets of dependences
*
* node_table contains pointers into the node array, hashed on the space
*
* region contains a list of variable sequences that should be non-trivial
*
* lp contains the (I)LP problem used to obtain new schedule rows
*
* src_scc and dst_scc are the source and sink SCCs of an edge with
* conflicting constraints
*
* scc represents the number of components
*/
struct isl_sched_graph {
isl_hmap_map_basic_set *intra_hmap;
isl_hmap_map_basic_set *inter_hmap;
struct isl_sched_node *node;
int n;
int maxvar;
int max_row;
int n_row;
int *sorted;
int n_band;
int n_total_row;
int band_start;
int root;
struct isl_sched_edge *edge;
int n_edge;
int max_edge[isl_edge_last + 1];
struct isl_hash_table *edge_table[isl_edge_last + 1];
struct isl_hash_table *node_table;
struct isl_region *region;
isl_basic_set *lp;
int src_scc;
int dst_scc;
int scc;
};
/* Initialize node_table based on the list of nodes.
*/
static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
graph->node_table = isl_hash_table_alloc(ctx, graph->n);
if (!graph->node_table)
return -1;
for (i = 0; i < graph->n; ++i) {
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_space_get_hash(graph->node[i].dim);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_dim,
graph->node[i].dim, 1);
if (!entry)
return -1;
entry->data = &graph->node[i];
}
return 0;
}
/* Return a pointer to the node that lives within the given space,
* or NULL if there is no such node.
*/
static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
struct isl_sched_graph *graph, __isl_keep isl_space *dim)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_space_get_hash(dim);
entry = isl_hash_table_find(ctx, graph->node_table, hash,
&node_has_dim, dim, 0);
return entry ? entry->data : NULL;
}
static int edge_has_src_and_dst(const void *entry, const void *val)
{
const struct isl_sched_edge *edge = entry;
const struct isl_sched_edge *temp = val;
return edge->src == temp->src && edge->dst == temp->dst;
}
/* Add the given edge to graph->edge_table[type].
*/
static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
enum isl_edge_type type, struct isl_sched_edge *edge)
{
struct isl_hash_table_entry *entry;
uint32_t hash;
hash = isl_hash_init();
hash = isl_hash_builtin(hash, edge->src);
hash = isl_hash_builtin(hash, edge->dst);
entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, edge, 1);
if (!entry)
return -1;
entry->data = edge;
return 0;
}
/* Allocate the edge_tables based on the maximal number of edges of
* each type.
*/
static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
for (i = 0; i <= isl_edge_last; ++i) {
graph->edge_table[i] = isl_hash_table_alloc(ctx,
graph->max_edge[i]);
if (!graph->edge_table[i])
return -1;
}
return 0;
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return the hash table entry of this edge.
* Otherwise, return NULL.
*/
static struct isl_hash_table_entry *graph_find_edge_entry(
struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
isl_ctx *ctx = isl_space_get_ctx(src->dim);
uint32_t hash;
struct isl_sched_edge temp = { .src = src, .dst = dst };
hash = isl_hash_init();
hash = isl_hash_builtin(hash, temp.src);
hash = isl_hash_builtin(hash, temp.dst);
return isl_hash_table_find(ctx, graph->edge_table[type], hash,
&edge_has_src_and_dst, &temp, 0);
}
/* If graph->edge_table[type] contains an edge from the given source
* to the given destination, then return this edge.
* Otherwise, return NULL.
*/
static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, type, src, dst);
if (!entry)
return NULL;
return entry->data;
}
/* Check whether the dependence graph has an edge of the given type
* between the given two nodes.
*/
static int graph_has_edge(struct isl_sched_graph *graph,
enum isl_edge_type type,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
struct isl_sched_edge *edge;
int empty;
edge = graph_find_edge(graph, type, src, dst);
if (!edge)
return 0;
empty = isl_map_plain_is_empty(edge->map);
if (empty < 0)
return -1;
return !empty;
}
/* If there is an edge from the given source to the given destination
* of any type then return this edge.
* Otherwise, return NULL.
*/
static struct isl_sched_edge *graph_find_any_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
enum isl_edge_type i;
struct isl_sched_edge *edge;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
edge = graph_find_edge(graph, i, src, dst);
if (edge)
return edge;
}
return NULL;
}
/* Remove the given edge from all the edge_tables that refer to it.
*/
static void graph_remove_edge(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
isl_ctx *ctx = isl_map_get_ctx(edge->map);
enum isl_edge_type i;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
struct isl_hash_table_entry *entry;
entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
if (!entry)
continue;
if (entry->data != edge)
continue;
isl_hash_table_remove(ctx, graph->edge_table[i], entry);
}
}
/* Check whether the dependence graph has any edge
* between the given two nodes.
*/
static int graph_has_any_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
enum isl_edge_type i;
int r;
for (i = isl_edge_first; i <= isl_edge_last; ++i) {
r = graph_has_edge(graph, i, src, dst);
if (r < 0 || r)
return r;
}
return r;
}
/* Check whether the dependence graph has a validity edge
* between the given two nodes.
*/
static int graph_has_validity_edge(struct isl_sched_graph *graph,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
return graph_has_edge(graph, isl_edge_validity, src, dst);
}
static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
int n_node, int n_edge)
{
int i;
graph->n = n_node;
graph->n_edge = n_edge;
graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
graph->sorted = isl_calloc_array(ctx, int, graph->n);
graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
graph->edge = isl_calloc_array(ctx,
struct isl_sched_edge, graph->n_edge);
graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
!graph->sorted)
return -1;
for(i = 0; i < graph->n; ++i)
graph->sorted[i] = i;
return 0;
}
static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
for (i = 0; i < graph->n; ++i) {
isl_space_free(graph->node[i].dim);
isl_mat_free(graph->node[i].sched);
isl_map_free(graph->node[i].sched_map);
isl_mat_free(graph->node[i].cmap);
isl_mat_free(graph->node[i].cinv);
if (graph->root) {
free(graph->node[i].band);
free(graph->node[i].band_id);
free(graph->node[i].zero);
}
}
free(graph->node);
free(graph->sorted);
for (i = 0; i < graph->n_edge; ++i)
isl_map_free(graph->edge[i].map);
free(graph->edge);
free(graph->region);
for (i = 0; i <= isl_edge_last; ++i)
isl_hash_table_free(ctx, graph->edge_table[i]);
isl_hash_table_free(ctx, graph->node_table);
isl_basic_set_free(graph->lp);
}
/* For each "set" on which this function is called, increment
* graph->n by one and update graph->maxvar.
*/
static int init_n_maxvar(__isl_take isl_set *set, void *user)
{
struct isl_sched_graph *graph = user;
int nvar = isl_set_dim(set, isl_dim_set);
graph->n++;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
isl_set_free(set);
return 0;
}
/* Compute the number of rows that should be allocated for the schedule.
* The graph can be split at most "n - 1" times, there can be at most
* two rows for each dimension in the iteration domains (in particular,
* we usually have one row, but it may be split by split_scaled),
* and there can be one extra row for ordering the statements.
* Note that if we have actually split "n - 1" times, then no ordering
* is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
*/
static int compute_max_row(struct isl_sched_graph *graph,
__isl_keep isl_union_set *domain)
{
graph->n = 0;
graph->maxvar = 0;
if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
return -1;
graph->max_row = graph->n + 2 * graph->maxvar;
return 0;
}
/* Add a new node to the graph representing the given set.
*/
static int extract_node(__isl_take isl_set *set, void *user)
{
int nvar, nparam;
isl_ctx *ctx;
isl_space *dim;
isl_mat *sched;
struct isl_sched_graph *graph = user;
int *band, *band_id, *zero;
ctx = isl_set_get_ctx(set);
dim = isl_set_get_space(set);
isl_set_free(set);
nvar = isl_space_dim(dim, isl_dim_set);
nparam = isl_space_dim(dim, isl_dim_param);
if (!ctx->opt->schedule_parametric)
nparam = 0;
sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
graph->node[graph->n].dim = dim;
graph->node[graph->n].nvar = nvar;
graph->node[graph->n].nparam = nparam;
graph->node[graph->n].sched = sched;
graph->node[graph->n].sched_map = NULL;
band = isl_alloc_array(ctx, int, graph->max_row);
graph->node[graph->n].band = band;
band_id = isl_calloc_array(ctx, int, graph->max_row);
graph->node[graph->n].band_id = band_id;
zero = isl_calloc_array(ctx, int, graph->max_row);
graph->node[graph->n].zero = zero;
graph->n++;
if (!sched || (graph->max_row && (!band || !band_id || !zero)))
return -1;
return 0;
}
struct isl_extract_edge_data {
enum isl_edge_type type;
struct isl_sched_graph *graph;
};
/* Add a new edge to the graph based on the given map
* and add it to data->graph->edge_table[data->type].
* If a dependence relation of a given type happens to be identical
* to one of the dependence relations of a type that was added before,
* then we don't create a new edge, but instead mark the original edge
* as also representing a dependence of the current type.
*/
static int extract_edge(__isl_take isl_map *map, void *user)
{
isl_ctx *ctx = isl_map_get_ctx(map);
struct isl_extract_edge_data *data = user;
struct isl_sched_graph *graph = data->graph;
struct isl_sched_node *src, *dst;
isl_space *dim;
struct isl_sched_edge *edge;
int is_equal;
dim = isl_space_domain(isl_map_get_space(map));
src = graph_find_node(ctx, graph, dim);
isl_space_free(dim);
dim = isl_space_range(isl_map_get_space(map));
dst = graph_find_node(ctx, graph, dim);
isl_space_free(dim);
if (!src || !dst) {
isl_map_free(map);
return 0;
}
graph->edge[graph->n_edge].src = src;
graph->edge[graph->n_edge].dst = dst;
graph->edge[graph->n_edge].map = map;
if (data->type == isl_edge_validity) {
graph->edge[graph->n_edge].validity = 1;
graph->edge[graph->n_edge].proximity = 0;
}
if (data->type == isl_edge_proximity) {
graph->edge[graph->n_edge].validity = 0;
graph->edge[graph->n_edge].proximity = 1;
}
graph->n_edge++;
edge = graph_find_any_edge(graph, src, dst);
if (!edge)
return graph_edge_table_add(ctx, graph, data->type,
&graph->edge[graph->n_edge - 1]);
is_equal = isl_map_plain_is_equal(map, edge->map);
if (is_equal < 0)
return -1;
if (!is_equal)
return graph_edge_table_add(ctx, graph, data->type,
&graph->edge[graph->n_edge - 1]);
graph->n_edge--;
edge->validity |= graph->edge[graph->n_edge].validity;
edge->proximity |= graph->edge[graph->n_edge].proximity;
isl_map_free(map);
return graph_edge_table_add(ctx, graph, data->type, edge);
}
/* Check whether there is any dependence from node[j] to node[i]
* or from node[i] to node[j].
*/
static int node_follows_weak(int i, int j, void *user)
{
int f;
struct isl_sched_graph *graph = user;
f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
if (f < 0 || f)
return f;
return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
}
/* Check whether there is a validity dependence from node[j] to node[i],
* forcing node[i] to follow node[j].
*/
static int node_follows_strong(int i, int j, void *user)
{
struct isl_sched_graph *graph = user;
return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
}
/* Use Tarjan's algorithm for computing the strongly connected components
* in the dependence graph (only validity edges).
* If weak is set, we consider the graph to be undirected and
* we effectively compute the (weakly) connected components.
* Additionally, we also consider other edges when weak is set.
*/
static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
{
int i, n;
struct isl_tarjan_graph *g = NULL;
g = isl_tarjan_graph_init(ctx, graph->n,
weak ? &node_follows_weak : &node_follows_strong, graph);
if (!g)
return -1;
graph->scc = 0;
i = 0;
n = graph->n;
while (n) {
while (g->order[i] != -1) {
graph->node[g->order[i]].scc = graph->scc;
--n;
++i;
}
++i;
graph->scc++;
}
isl_tarjan_graph_free(g);
return 0;
}
/* Apply Tarjan's algorithm to detect the strongly connected components
* in the dependence graph.
*/
static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
return detect_ccs(ctx, graph, 0);
}
/* Apply Tarjan's algorithm to detect the (weakly) connected components
* in the dependence graph.
*/
static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
{
return detect_ccs(ctx, graph, 1);
}
static int cmp_scc(const void *a, const void *b, void *data)
{
struct isl_sched_graph *graph = data;
const int *i1 = a;
const int *i2 = b;
return graph->node[*i1].scc - graph->node[*i2].scc;
}
/* Sort the elements of graph->sorted according to the corresponding SCCs.
*/
static int sort_sccs(struct isl_sched_graph *graph)
{
return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
}
/* Given a dependence relation R from a node to itself,
* construct the set of coefficients of valid constraints for elements
* in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x such that
*
* c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
*
* or, equivalently,
*
* c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
*
* We choose here to compute the dual of delta R.
* Alternatively, we could have computed the dual of R, resulting
* in a set of tuples c_0, c_n, c_x, c_y, and then
* plugged in (c_0, c_n, c_x, -c_x).
*/
static __isl_give isl_basic_set *intra_coefficients(
struct isl_sched_graph *graph, __isl_take isl_map *map)
{
isl_ctx *ctx = isl_map_get_ctx(map);
isl_set *delta;
isl_basic_set *coef;
if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
coef = isl_set_coefficients(delta);
isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
isl_basic_set_copy(coef));
return coef;
}
/* Given a dependence relation R, * construct the set of coefficients
* of valid constraints for elements in that dependence relation.
* In particular, the result contains tuples of coefficients
* c_0, c_n, c_x, c_y such that
*
* c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
*
*/
static __isl_give isl_basic_set *inter_coefficients(
struct isl_sched_graph *graph, __isl_take isl_map *map)
{
isl_ctx *ctx = isl_map_get_ctx(map);
isl_set *set;
isl_basic_set *coef;
if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
coef = isl_set_coefficients(set);
isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
isl_basic_set_copy(coef));
return coef;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from a node i to itself.
* That is, add constraints that enforce
*
* (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
* = c_i_x (y - x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
* where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
* In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
*
* Actually, we do not construct constraints for the c_i_x themselves,
* but for the coefficients of c_i_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_intra_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
unsigned total;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
if (!coef)
goto error;
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, 1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that force validity for the given
* dependence from node i to node j.
* That is, add constraints that enforce
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
* c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
* where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
* In graph->lp, the c_*^- appear before their c_*^+ counterpart.
*
* Actually, we do not construct constraints for the c_*_x themselves,
* but for the coefficients of c_*_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_inter_validity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge)
{
unsigned total;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set) + src->nvar,
isl_mat_copy(dst->cmap));
if (!coef)
goto error;
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, 1);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, 1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -1);
edge->start = graph->lp->n_ineq;
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
if (!graph->lp)
goto error;
isl_space_free(dim);
edge->end = graph->lp->n_ineq;
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from a node i to itself.
* If s = 1, we add the constraint
*
* c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* -c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -c_i_x (y - x) <= m_0 + m_n n
*
* or
*
* c_i_x (y - x) + m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
* with each coefficient (except m_0) represented as a pair of non-negative
* coefficients.
*
* Actually, we do not construct constraints for the c_i_x themselves,
* but for the coefficients of c_i_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s)
{
unsigned total;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
if (!coef)
goto error;
nparam = isl_space_dim(node->dim, isl_dim_param);
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, s);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -s);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
/* Add constraints to graph->lp that bound the dependence distance for the given
* dependence from node i to node j.
* If s = 1, we add the constraint
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
* <= m_0 + m_n n
*
* or
*
* -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* If s = -1, we add the constraint
*
* -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
* <= m_0 + m_n n
*
* or
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
* m_0 + m_n n >= 0
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
* of valid constraints for R and then plug in
* (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
* -s*c_j_x+s*c_i_x)
* with each coefficient (except m_0, c_j_0 and c_i_0)
* represented as a pair of non-negative coefficients.
*
* Actually, we do not construct constraints for the c_*_x themselves,
* but for the coefficients of c_*_x written as a linear combination
* of the columns in node->cmap.
*/
static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, int s)
{
unsigned total;
unsigned nparam;
isl_map *map = isl_map_copy(edge->map);
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, map);
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
coef = isl_basic_set_transform_dims(coef, isl_dim_set,
isl_space_dim(dim, isl_dim_set) + src->nvar,
isl_mat_copy(dst->cmap));
if (!coef)
goto error;
nparam = isl_space_dim(src->dim, isl_dim_param);
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, s);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -s);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -s);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, s);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
error:
isl_space_free(dim);
return -1;
}
static int add_all_validity_constraints(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
if (!edge->validity)
continue;
if (edge->src != edge->dst)
continue;
if (add_intra_validity_constraints(graph, edge) < 0)
return -1;
}
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
if (!edge->validity)
continue;
if (edge->src == edge->dst)
continue;
if (add_inter_validity_constraints(graph, edge) < 0)
return -1;
}
return 0;
}
/* Add constraints to graph->lp that bound the dependence distance
* for all dependence relations.
* If a given proximity dependence is identical to a validity
* dependence, then the dependence distance is already bounded
* from below (by zero), so we only need to bound the distance
* from above.
* Otherwise, we need to bound the distance both from above and from below.
*/
static int add_all_proximity_constraints(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
if (!edge->proximity)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, 1) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, 1) < 0)
return -1;
if (edge->validity)
continue;
if (edge->src == edge->dst &&
add_intra_proximity_constraints(graph, edge, -1) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_proximity_constraints(graph, edge, -1) < 0)
return -1;
}
return 0;
}
/* Compute a basis for the rows in the linear part of the schedule
* and extend this basis to a full basis. The remaining rows
* can then be used to force linear independence from the rows
* in the schedule.
*
* In particular, given the schedule rows S, we compute
*
* S = H Q
* S U = H
*
* with H the Hermite normal form of S. That is, all but the
* first rank columns of Q are zero and so each row in S is
* a linear combination of the first rank rows of Q.
* The matrix Q is then transposed because we will write the
* coefficients of the next schedule row as a column vector s
* and express this s as a linear combination s = Q c of the
* computed basis.
* Similarly, the matrix U is transposed such that we can
* compute the coefficients c = U s from a schedule row s.
*/
static int node_update_cmap(struct isl_sched_node *node)
{
isl_mat *H, *U, *Q;
int n_row = isl_mat_rows(node->sched);
H = isl_mat_sub_alloc(node->sched, 0, n_row,
1 + node->nparam, node->nvar);
H = isl_mat_left_hermite(H, 0, &U, &Q);
isl_mat_free(node->cmap);
isl_mat_free(node->cinv);
node->cmap = isl_mat_transpose(Q);
node->cinv = isl_mat_transpose(U);
node->rank = isl_mat_initial_non_zero_cols(H);
isl_mat_free(H);
if (!node->cmap || !node->cinv || node->rank < 0)
return -1;
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added for the given map.
* If carry is set, then we are counting the number of (validity)
* constraints that will be added in setup_carry_lp and we count
* each edge exactly once. Otherwise, we count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
*/
static int count_map_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map,
int *n_eq, int *n_ineq, int carry)
{
isl_basic_set *coef;
int f = carry ? 1 : edge->proximity ? 2 : 1;
if (carry && !edge->validity) {
isl_map_free(map);
return 0;
}
if (edge->src == edge->dst)
coef = intra_coefficients(graph, map);
else
coef = inter_coefficients(graph, map);
if (!coef)
return -1;
*n_eq += f * coef->n_eq;
*n_ineq += f * coef->n_ineq;
isl_basic_set_free(coef);
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added to the main lp problem.
* We count as follows
* validity -> 1 (>= 0)
* validity+proximity -> 2 (>= 0 and upper bound)
* proximity -> 2 (lower and upper bound)
*/
static int count_constraints(struct isl_sched_graph *graph,
int *n_eq, int *n_ineq)
{
int i;
*n_eq = *n_ineq = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
isl_map *map = isl_map_copy(edge->map);
if (count_map_constraints(graph, edge, map,
n_eq, n_ineq, 0) < 0)
return -1;
}
return 0;
}
/* Add constraints that bound the values of the variable and parameter
* coefficients of the schedule.
*
* The maximal value of the coefficients is defined by the option
* 'schedule_max_coefficient'.
*/
static int add_bound_coefficient_constraints(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int i, j, k;
int max_coefficient;
int total;
max_coefficient = ctx->opt->schedule_max_coefficient;
if (max_coefficient == -1)
return 0;
total = isl_basic_set_total_dim(graph->lp);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
int dim;
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
dim = 1 + node->start + 1 + j;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][dim], -1);
isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
}
}
return 0;
}
/* Construct an ILP problem for finding schedule coefficients
* that result in non-negative, but small dependence distances
* over all dependences.
* In particular, the dependence distances over proximity edges
* are bounded by m_0 + m_n n and we compute schedule coefficients
* with small values (preferably zero) of m_n and m_0.
*
* All variables of the ILP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of positive and negative parts of m_n coefficients
* - m_0
* - sum of positive and negative parts of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - positive and negative parts of m_n coefficients
* - for each node
* - c_i_0
* - positive and negative parts of c_i_n (if parametric)
* - positive and negative parts of c_i_x
*
* The c_i_x are not represented directly, but through the columns of
* node->cmap. That is, the computed values are for variable t_i_x
* such that c_i_x = Q t_i_x with Q equal to node->cmap.
*
* The constraints are those from the edges plus two or three equalities
* to express the sums.
*
* If force_zero is set, then we add equalities to ensure that
* the sum of the m_n coefficients and m_0 are both zero.
*/
static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
int force_zero)
{
int i, j;
int k;
unsigned nparam;
unsigned total;
isl_space *dim;
int parametric;
int param_pos;
int n_eq, n_ineq;
int max_constant_term;
int max_coefficient;
max_constant_term = ctx->opt->schedule_max_constant_term;
max_coefficient = ctx->opt->schedule_max_coefficient;
parametric = ctx->opt->schedule_parametric;
nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
param_pos = 4;
total = param_pos + 2 * nparam;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
if (node_update_cmap(node) < 0)
return -1;
node->start = total;
total += 1 + 2 * (node->nparam + node->nvar);
}
if (count_constraints(graph, &n_eq, &n_ineq) < 0)
return -1;
dim = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 2 + parametric + force_zero;
if (max_constant_term != -1)
n_ineq += graph->n;
if (max_coefficient != -1)
for (i = 0; i < graph->n; ++i)
n_ineq += 2 * graph->node[i].nparam +
2 * graph->node[i].nvar;
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
if (!force_zero)
isl_int_set_si(graph->lp->eq[k][1], -1);
for (i = 0; i < 2 * nparam; ++i)
isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
if (force_zero) {
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][2], -1);
}
if (parametric) {
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][3], -1);
for (i = 0; i < graph->n; ++i) {
int pos = 1 + graph->node[i].start + 1;
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
}
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][4], -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = 1 + node->start + 1 + 2 * node->nparam;
for (j = 0; j < 2 * node->nvar; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
if (max_constant_term != -1)
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
}
if (add_bound_coefficient_constraints(ctx, graph) < 0)
return -1;
if (add_all_validity_constraints(graph) < 0)
return -1;
if (add_all_proximity_constraints(graph) < 0)
return -1;
return 0;
}
/* Analyze the conflicting constraint found by
* isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
* constraint of one of the edges between distinct nodes, living, moreover
* in distinct SCCs, then record the source and sink SCC as this may
* be a good place to cut between SCCs.
*/
static int check_conflict(int con, void *user)
{
int i;
struct isl_sched_graph *graph = user;
if (graph->src_scc >= 0)
return 0;
con -= graph->lp->n_eq;
if (con >= graph->lp->n_ineq)
return 0;
for (i = 0; i < graph->n_edge; ++i) {
if (!graph->edge[i].validity)
continue;
if (graph->edge[i].src == graph->edge[i].dst)
continue;
if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
continue;
if (graph->edge[i].start > con)
continue;
if (graph->edge[i].end <= con)
continue;
graph->src_scc = graph->edge[i].src->scc;
graph->dst_scc = graph->edge[i].dst->scc;
}
return 0;
}
/* Check whether the next schedule row of the given node needs to be
* non-trivial. Lower-dimensional domains may have some trivial rows,
* but as soon as the number of remaining required non-trivial rows
* is as large as the number or remaining rows to be computed,
* all remaining rows need to be non-trivial.
*/
static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
{
return node->nvar - node->rank >= graph->maxvar - graph->n_row;
}
/* Solve the ILP problem constructed in setup_lp.
* For each node such that all the remaining rows of its schedule
* need to be non-trivial, we construct a non-triviality region.
* This region imposes that the next row is independent of previous rows.
* In particular the coefficients c_i_x are represented by t_i_x
* variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
* its first columns span the rows of the previously computed part
* of the schedule. The non-triviality region enforces that at least
* one of the remaining components of t_i_x is non-zero, i.e.,
* that the new schedule row depends on at least one of the remaining
* columns of Q.
*/
static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
{
int i;
isl_vec *sol;
isl_basic_set *lp;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int skip = node->rank;
graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
if (needs_row(graph, node))
graph->region[i].len = 2 * (node->nvar - skip);
else
graph->region[i].len = 0;
}
lp = isl_basic_set_copy(graph->lp);
sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
graph->region, &check_conflict, graph);
return sol;
}
/* Update the schedules of all nodes based on the given solution
* of the LP problem.
* The new row is added to the current band.
* All possibly negative coefficients are encoded as a difference
* of two non-negative variables, so we need to perform the subtraction
* here. Moreover, if use_cmap is set, then the solution does
* not refer to the actual coefficients c_i_x, but instead to variables
* t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
* In this case, we then also need to perform this multiplication
* to obtain the values of c_i_x.
*
* If check_zero is set, then the first two coordinates of sol are
* assumed to correspond to the dependence distance. If these two
* coordinates are zero, then the corresponding scheduling dimension
* is marked as being zero distance.
*/
static int update_schedule(struct isl_sched_graph *graph,
__isl_take isl_vec *sol, int use_cmap, int check_zero)
{
int i, j;
int zero = 0;
isl_vec *csol = NULL;
if (!sol)
goto error;
if (sol->size == 0)
isl_die(sol->ctx, isl_error_internal,
"no solution found", goto error);
if (graph->n_total_row >= graph->max_row)
isl_die(sol->ctx, isl_error_internal,
"too many schedule rows", goto error);
if (check_zero)
zero = isl_int_is_zero(sol->el[1]) &&
isl_int_is_zero(sol->el[2]);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = node->start;
int row = isl_mat_rows(node->sched);
isl_vec_free(csol);
csol = isl_vec_alloc(sol->ctx, node->nvar);
if (!csol)
goto error;
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
goto error;
node->sched = isl_mat_set_element(node->sched, row, 0,
sol->el[1 + pos]);
for (j = 0; j < node->nparam + node->nvar; ++j)
isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
sol->el[1 + pos + 1 + 2 * j + 1],
sol->el[1 + pos + 1 + 2 * j]);
for (j = 0; j < node->nparam; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + j, sol->el[1+pos+1+2*j+1]);
for (j = 0; j < node->nvar; ++j)
isl_int_set(csol->el[j],
sol->el[1+pos+1+2*(node->nparam+j)+1]);
if (use_cmap)
csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
csol);
if (!csol)
goto error;
for (j = 0; j < node->nvar; ++j)
node->sched = isl_mat_set_element(node->sched,
row, 1 + node->nparam + j, csol->el[j]);
node->band[graph->n_total_row] = graph->n_band;
node->zero[graph->n_total_row] = zero;
}
isl_vec_free(sol);
isl_vec_free(csol);
graph->n_row++;
graph->n_total_row++;
return 0;
error:
isl_vec_free(sol);
isl_vec_free(csol);
return -1;
}
/* Convert node->sched into a multi_aff and return this multi_aff.
*/
static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
struct isl_sched_node *node)
{
int i, j;
isl_space *space;
isl_local_space *ls;
isl_aff *aff;
isl_multi_aff *ma;
int nrow, ncol;
isl_int v;
nrow = isl_mat_rows(node->sched);
ncol = isl_mat_cols(node->sched) - 1;
space = isl_space_from_domain(isl_space_copy(node->dim));
space = isl_space_add_dims(space, isl_dim_out, nrow);
ma = isl_multi_aff_zero(space);
ls = isl_local_space_from_space(isl_space_copy(node->dim));
isl_int_init(v);
for (i = 0; i < nrow; ++i) {
aff = isl_aff_zero_on_domain(isl_local_space_copy(ls));
isl_mat_get_element(node->sched, i, 0, &v);
aff = isl_aff_set_constant(aff, v);
for (j = 0; j < node->nparam; ++j) {
isl_mat_get_element(node->sched, i, 1 + j, &v);
aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
}
for (j = 0; j < node->nvar; ++j) {
isl_mat_get_element(node->sched,
i, 1 + node->nparam + j, &v);
aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
}
ma = isl_multi_aff_set_aff(ma, i, aff);
}
isl_int_clear(v);
isl_local_space_free(ls);
return ma;
}
/* Convert node->sched into a map and return this map.
*
* The result is cached in node->sched_map, which needs to be released
* whenever node->sched is updated.
*/
static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
{
if (!node->sched_map) {
isl_multi_aff *ma;
ma = node_extract_schedule_multi_aff(node);
node->sched_map = isl_map_from_multi_aff(ma);
}
return isl_map_copy(node->sched_map);
}
/* Update the given dependence relation based on the current schedule.
* That is, intersect the dependence relation with a map expressing
* that source and sink are executed within the same iteration of
* the current schedule.
* This is not the most efficient way, but this shouldn't be a critical
* operation.
*/
static __isl_give isl_map *specialize(__isl_take isl_map *map,
struct isl_sched_node *src, struct isl_sched_node *dst)
{
isl_map *src_sched, *dst_sched, *id;
src_sched = node_extract_schedule(src);
dst_sched = node_extract_schedule(dst);
id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
return isl_map_intersect(map, id);
}
/* Update the dependence relations of all edges based on the current schedule.
* If a dependence is carried completely by the current schedule, then
* it is removed from the edge_tables. It is kept in the list of edges
* as otherwise all edge_tables would have to be recomputed.
*/
static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
for (i = graph->n_edge - 1; i >= 0; --i) {
struct isl_sched_edge *edge = &graph->edge[i];
edge->map = specialize(edge->map, edge->src, edge->dst);
if (!edge->map)
return -1;
if (isl_map_plain_is_empty(edge->map))
graph_remove_edge(graph, edge);
}
return 0;
}
static void next_band(struct isl_sched_graph *graph)
{
graph->band_start = graph->n_total_row;
graph->n_band++;
}
/* Topologically sort statements mapped to the same schedule iteration
* and add a row to the schedule corresponding to this order.
*/
static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i, j;
if (graph->n <= 1)
return 0;
if (update_edges(ctx, graph) < 0)
return -1;
if (graph->n_edge == 0)
return 0;
if (detect_sccs(ctx, graph) < 0)
return -1;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched);
int cols = isl_mat_cols(node->sched);
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
return -1;
node->sched = isl_mat_set_element_si(node->sched, row, 0,
node->scc);
for (j = 1; j < cols; ++j)
node->sched = isl_mat_set_element_si(node->sched,
row, j, 0);
node->band[graph->n_total_row] = graph->n_band;
}
graph->n_total_row++;
next_band(graph);
return 0;
}
/* Construct an isl_schedule based on the computed schedule stored
* in graph and with parameters specified by dim.
*/
static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
__isl_take isl_space *dim)
{
int i;
isl_ctx *ctx;
isl_schedule *sched = NULL;
if (!dim)
return NULL;
ctx = isl_space_get_ctx(dim);
sched = isl_calloc(ctx, struct isl_schedule,
sizeof(struct isl_schedule) +
(graph->n - 1) * sizeof(struct isl_schedule_node));
if (!sched)
goto error;
sched->ref = 1;
sched->n = graph->n;
sched->n_band = graph->n_band;
sched->n_total_row = graph->n_total_row;
for (i = 0; i < sched->n; ++i) {
int r, b;
int *band_end, *band_id, *zero;
sched->node[i].sched =
node_extract_schedule_multi_aff(&graph->node[i]);
if (!sched->node[i].sched)
goto error;
sched->node[i].n_band = graph->n_band;
if (graph->n_band == 0)
continue;
band_end = isl_alloc_array(ctx, int, graph->n_band);
band_id = isl_alloc_array(ctx, int, graph->n_band);
zero = isl_alloc_array(ctx, int, graph->n_total_row);
sched->node[i].band_end = band_end;
sched->node[i].band_id = band_id;
sched->node[i].zero = zero;
if (!band_end || !band_id || !zero)
goto error;
for (r = 0; r < graph->n_total_row; ++r)
zero[r] = graph->node[i].zero[r];
for (r = b = 0; r < graph->n_total_row; ++r) {
if (graph->node[i].band[r] == b)
continue;
band_end[b++] = r;
if (graph->node[i].band[r] == -1)
break;
}
if (r == graph->n_total_row)
band_end[b++] = r;
sched->node[i].n_band = b;
for (--b; b >= 0; --b)
band_id[b] = graph->node[i].band_id[b];
}
sched->dim = dim;
return sched;
error:
isl_space_free(dim);
isl_schedule_free(sched);
return NULL;
}
/* Copy nodes that satisfy node_pred from the src dependence graph
* to the dst dependence graph.
*/
static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
int (*node_pred)(struct isl_sched_node *node, int data), int data)
{
int i;
dst->n = 0;
for (i = 0; i < src->n; ++i) {
if (!node_pred(&src->node[i], data))
continue;
dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
dst->node[dst->n].nvar = src->node[i].nvar;
dst->node[dst->n].nparam = src->node[i].nparam;
dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
dst->node[dst->n].sched_map =
isl_map_copy(src->node[i].sched_map);
dst->node[dst->n].band = src->node[i].band;
dst->node[dst->n].band_id = src->node[i].band_id;
dst->node[dst->n].zero = src->node[i].zero;
dst->n++;
}
return 0;
}
/* Copy non-empty edges that satisfy edge_pred from the src dependence graph
* to the dst dependence graph.
* If the source or destination node of the edge is not in the destination
* graph, then it must be a backward proximity edge and it should simply
* be ignored.
*/
static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
struct isl_sched_graph *src,
int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
{
int i;
enum isl_edge_type t;
dst->n_edge = 0;
for (i = 0; i < src->n_edge; ++i) {
struct isl_sched_edge *edge = &src->edge[i];
isl_map *map;
struct isl_sched_node *dst_src, *dst_dst;
if (!edge_pred(edge, data))
continue;
if (isl_map_plain_is_empty(edge->map))
continue;
dst_src = graph_find_node(ctx, dst, edge->src->dim);
dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
if (!dst_src || !dst_dst) {
if (edge->validity)
isl_die(ctx, isl_error_internal,
"backward validity edge", return -1);
continue;
}
map = isl_map_copy(edge->map);
dst->edge[dst->n_edge].src = dst_src;
dst->edge[dst->n_edge].dst = dst_dst;
dst->edge[dst->n_edge].map = map;
dst->edge[dst->n_edge].validity = edge->validity;
dst->edge[dst->n_edge].proximity = edge->proximity;
dst->n_edge++;
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
if (edge !=
graph_find_edge(src, t, edge->src, edge->dst))
continue;
if (graph_edge_table_add(ctx, dst, t,
&dst->edge[dst->n_edge - 1]) < 0)
return -1;
}
}
return 0;
}
/* Given a "src" dependence graph that contains the nodes from "dst"
* that satisfy node_pred, copy the schedule computed in "src"
* for those nodes back to "dst".
*/
static int copy_schedule(struct isl_sched_graph *dst,
struct isl_sched_graph *src,
int (*node_pred)(struct isl_sched_node *node, int data), int data)
{
int i;
src->n = 0;
for (i = 0; i < dst->n; ++i) {
if (!node_pred(&dst->node[i], data))
continue;
isl_mat_free(dst->node[i].sched);
isl_map_free(dst->node[i].sched_map);
dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
dst->node[i].sched_map =
isl_map_copy(src->node[src->n].sched_map);
src->n++;
}
dst->max_row = src->max_row;
dst->n_total_row = src->n_total_row;
dst->n_band = src->n_band;
return 0;
}
/* Compute the maximal number of variables over all nodes.
* This is the maximal number of linearly independent schedule
* rows that we need to compute.
* Just in case we end up in a part of the dependence graph
* with only lower-dimensional domains, we make sure we will
* compute the required amount of extra linearly independent rows.
*/
static int compute_maxvar(struct isl_sched_graph *graph)
{
int i;
graph->maxvar = 0;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int nvar;
if (node_update_cmap(node) < 0)
return -1;
nvar = node->nvar + graph->n_row - node->rank;
if (nvar > graph->maxvar)
graph->maxvar = nvar;
}
return 0;
}
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
/* Compute a schedule for a subgraph of "graph". In particular, for
* the graph composed of nodes that satisfy node_pred and edges that
* that satisfy edge_pred. The caller should precompute the number
* of nodes and edges that satisfy these predicates and pass them along
* as "n" and "n_edge".
* If the subgraph is known to consist of a single component, then wcc should
* be set and then we call compute_schedule_wcc on the constructed subgraph.
* Otherwise, we call compute_schedule, which will check whether the subgraph
* is connected.
*/
static int compute_sub_schedule(isl_ctx *ctx,
struct isl_sched_graph *graph, int n, int n_edge,
int (*node_pred)(struct isl_sched_node *node, int data),
int (*edge_pred)(struct isl_sched_edge *edge, int data),
int data, int wcc)
{
struct isl_sched_graph split = { 0 };
int t;
if (graph_alloc(ctx, &split, n, n_edge) < 0)
goto error;
if (copy_nodes(&split, graph, node_pred, data) < 0)
goto error;
if (graph_init_table(ctx, &split) < 0)
goto error;
for (t = 0; t <= isl_edge_last; ++t)
split.max_edge[t] = graph->max_edge[t];
if (graph_init_edge_tables(ctx, &split) < 0)
goto error;
if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
goto error;
split.n_row = graph->n_row;
split.max_row = graph->max_row;
split.n_total_row = graph->n_total_row;
split.n_band = graph->n_band;
split.band_start = graph->band_start;
if (wcc && compute_schedule_wcc(ctx, &split) < 0)
goto error;
if (!wcc && compute_schedule(ctx, &split) < 0)
goto error;
copy_schedule(graph, &split, node_pred, data);
graph_free(ctx, &split);
return 0;
error:
graph_free(ctx, &split);
return -1;
}
static int node_scc_exactly(struct isl_sched_node *node, int scc)
{
return node->scc == scc;
}
static int node_scc_at_most(struct isl_sched_node *node, int scc)
{
return node->scc <= scc;
}
static int node_scc_at_least(struct isl_sched_node *node, int scc)
{
return node->scc >= scc;
}
static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc == scc && edge->dst->scc == scc;
}
static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
{
return edge->dst->scc <= scc;
}
static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
{
return edge->src->scc >= scc;
}
/* Pad the schedules of all nodes with zero rows such that in the end
* they all have graph->n_total_row rows.
* The extra rows don't belong to any band, so they get assigned band number -1.
*/
static int pad_schedule(struct isl_sched_graph *graph)
{
int i, j;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched);
if (graph->n_total_row > row) {
isl_map_free(node->sched_map);
node->sched_map = NULL;
}
node->sched = isl_mat_add_zero_rows(node->sched,
graph->n_total_row - row);
if (!node->sched)
return -1;
for (j = row; j < graph->n_total_row; ++j)
node->band[j] = -1;
}
return 0;
}
/* Split the current graph into two parts and compute a schedule for each
* part individually. In particular, one part consists of all SCCs up
* to and including graph->src_scc, while the other part contains the other
* SCCS.
*
* The split is enforced in the schedule by constant rows with two different
* values (0 and 1). These constant rows replace the previously computed rows
* in the current band.
* It would be possible to reuse them as the first rows in the next
* band, but recomputing them may result in better rows as we are looking
* at a smaller part of the dependence graph.
* compute_split_schedule is only called when no zero-distance schedule row
* could be found on the entire graph, so we wark the splitting row as
* non zero-distance.
*
* The band_id of the second group is set to n, where n is the number
* of nodes in the first group. This ensures that the band_ids over
* the two groups remain disjoint, even if either or both of the two
* groups contain independent components.
*/
static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i, j, n, e1, e2;
int n_total_row, orig_total_row;
int n_band, orig_band;
int drop;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
drop = graph->n_total_row - graph->band_start;
graph->n_total_row -= drop;
graph->n_row -= drop;
n = 0;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched) - drop;
int cols = isl_mat_cols(node->sched);
int before = node->scc <= graph->src_scc;
if (before)
n++;
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_drop_rows(node->sched,
graph->band_start, drop);
node->sched = isl_mat_add_rows(node->sched, 1);
if (!node->sched)
return -1;
node->sched = isl_mat_set_element_si(node->sched, row, 0,
!before);
for (j = 1; j < cols; ++j)
node->sched = isl_mat_set_element_si(node->sched,
row, j, 0);
node->band[graph->n_total_row] = graph->n_band;
node->zero[graph->n_total_row] = 0;
}
e1 = e2 = 0;
for (i = 0; i < graph->n_edge; ++i) {
if (graph->edge[i].dst->scc <= graph->src_scc)
e1++;
if (graph->edge[i].src->scc > graph->src_scc)
e2++;
}
graph->n_total_row++;
next_band(graph);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
if (node->scc > graph->src_scc)
node->band_id[graph->n_band] = n;
}
orig_total_row = graph->n_total_row;
orig_band = graph->n_band;
if (compute_sub_schedule(ctx, graph, n, e1,
&node_scc_at_most, &edge_dst_scc_at_most,
graph->src_scc, 0) < 0)
return -1;
n_total_row = graph->n_total_row;
graph->n_total_row = orig_total_row;
n_band = graph->n_band;
graph->n_band = orig_band;
if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
&node_scc_at_least, &edge_src_scc_at_least,
graph->src_scc + 1, 0) < 0)
return -1;
if (n_total_row > graph->n_total_row)
graph->n_total_row = n_total_row;
if (n_band > graph->n_band)
graph->n_band = n_band;
return pad_schedule(graph);
}
/* Compute the next band of the schedule after updating the dependence
* relations based on the the current schedule.
*/
static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (update_edges(ctx, graph) < 0)
return -1;
next_band(graph);
return compute_schedule(ctx, graph);
}
/* Add constraints to graph->lp that force the dependence "map" (which
* is part of the dependence relation of "edge")
* to be respected and attempt to carry it, where the edge is one from
* a node j to itself. "pos" is the sequence number of the given map.
* That is, add constraints that enforce
*
* (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
* = c_j_x (y - x) >= e_i
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
* with each coefficient in c_j_x represented as a pair of non-negative
* coefficients.
*/
static int add_intra_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
{
unsigned total;
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *node = edge->src;
coef = intra_coefficients(graph, map);
if (!coef)
return -1;
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, -1);
isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
node->nvar, 1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
}
/* Add constraints to graph->lp that force the dependence "map" (which
* is part of the dependence relation of "edge")
* to be respected and attempt to carry it, where the edge is one from
* node j to node k. "pos" is the sequence number of the given map.
* That is, add constraints that enforce
*
* (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
*
* for each (x,y) in R.
* We obtain general constraints on coefficients (c_0, c_n, c_x)
* of valid constraints for R and then plug in
* (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
* with each coefficient (except e_i, c_k_0 and c_j_0)
* represented as a pair of non-negative coefficients.
*/
static int add_inter_constraints(struct isl_sched_graph *graph,
struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
{
unsigned total;
isl_ctx *ctx = isl_map_get_ctx(map);
isl_space *dim;
isl_dim_map *dim_map;
isl_basic_set *coef;
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
coef = inter_coefficients(graph, map);
if (!coef)
return -1;
dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
total = isl_basic_set_total_dim(graph->lp);
dim_map = isl_dim_map_alloc(ctx, total);
isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, -1);
isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
dst->nvar, 1);
isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, 1);
isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
isl_space_dim(dim, isl_dim_set), 1,
src->nvar, -1);
graph->lp = isl_basic_set_extend_constraints(graph->lp,
coef->n_eq, coef->n_ineq);
graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
coef, dim_map);
isl_space_free(dim);
return 0;
}
/* Add constraints to graph->lp that force all validity dependences
* to be respected and attempt to carry them.
*/
static int add_all_constraints(struct isl_sched_graph *graph)
{
int i, j;
int pos;
pos = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
if (!edge->validity)
continue;
for (j = 0; j < edge->map->n; ++j) {
isl_basic_map *bmap;
isl_map *map;
bmap = isl_basic_map_copy(edge->map->p[j]);
map = isl_map_from_basic_map(bmap);
if (edge->src == edge->dst &&
add_intra_constraints(graph, edge, map, pos) < 0)
return -1;
if (edge->src != edge->dst &&
add_inter_constraints(graph, edge, map, pos) < 0)
return -1;
++pos;
}
}
return 0;
}
/* Count the number of equality and inequality constraints
* that will be added to the carry_lp problem.
* We count each edge exactly once.
*/
static int count_all_constraints(struct isl_sched_graph *graph,
int *n_eq, int *n_ineq)
{
int i, j;
*n_eq = *n_ineq = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge= &graph->edge[i];
for (j = 0; j < edge->map->n; ++j) {
isl_basic_map *bmap;
isl_map *map;
bmap = isl_basic_map_copy(edge->map->p[j]);
map = isl_map_from_basic_map(bmap);
if (count_map_constraints(graph, edge, map,
n_eq, n_ineq, 1) < 0)
return -1;
}
}
return 0;
}
/* Construct an LP problem for finding schedule coefficients
* such that the schedule carries as many dependences as possible.
* In particular, for each dependence i, we bound the dependence distance
* from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
* of all e_i's. Dependence with e_i = 0 in the solution are simply
* respected, while those with e_i > 0 (in practice e_i = 1) are carried.
* Note that if the dependence relation is a union of basic maps,
* then we have to consider each basic map individually as it may only
* be possible to carry the dependences expressed by some of those
* basic maps and not all off them.
* Below, we consider each of those basic maps as a separate "edge".
*
* All variables of the LP are non-negative. The actual coefficients
* may be negative, so each coefficient is represented as the difference
* of two non-negative variables. The negative part always appears
* immediately before the positive part.
* Other than that, the variables have the following order
*
* - sum of (1 - e_i) over all edges
* - sum of positive and negative parts of all c_n coefficients
* (unconstrained when computing non-parametric schedules)
* - sum of positive and negative parts of all c_x coefficients
* - for each edge
* - e_i
* - for each node
* - c_i_0
* - positive and negative parts of c_i_n (if parametric)
* - positive and negative parts of c_i_x
*
* The constraints are those from the (validity) edges plus three equalities
* to express the sums and n_edge inequalities to express e_i <= 1.
*/
static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i, j;
int k;
isl_space *dim;
unsigned total;
int n_eq, n_ineq;
int n_edge;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
n_edge += graph->edge[i].map->n;
total = 3 + n_edge;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[graph->sorted[i]];
node->start = total;
total += 1 + 2 * (node->nparam + node->nvar);
}
if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
return -1;
dim = isl_space_set_alloc(ctx, 0, total);
isl_basic_set_free(graph->lp);
n_eq += 3;
n_ineq += n_edge;
graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
graph->lp = isl_basic_set_set_rational(graph->lp);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][0], -n_edge);
isl_int_set_si(graph->lp->eq[k][1], 1);
for (i = 0; i < n_edge; ++i)
isl_int_set_si(graph->lp->eq[k][4 + i], 1);
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][2], -1);
for (i = 0; i < graph->n; ++i) {
int pos = 1 + graph->node[i].start + 1;
for (j = 0; j < 2 * graph->node[i].nparam; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
k = isl_basic_set_alloc_equality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->eq[k], 1 + total);
isl_int_set_si(graph->lp->eq[k][3], -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int pos = 1 + node->start + 1 + 2 * node->nparam;
for (j = 0; j < 2 * node->nvar; ++j)
isl_int_set_si(graph->lp->eq[k][pos + j], 1);
}
for (i = 0; i < n_edge; ++i) {
k = isl_basic_set_alloc_inequality(graph->lp);
if (k < 0)
return -1;
isl_seq_clr(graph->lp->ineq[k], 1 + total);
isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
isl_int_set_si(graph->lp->ineq[k][0], 1);
}
if (add_all_constraints(graph) < 0)
return -1;
return 0;
}
/* If the schedule_split_scaled option is set and if the linear
* parts of the scheduling rows for all nodes in the graphs have
* non-trivial common divisor, then split off the constant term
* from the linear part.
* The constant term is then placed in a separate band and
* the linear part is reduced.
*/
static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
int row;
isl_int gcd, gcd_i;
if (!ctx->opt->schedule_split_scaled)
return 0;
if (graph->n <= 1)
return 0;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
isl_int_init(gcd);
isl_int_init(gcd_i);
isl_int_set_si(gcd, 0);
row = isl_mat_rows(graph->node[0].sched) - 1;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int cols = isl_mat_cols(node->sched);
isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
isl_int_gcd(gcd, gcd, gcd_i);
}
isl_int_clear(gcd_i);
if (isl_int_cmp_si(gcd, 1) <= 0) {
isl_int_clear(gcd);
return 0;
}
next_band(graph);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_zero_rows(node->sched, 1);
if (!node->sched)
goto error;
isl_int_fdiv_r(node->sched->row[row + 1][0],
node->sched->row[row][0], gcd);
isl_int_fdiv_q(node->sched->row[row][0],
node->sched->row[row][0], gcd);
isl_int_mul(node->sched->row[row][0],
node->sched->row[row][0], gcd);
node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
if (!node->sched)
goto error;
node->band[graph->n_total_row] = graph->n_band;
}
graph->n_total_row++;
isl_int_clear(gcd);
return 0;
error:
isl_int_clear(gcd);
return -1;
}
static int compute_component_schedule(isl_ctx *ctx,
struct isl_sched_graph *graph);
/* Is the schedule row "sol" trivial on node "node"?
* That is, is the solution zero on the dimensions orthogonal to
* the previously found solutions?
* Return 1 if the solution is trivial, 0 if it is not and -1 on error.
*
* Each coefficient is represented as the difference between
* two non-negative values in "sol". "sol" has been computed
* in terms of the original iterators (i.e., without use of cmap).
* We construct the schedule row s and write it as a linear
* combination of (linear combinations of) previously computed schedule rows.
* s = Q c or c = U s.
* If the final entries of c are all zero, then the solution is trivial.
*/
static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
{
int i;
int pos;
int trivial;
isl_ctx *ctx;
isl_vec *node_sol;
if (!sol)
return -1;
if (node->nvar == node->rank)
return 0;
ctx = isl_vec_get_ctx(sol);
node_sol = isl_vec_alloc(ctx, node->nvar);
if (!node_sol)
return -1;
pos = 1 + node->start + 1 + 2 * node->nparam;
for (i = 0; i < node->nvar; ++i)
isl_int_sub(node_sol->el[i],
sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
if (!node_sol)
return -1;
trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
node->nvar - node->rank) == -1;
isl_vec_free(node_sol);
return trivial;
}
/* Is the schedule row "sol" trivial on any node where it should
* not be trivial?
* "sol" has been computed in terms of the original iterators
* (i.e., without use of cmap).
* Return 1 if any solution is trivial, 0 if they are not and -1 on error.
*/
static int is_any_trivial(struct isl_sched_graph *graph,
__isl_keep isl_vec *sol)
{
int i;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int trivial;
if (!needs_row(graph, node))
continue;
trivial = is_trivial(node, sol);
if (trivial < 0 || trivial)
return trivial;
}
return 0;
}
/* Construct a schedule row for each node such that as many dependences
* as possible are carried and then continue with the next band.
*
* If the computed schedule row turns out to be trivial on one or
* more nodes where it should not be trivial, then we throw it away
* and try again on each component separately.
*/
static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
int n_edge;
int trivial;
isl_vec *sol;
isl_basic_set *lp;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
n_edge += graph->edge[i].map->n;
if (setup_carry_lp(ctx, graph) < 0)
return -1;
lp = isl_basic_set_copy(graph->lp);
sol = isl_tab_basic_set_non_neg_lexmin(lp);
if (!sol)
return -1;
if (sol->size == 0) {
isl_vec_free(sol);
isl_die(ctx, isl_error_internal,
"error in schedule construction", return -1);
}
isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
isl_vec_free(sol);
isl_die(ctx, isl_error_unknown,
"unable to carry dependences", return -1);
}
trivial = is_any_trivial(graph, sol);
if (trivial < 0) {
sol = isl_vec_free(sol);
} else if (trivial) {
isl_vec_free(sol);
if (graph->scc > 1)
return compute_component_schedule(ctx, graph);
isl_die(ctx, isl_error_unknown,
"unable to construct non-trivial solution", return -1);
}
if (update_schedule(graph, sol, 0, 0) < 0)
return -1;
if (split_scaled(ctx, graph) < 0)
return -1;
return compute_next_band(ctx, graph);
}
/* Are there any (non-empty) validity edges in the graph?
*/
static int has_validity_edges(struct isl_sched_graph *graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
int empty;
empty = isl_map_plain_is_empty(graph->edge[i].map);
if (empty < 0)
return -1;
if (empty)
continue;
if (graph->edge[i].validity)
return 1;
}
return 0;
}
/* Should we apply a Feautrier step?
* That is, did the user request the Feautrier algorithm and are
* there any validity dependences (left)?
*/
static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
return 0;
return has_validity_edges(graph);
}
/* Compute a schedule for a connected dependence graph using Feautrier's
* multi-dimensional scheduling algorithm.
* The original algorithm is described in [1].
* The main idea is to minimize the number of scheduling dimensions, by
* trying to satisfy as many dependences as possible per scheduling dimension.
*
* [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
* Problem, Part II: Multi-Dimensional Time.
* In Intl. Journal of Parallel Programming, 1992.
*/
static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
return carry_dependences(ctx, graph);
}
/* Compute a schedule for a connected dependence graph.
* We try to find a sequence of as many schedule rows as possible that result
* in non-negative dependence distances (independent of the previous rows
* in the sequence, i.e., such that the sequence is tilable).
* If we can't find any more rows we either
* - split between SCCs and start over (assuming we found an interesting
* pair of SCCs between which to split)
* - continue with the next band (assuming the current band has at least
* one row)
* - try to carry as many dependences as possible and continue with the next
* band
*
* If Feautrier's algorithm is selected, we first recursively try to satisfy
* as many validity dependences as possible. When all validity dependences
* are satisfied we extend the schedule to a full-dimensional schedule.
*
* If we manage to complete the schedule, we finish off by topologically
* sorting the statements based on the remaining dependences.
*
* If ctx->opt->schedule_outer_zero_distance is set, then we force the
* outermost dimension in the current band to be zero distance. If this
* turns out to be impossible, we fall back on the general scheme above
* and try to carry as many dependences as possible.
*/
static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int force_zero = 0;
if (detect_sccs(ctx, graph) < 0)
return -1;
if (sort_sccs(graph) < 0)
return -1;
if (compute_maxvar(graph) < 0)
return -1;
if (need_feautrier_step(ctx, graph))
return compute_schedule_wcc_feautrier(ctx, graph);
if (ctx->opt->schedule_outer_zero_distance)
force_zero = 1;
while (graph->n_row < graph->maxvar) {
isl_vec *sol;
graph->src_scc = -1;
graph->dst_scc = -1;
if (setup_lp(ctx, graph, force_zero) < 0)
return -1;
sol = solve_lp(graph);
if (!sol)
return -1;
if (sol->size == 0) {
isl_vec_free(sol);
if (!ctx->opt->schedule_maximize_band_depth &&
graph->n_total_row > graph->band_start)
return compute_next_band(ctx, graph);
if (graph->src_scc >= 0)
return compute_split_schedule(ctx, graph);
if (graph->n_total_row > graph->band_start)
return compute_next_band(ctx, graph);
return carry_dependences(ctx, graph);
}
if (update_schedule(graph, sol, 1, 1) < 0)
return -1;
force_zero = 0;
}
if (graph->n_total_row > graph->band_start)
next_band(graph);
return sort_statements(ctx, graph);
}
/* Add a row to the schedules that separates the SCCs and move
* to the next band.
*/
static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
{
int i;
if (graph->n_total_row >= graph->max_row)
isl_die(ctx, isl_error_internal,
"too many schedule rows", return -1);
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
int row = isl_mat_rows(node->sched);
isl_map_free(node->sched_map);
node->sched_map = NULL;
node->sched = isl_mat_add_zero_rows(node->sched, 1);
node->sched = isl_mat_set_element_si(node->sched, row, 0,
node->scc);
if (!node->sched)
return -1;
node->band[graph->n_total_row] = graph->n_band;
}
graph->n_total_row++;
next_band(graph);
return 0;
}
/* Compute a schedule for each component (identified by node->scc)
* of the dependence graph separately and then combine the results.
* Depending on the setting of schedule_fuse, a component may be
* either weakly or strongly connected.
*
* The band_id is adjusted such that each component has a separate id.
* Note that the band_id may have already been set to a value different
* from zero by compute_split_schedule.
*/
static int compute_component_schedule(isl_ctx *ctx,
struct isl_sched_graph *graph)
{
int wcc, i;
int n, n_edge;
int n_total_row, orig_total_row;
int n_band, orig_band;
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
ctx->opt->schedule_separate_components)
if (split_on_scc(ctx, graph) < 0)
return -1;
n_total_row = 0;
orig_total_row = graph->n_total_row;
n_band = 0;
orig_band = graph->n_band;
for (i = 0; i < graph->n; ++i)
graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
for (wcc = 0; wcc < graph->scc; ++wcc) {
n = 0;
for (i = 0; i < graph->n; ++i)
if (graph->node[i].scc == wcc)
n++;
n_edge = 0;
for (i = 0; i < graph->n_edge; ++i)
if (graph->edge[i].src->scc == wcc &&
graph->edge[i].dst->scc == wcc)
n_edge++;
if (compute_sub_schedule(ctx, graph, n, n_edge,
&node_scc_exactly,
&edge_scc_exactly, wcc, 1) < 0)
return -1;
if (graph->n_total_row > n_total_row)
n_total_row = graph->n_total_row;
graph->n_total_row = orig_total_row;
if (graph->n_band > n_band)
n_band = graph->n_band;
graph->n_band = orig_band;
}
graph->n_total_row = n_total_row;
graph->n_band = n_band;
return pad_schedule(graph);
}
/* Compute a schedule for the given dependence graph.
* We first check if the graph is connected (through validity dependences)
* and, if not, compute a schedule for each component separately.
* If schedule_fuse is set to minimal fusion, then we check for strongly
* connected components instead and compute a separate schedule for
* each such strongly connected component.
*/
static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
{
if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
if (detect_sccs(ctx, graph) < 0)
return -1;
} else {
if (detect_wccs(ctx, graph) < 0)
return -1;
}
if (graph->scc > 1)
return compute_component_schedule(ctx, graph);
return compute_schedule_wcc(ctx, graph);
}
/* Compute a schedule for the given union of domains that respects
* all the validity dependences.
* If the default isl scheduling algorithm is used, it tries to minimize
* the dependence distances over the proximity dependences.
* If Feautrier's scheduling algorithm is used, the proximity dependence
* distances are only minimized during the extension to a full-dimensional
* schedule.
*/
__isl_give isl_schedule *isl_union_set_compute_schedule(
__isl_take isl_union_set *domain,
__isl_take isl_union_map *validity,
__isl_take isl_union_map *proximity)
{
isl_ctx *ctx = isl_union_set_get_ctx(domain);
isl_space *dim;
struct isl_sched_graph graph = { 0 };
isl_schedule *sched;
struct isl_extract_edge_data data;
domain = isl_union_set_align_params(domain,
isl_union_map_get_space(validity));
domain = isl_union_set_align_params(domain,
isl_union_map_get_space(proximity));
dim = isl_union_set_get_space(domain);
validity = isl_union_map_align_params(validity, isl_space_copy(dim));
proximity = isl_union_map_align_params(proximity, dim);
if (!domain)
goto error;
graph.n = isl_union_set_n_set(domain);
if (graph.n == 0)
goto empty;
if (graph_alloc(ctx, &graph, graph.n,
isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
goto error;
if (compute_max_row(&graph, domain) < 0)
goto error;
graph.root = 1;
graph.n = 0;
if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
goto error;
if (graph_init_table(ctx, &graph) < 0)
goto error;
graph.max_edge[isl_edge_validity] = isl_union_map_n_map(validity);
graph.max_edge[isl_edge_proximity] = isl_union_map_n_map(proximity);
if (graph_init_edge_tables(ctx, &graph) < 0)
goto error;
graph.n_edge = 0;
data.graph = &graph;
data.type = isl_edge_validity;
if (isl_union_map_foreach_map(validity, &extract_edge, &data) < 0)
goto error;
data.type = isl_edge_proximity;
if (isl_union_map_foreach_map(proximity, &extract_edge, &data) < 0)
goto error;
if (compute_schedule(ctx, &graph) < 0)
goto error;
empty:
sched = extract_schedule(&graph, isl_union_set_get_space(domain));
graph_free(ctx, &graph);
isl_union_set_free(domain);
isl_union_map_free(validity);
isl_union_map_free(proximity);
return sched;
error:
graph_free(ctx, &graph);
isl_union_set_free(domain);
isl_union_map_free(validity);
isl_union_map_free(proximity);
return NULL;
}
void *isl_schedule_free(__isl_take isl_schedule *sched)
{
int i;
if (!sched)
return NULL;
if (--sched->ref > 0)
return NULL;
for (i = 0; i < sched->n; ++i) {
isl_multi_aff_free(sched->node[i].sched);
free(sched->node[i].band_end);
free(sched->node[i].band_id);
free(sched->node[i].zero);
}
isl_space_free(sched->dim);
isl_band_list_free(sched->band_forest);
free(sched);
return NULL;
}
isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
{
return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
}
/* Set max_out to the maximal number of output dimensions over
* all maps.
*/
static int update_max_out(__isl_take isl_map *map, void *user)
{
int *max_out = user;
int n_out = isl_map_dim(map, isl_dim_out);
if (n_out > *max_out)
*max_out = n_out;
isl_map_free(map);
return 0;
}
/* Internal data structure for map_pad_range.
*
* "max_out" is the maximal schedule dimension.
* "res" collects the results.
*/
struct isl_pad_schedule_map_data {
int max_out;
isl_union_map *res;
};
/* Pad the range of the given map with zeros to data->max_out and
* then add the result to data->res.
*/
static int map_pad_range(__isl_take isl_map *map, void *user)
{
struct isl_pad_schedule_map_data *data = user;
int i;
int n_out = isl_map_dim(map, isl_dim_out);
map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
for (i = n_out; i < data->max_out; ++i)
map = isl_map_fix_si(map, isl_dim_out, i, 0);
data->res = isl_union_map_add_map(data->res, map);
if (!data->res)
return -1;
return 0;
}
/* Pad the ranges of the maps in the union map with zeros such they all have
* the same dimension.
*/
static __isl_give isl_union_map *pad_schedule_map(
__isl_take isl_union_map *umap)
{
struct isl_pad_schedule_map_data data;
if (!umap)
return NULL;
if (isl_union_map_n_map(umap) <= 1)
return umap;
data.max_out = 0;
if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
return isl_union_map_free(umap);
data.res = isl_union_map_empty(isl_union_map_get_space(umap));
if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
data.res = isl_union_map_free(data.res);
isl_union_map_free(umap);
return data.res;
}
/* Return an isl_union_map of the schedule. If we have already constructed
* a band forest, then this band forest may have been modified so we need
* to extract the isl_union_map from the forest rather than from
* the originally computed schedule. This reconstructed schedule map
* then needs to be padded with zeros to unify the schedule space
* since the result of isl_band_list_get_suffix_schedule may not have
* a unified schedule space.
*/
__isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
{
int i;
isl_union_map *umap;
if (!sched)
return NULL;
if (sched->band_forest) {
umap = isl_band_list_get_suffix_schedule(sched->band_forest);
return pad_schedule_map(umap);
}
umap = isl_union_map_empty(isl_space_copy(sched->dim));
for (i = 0; i < sched->n; ++i) {
isl_multi_aff *ma;
ma = isl_multi_aff_copy(sched->node[i].sched);
umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
}
return umap;
}
static __isl_give isl_band_list *construct_band_list(
__isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
int band_nr, int *parent_active, int n_active);
/* Construct an isl_band structure for the band in the given schedule
* with sequence number band_nr for the n_active nodes marked by active.
* If the nodes don't have a band with the given sequence number,
* then a band without members is created.
*
* Because of the way the schedule is constructed, we know that
* the position of the band inside the schedule of a node is the same
* for all active nodes.
*
* The partial schedule for the band is created before the children
* are created to that construct_band_list can refer to the partial
* schedule of the parent.
*/
static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
__isl_keep isl_band *parent,
int band_nr, int *active, int n_active)
{
int i, j;
isl_ctx *ctx = isl_schedule_get_ctx(schedule);
isl_band *band;
unsigned start, end;
band = isl_band_alloc(ctx);
if (!band)
return NULL;
band->schedule = schedule;
band->parent = parent;
for (i = 0; i < schedule->n; ++i)
if (active[i])
break;
if (i >= schedule->n)
isl_die(ctx, isl_error_internal,
"band without active statements", goto error);
start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
end = band_nr < schedule->node[i].n_band ?
schedule->node[i].band_end[band_nr] : start;
band->n = end - start;
band->zero = isl_alloc_array(ctx, int, band->n);
if (band->n && !band->zero)
goto error;
for (j = 0; j < band->n; ++j)
band->zero[j] = schedule->node[i].zero[start + j];
band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
for (i = 0; i < schedule->n; ++i) {
isl_multi_aff *ma;
isl_pw_multi_aff *pma;
unsigned n_out;
if (!active[i])
continue;
ma = isl_multi_aff_copy(schedule->node[i].sched);
n_out = isl_multi_aff_dim(ma, isl_dim_out);
ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
pma = isl_pw_multi_aff_from_multi_aff(ma);
band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
pma);
}
if (!band->pma)
goto error;
for (i = 0; i < schedule->n; ++i)
if (active[i] && schedule->node[i].n_band > band_nr + 1)
break;
if (i < schedule->n) {
band->children = construct_band_list(schedule, band,
band_nr + 1, active, n_active);
if (!band->children)
goto error;
}
return band;
error:
isl_band_free(band);
return NULL;
}
/* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
*
* r is set to a negative value if anything goes wrong.
*
* c1 stores the result of extract_int.
* c2 is a temporary value used inside cmp_band_in_ancestor.
* t is a temporary value used inside extract_int.
*
* first and equal are used inside extract_int.
* first is set if we are looking at the first isl_multi_aff inside
* the isl_union_pw_multi_aff.
* equal is set if all the isl_multi_affs have been equal so far.
*/
struct isl_cmp_band_data {
int r;
int first;
int equal;
isl_int t;
isl_int c1;
isl_int c2;
};
/* Check if "ma" assigns a constant value.
* Note that this function is only called on isl_multi_affs
* with a single output dimension.
*
* If "ma" assigns a constant value then we compare it to data->c1
* or assign it to data->c1 if this is the first isl_multi_aff we consider.
* If "ma" does not assign a constant value or if it assigns a value
* that is different from data->c1, then we set data->equal to zero
* and terminate the check.
*/
static int multi_aff_extract_int(__isl_take isl_set *set,
__isl_take isl_multi_aff *ma, void *user)
{
isl_aff *aff;
struct isl_cmp_band_data *data = user;
aff = isl_multi_aff_get_aff(ma, 0);
data->r = isl_aff_is_cst(aff);
if (data->r >= 0 && data->r) {
isl_aff_get_constant(aff, &data->t);
if (data->first) {
isl_int_set(data->c1, data->t);
data->first = 0;
} else if (!isl_int_eq(data->c1, data->t))
data->equal = 0;
} else if (data->r >= 0 && !data->r)
data->equal = 0;
isl_aff_free(aff);
isl_set_free(set);
isl_multi_aff_free(ma);
if (data->r < 0)
return -1;
if (!data->equal)
return -1;
return 0;
}
/* This function is called for each isl_pw_multi_aff in
* the isl_union_pw_multi_aff checked by extract_int.
* Check all the isl_multi_affs inside "pma".
*/
static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
void *user)
{
int r;
r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
isl_pw_multi_aff_free(pma);
return r;
}
/* Check if "upma" assigns a single constant value to its domain.
* If so, return 1 and store the result in data->c1.
* If not, return 0.
*
* A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
* means that either an error occurred or that we have broken off the check
* because we already know the result is going to be negative.
* In the latter case, data->equal is set to zero.
*/
static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
struct isl_cmp_band_data *data)
{
data->first = 1;
data->equal = 1;
if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
&pw_multi_aff_extract_int, data) < 0) {
if (!data->equal)
return 0;
return -1;
}
return !data->first && data->equal;
}
/* Compare "b1" and "b2" based on the parent schedule of their ancestor
* "ancestor".
*
* If the parent of "ancestor" also has a single member, then we
* first try to compare the two band based on the partial schedule
* of this parent.
*
* Otherwise, or if the result is inconclusive, we look at the partial schedule
* of "ancestor" itself.
* In particular, we specialize the parent schedule based
* on the domains of the child schedules, check if both assign
* a single constant value and, if so, compare the two constant values.
* If the specialized parent schedules do not assign a constant value,
* then they cannot be used to order the two bands and so in this case
* we return 0.
*/
static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
__isl_keep isl_band *b2, struct isl_cmp_band_data *data,
__isl_keep isl_band *ancestor)
{
isl_union_pw_multi_aff *upma;
isl_union_set *domain;
int r;
if (data->r < 0)
return 0;
if (ancestor->parent && ancestor->parent->n == 1) {
r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
if (data->r < 0)
return 0;
if (r)
return r;
}
upma = isl_union_pw_multi_aff_copy(b1->pma);
domain = isl_union_pw_multi_aff_domain(upma);
upma = isl_union_pw_multi_aff_copy(ancestor->pma);
upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
r = extract_int(upma, data);
isl_union_pw_multi_aff_free(upma);
if (r < 0)
data->r = -1;
if (r < 0 || !r)
return 0;
isl_int_set(data->c2, data->c1);
upma = isl_union_pw_multi_aff_copy(b2->pma);
domain = isl_union_pw_multi_aff_domain(upma);
upma = isl_union_pw_multi_aff_copy(ancestor->pma);
upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
r = extract_int(upma, data);
isl_union_pw_multi_aff_free(upma);
if (r < 0)
data->r = -1;
if (r < 0 || !r)
return 0;
return isl_int_cmp(data->c2, data->c1);
}
/* Compare "a" and "b" based on the parent schedule of their parent.
*/
static int cmp_band(const void *a, const void *b, void *user)
{
isl_band *b1 = *(isl_band * const *) a;
isl_band *b2 = *(isl_band * const *) b;
struct isl_cmp_band_data *data = user;
return cmp_band_in_ancestor(b1, b2, data, b1->parent);
}
/* Sort the elements in "list" based on the partial schedules of its parent
* (and ancestors). In particular if the parent assigns constant values
* to the domains of the bands in "list", then the elements are sorted
* according to that order.
* This order should be a more "natural" order for the user, but otherwise
* shouldn't have any effect.
* If we would be constructing an isl_band forest directly in
* isl_union_set_compute_schedule then there wouldn't be any need
* for a reordering, since the children would be added to the list
* in their natural order automatically.
*
* If there is only one element in the list, then there is no need to sort
* anything.
* If the partial schedule of the parent has more than one member
* (or if there is no parent), then it's
* defnitely not assigning constant values to the different children in
* the list and so we wouldn't be able to use it to sort the list.
*/
static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
__isl_keep isl_band *parent)
{
struct isl_cmp_band_data data;
if (!list)
return NULL;
if (list->n <= 1)
return list;
if (!parent || parent->n != 1)
return list;
data.r = 0;
isl_int_init(data.c1);
isl_int_init(data.c2);
isl_int_init(data.t);
isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
if (data.r < 0)
list = isl_band_list_free(list);
isl_int_clear(data.c1);
isl_int_clear(data.c2);
isl_int_clear(data.t);
return list;
}
/* Construct a list of bands that start at the same position (with
* sequence number band_nr) in the schedules of the nodes that
* were active in the parent band.
*
* A separate isl_band structure is created for each band_id
* and for each node that does not have a band with sequence
* number band_nr. In the latter case, a band without members
* is created.
* This ensures that if a band has any children, then each node
* that was active in the band is active in exactly one of the children.
*/
static __isl_give isl_band_list *construct_band_list(
__isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
int band_nr, int *parent_active, int n_active)
{
int i, j;
isl_ctx *ctx = isl_schedule_get_ctx(schedule);
int *active;
int n_band;
isl_band_list *list;
n_band = 0;
for (i = 0; i < n_active; ++i) {
for (j = 0; j < schedule->n; ++j) {
if (!parent_active[j])
continue;
if (schedule->node[j].n_band <= band_nr)
continue;
if (schedule->node[j].band_id[band_nr] == i) {
n_band++;
break;
}
}
}
for (j = 0; j < schedule->n; ++j)
if (schedule->node[j].n_band <= band_nr)
n_band++;
if (n_band == 1) {
isl_band *band;
list = isl_band_list_alloc(ctx, n_band);
band = construct_band(schedule, parent, band_nr,
parent_active, n_active);
return isl_band_list_add(list, band);
}
active = isl_alloc_array(ctx, int, schedule->n);
if (schedule->n && !active)
return NULL;
list = isl_band_list_alloc(ctx, n_band);
for (i = 0; i < n_active; ++i) {
int n = 0;
isl_band *band;
for (j = 0; j < schedule->n; ++j) {
active[j] = parent_active[j] &&
schedule->node[j].n_band > band_nr &&
schedule->node[j].band_id[band_nr] == i;
if (active[j])
n++;
}
if (n == 0)
continue;
band = construct_band(schedule, parent, band_nr, active, n);
list = isl_band_list_add(list, band);
}
for (i = 0; i < schedule->n; ++i) {
isl_band *band;
if (!parent_active[i])
continue;
if (schedule->node[i].n_band > band_nr)
continue;
for (j = 0; j < schedule->n; ++j)
active[j] = j == i;
band = construct_band(schedule, parent, band_nr, active, 1);
list = isl_band_list_add(list, band);
}
free(active);
list = sort_band_list(list, parent);
return list;
}
/* Construct a band forest representation of the schedule and
* return the list of roots.
*/
static __isl_give isl_band_list *construct_forest(
__isl_keep isl_schedule *schedule)
{
int i;
isl_ctx *ctx = isl_schedule_get_ctx(schedule);
isl_band_list *forest;
int *active;
active = isl_alloc_array(ctx, int, schedule->n);
if (schedule->n && !active)
return NULL;
for (i = 0; i < schedule->n; ++i)
active[i] = 1;
forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
free(active);
return forest;
}
/* Return the roots of a band forest representation of the schedule.
*/
__isl_give isl_band_list *isl_schedule_get_band_forest(
__isl_keep isl_schedule *schedule)
{
if (!schedule)
return NULL;
if (!schedule->band_forest)
schedule->band_forest = construct_forest(schedule);
return isl_band_list_dup(schedule->band_forest);
}
/* Call "fn" on each band in the schedule in depth-first post-order.
*/
int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
int (*fn)(__isl_keep isl_band *band, void *user), void *user)
{
int r;
isl_band_list *forest;
if (!sched)
return -1;
forest = isl_schedule_get_band_forest(sched);
r = isl_band_list_foreach_band(forest, fn, user);
isl_band_list_free(forest);
return r;
}
static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
__isl_keep isl_band_list *list);
static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
__isl_keep isl_band *band)
{
isl_band_list *children;
p = isl_printer_start_line(p);
p = isl_printer_print_union_pw_multi_aff(p, band->pma);
p = isl_printer_end_line(p);
if (!isl_band_has_children(band))
return p;
children = isl_band_get_children(band);
p = isl_printer_indent(p, 4);
p = print_band_list(p, children);
p = isl_printer_indent(p, -4);
isl_band_list_free(children);
return p;
}
static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
__isl_keep isl_band_list *list)
{
int i, n;
n = isl_band_list_n_band(list);
for (i = 0; i < n; ++i) {
isl_band *band;
band = isl_band_list_get_band(list, i);
p = print_band(p, band);
isl_band_free(band);
}
return p;
}
__isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
__isl_keep isl_schedule *schedule)
{
isl_band_list *forest;
forest = isl_schedule_get_band_forest(schedule);
p = print_band_list(p, forest);
isl_band_list_free(forest);
return p;
}
void isl_schedule_dump(__isl_keep isl_schedule *schedule)
{
isl_printer *printer;
if (!schedule)
return;
printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
printer = isl_printer_print_schedule(printer, schedule);
isl_printer_free(printer);
}