mirror of
https://review.haiku-os.org/buildtools
synced 2025-02-12 08:47:41 +01:00
Change-Id: I42dc2a783b3e0082a7583cc7ecaa6b043ba162f4 Reviewed-on: https://review.haiku-os.org/c/buildtools/+/3021 Reviewed-by: Fredrik Holmqvist <fredrik.holmqvist@gmail.com>
691 lines
22 KiB
C
691 lines
22 KiB
C
/* mpfr_ai -- Airy function Ai
|
|
|
|
Copyright 2010-2020 Free Software Foundation, Inc.
|
|
Contributed by the AriC and Caramba projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* Reminder and notations:
|
|
-----------------------
|
|
|
|
Ai is the solution of:
|
|
/ y'' - x*y = 0
|
|
{ Ai(0) = 1/ ( 9^(1/3)*Gamma(2/3) )
|
|
\ Ai'(0) = -1/ ( 3^(1/3)*Gamma(1/3) )
|
|
|
|
Series development:
|
|
Ai(x) = sum (a_i*x^i)
|
|
= sum (t_i)
|
|
|
|
Recurrences:
|
|
a_(i+3) = a_i / ((i+2)*(i+3))
|
|
t_(i+3) = t_i * x^3 / ((i+2)*(i+3))
|
|
|
|
Values:
|
|
a_0 = Ai(0) ~ 0.355
|
|
a_1 = Ai'(0) ~ -0.259
|
|
*/
|
|
|
|
|
|
/* Airy function Ai evaluated by the most naive algorithm.
|
|
Assume that x is a finite number. */
|
|
static int
|
|
mpfr_ai1 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
|
|
{
|
|
MPFR_ZIV_DECL (loop);
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
mpfr_prec_t wprec; /* working precision */
|
|
mpfr_prec_t prec; /* target precision */
|
|
mpfr_prec_t err; /* used to estimate the evaluation error */
|
|
mpfr_prec_t correct_bits; /* estimates the number of correct bits*/
|
|
unsigned long int k;
|
|
unsigned long int cond; /* condition number of the series */
|
|
unsigned long int assumed_exponent; /* used as a lowerbound of |EXP(Ai(x))| */
|
|
int r;
|
|
mpfr_t s; /* used to store the partial sum */
|
|
mpfr_t ti, tip1; /* used to store successive values of t_i */
|
|
mpfr_t x3; /* used to store x^3 */
|
|
mpfr_t tmp_sp, tmp2_sp; /* small precision variables */
|
|
unsigned long int x3u; /* used to store ceil(x^3) */
|
|
mpfr_t temp1, temp2;
|
|
int test1, test2;
|
|
|
|
/* Logging */
|
|
MPFR_LOG_FUNC (
|
|
("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
|
|
("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y) );
|
|
|
|
/* Save current exponents range */
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_ZERO (x)))
|
|
{
|
|
mpfr_t y1, y2;
|
|
prec = MPFR_ADD_PREC (MPFR_PREC (y), 3);
|
|
mpfr_init2 (y1, prec);
|
|
mpfr_init2 (y2, prec);
|
|
MPFR_ZIV_INIT (loop, prec);
|
|
|
|
/* ZIV loop */
|
|
for (;;)
|
|
{
|
|
mpfr_gamma_one_and_two_third (y1, y2, prec); /* y2 = Gamma(2/3)(1 + delta1), |delta1| <= 2^{1-prec}. */
|
|
|
|
r = mpfr_set_ui (y1, 9, MPFR_RNDN);
|
|
MPFR_ASSERTD (r == 0);
|
|
mpfr_cbrt (y1, y1, MPFR_RNDN); /* y1 = cbrt(9)(1 + delta2), |delta2| <= 2^{-prec}. */
|
|
mpfr_mul (y1, y1, y2, MPFR_RNDN);
|
|
mpfr_ui_div (y1, 1, y1, MPFR_RNDN);
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (y1, prec - 3, MPFR_PREC (y), rnd)))
|
|
break;
|
|
MPFR_ZIV_NEXT (loop, prec);
|
|
}
|
|
r = mpfr_set (y, y1, rnd);
|
|
MPFR_ZIV_FREE (loop);
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
mpfr_clear (y1);
|
|
mpfr_clear (y2);
|
|
return mpfr_check_range (y, r, rnd);
|
|
}
|
|
|
|
/* now x is not zero */
|
|
MPFR_ASSERTD(!MPFR_IS_ZERO(x));
|
|
|
|
/* FIXME: underflow for large values of |x| ? */
|
|
|
|
|
|
/* Set initial precision */
|
|
/* If we compute sum(i=0, N-1, t_i), the relative error is bounded by */
|
|
/* 2*(4N)*2^(1-wprec)*C(|x|)/Ai(x) */
|
|
/* where C(|x|) = 1 if 0<=x<=1 */
|
|
/* and C(|x|) = (1/2)*x^(-1/4)*exp(2/3 x^(3/2)) if x >= 1 */
|
|
|
|
/* A priori, we do not know N, so we estimate it to ~ prec */
|
|
/* If 0<=x<=1, we estimate Ai(x) ~ 1/8 */
|
|
/* if 1<=x, we estimate Ai(x) ~ (1/4)*x^(-1/4)*exp(-2/3 * x^(3/2)) */
|
|
/* if x<=0, ????? */
|
|
|
|
/* We begin with 11 guard bits */
|
|
prec = MPFR_ADD_PREC (MPFR_PREC (y), 11);
|
|
MPFR_ZIV_INIT (loop, prec);
|
|
|
|
/* The working precision is heuristically chosen in order to obtain */
|
|
/* approximately prec correct bits in the sum. To sum up: the sum */
|
|
/* is stopped when the *exact* sum gives ~ prec correct bit. And */
|
|
/* when it is stopped, the accuracy of the computed sum, with respect*/
|
|
/* to the exact one should be ~prec bits. */
|
|
mpfr_init2 (tmp_sp, MPFR_SMALL_PRECISION);
|
|
mpfr_init2 (tmp2_sp, MPFR_SMALL_PRECISION);
|
|
mpfr_abs (tmp_sp, x, MPFR_RNDU);
|
|
mpfr_pow_ui (tmp_sp, tmp_sp, 3, MPFR_RNDU);
|
|
mpfr_sqrt (tmp_sp, tmp_sp, MPFR_RNDU); /* tmp_sp ~ |x|^(3/2) */
|
|
|
|
/* 0.96179669392597567 >~ 2/3 * log2(e). See algorithms.tex */
|
|
mpfr_set_str (tmp2_sp, "0.96179669392597567", 10, MPFR_RNDU);
|
|
mpfr_mul (tmp2_sp, tmp_sp, tmp2_sp, MPFR_RNDU);
|
|
|
|
/* cond represents the number of lost bits in the evaluation of the sum */
|
|
if (MPFR_GET_EXP (x) <= 0)
|
|
cond = 0;
|
|
else
|
|
{
|
|
MPFR_BLOCK_DECL (flags);
|
|
|
|
MPFR_BLOCK (flags, cond = mpfr_get_ui (tmp2_sp, MPFR_RNDU));
|
|
MPFR_ASSERTN (! MPFR_ERANGEFLAG (flags));
|
|
cond -= (MPFR_GET_EXP (x) - 1) / 4 + 1;
|
|
}
|
|
|
|
/* The variable assumed_exponent is used to store the maximal assumed */
|
|
/* exponent of Ai(x). More precisely, we assume that |Ai(x)| will be */
|
|
/* greater than 2^{-assumed_exponent}. */
|
|
if (MPFR_IS_POS (x))
|
|
{
|
|
if (MPFR_GET_EXP (x) <= 0)
|
|
assumed_exponent = 3;
|
|
else
|
|
{
|
|
unsigned long int t;
|
|
MPFR_BLOCK_DECL (flags);
|
|
|
|
MPFR_BLOCK (flags, t = mpfr_get_ui (tmp2_sp, MPFR_RNDU));
|
|
MPFR_ASSERTN (! MPFR_ERANGEFLAG (flags));
|
|
assumed_exponent = t + 2 + (MPFR_GET_EXP (x) / 4 + 1);
|
|
MPFR_ASSERTN (assumed_exponent > t);
|
|
}
|
|
}
|
|
/* We do not know Ai (x) yet */
|
|
/* We cover the case when EXP (Ai (x))>=-10 */
|
|
else
|
|
assumed_exponent = 10;
|
|
|
|
{
|
|
unsigned long int t, u;
|
|
|
|
t = assumed_exponent + cond;
|
|
MPFR_ASSERTN (t >= cond);
|
|
u = MPFR_INT_CEIL_LOG2 (prec) + 5;
|
|
t += u;
|
|
MPFR_ASSERTN (t >= u);
|
|
wprec = MPFR_ADD_PREC (prec, t);
|
|
}
|
|
|
|
mpfr_init (ti);
|
|
mpfr_init (tip1);
|
|
mpfr_init (temp1);
|
|
mpfr_init (temp2);
|
|
mpfr_init (x3);
|
|
mpfr_init (s);
|
|
|
|
/* ZIV loop */
|
|
for (;;)
|
|
{
|
|
MPFR_LOG_MSG (("Working precision: %Pu\n", wprec));
|
|
mpfr_set_prec (ti, wprec);
|
|
mpfr_set_prec (tip1, wprec);
|
|
mpfr_set_prec (x3, wprec);
|
|
mpfr_set_prec (s, wprec);
|
|
|
|
mpfr_sqr (x3, x, MPFR_RNDU);
|
|
mpfr_mul (x3, x3, x, (MPFR_IS_POS (x)?MPFR_RNDU:MPFR_RNDD)); /* x3=x^3 */
|
|
if (MPFR_IS_NEG (x))
|
|
MPFR_CHANGE_SIGN (x3);
|
|
x3u = mpfr_get_ui (x3, MPFR_RNDU); /* x3u >= ceil(x^3) */
|
|
if (MPFR_IS_NEG (x))
|
|
MPFR_CHANGE_SIGN (x3);
|
|
|
|
mpfr_gamma_one_and_two_third (temp1, temp2, wprec);
|
|
mpfr_set_ui (ti, 9, MPFR_RNDN);
|
|
mpfr_cbrt (ti, ti, MPFR_RNDN);
|
|
mpfr_mul (ti, ti, temp2, MPFR_RNDN);
|
|
mpfr_ui_div (ti, 1, ti , MPFR_RNDN); /* ti = 1/( Gamma (2/3)*9^(1/3) ) */
|
|
|
|
mpfr_set_ui (tip1, 3, MPFR_RNDN);
|
|
mpfr_cbrt (tip1, tip1, MPFR_RNDN);
|
|
mpfr_mul (tip1, tip1, temp1, MPFR_RNDN);
|
|
mpfr_neg (tip1, tip1, MPFR_RNDN);
|
|
mpfr_div (tip1, x, tip1, MPFR_RNDN); /* tip1 = -x/(Gamma (1/3)*3^(1/3)) */
|
|
|
|
mpfr_add (s, ti, tip1, MPFR_RNDN);
|
|
|
|
|
|
/* Evaluation of the series */
|
|
k = 2;
|
|
for (;;)
|
|
{
|
|
mpfr_mul (ti, ti, x3, MPFR_RNDN);
|
|
mpfr_mul (tip1, tip1, x3, MPFR_RNDN);
|
|
|
|
mpfr_div_ui2 (ti, ti, k, (k+1), MPFR_RNDN);
|
|
mpfr_div_ui2 (tip1, tip1, (k+1), (k+2), MPFR_RNDN);
|
|
|
|
k += 3;
|
|
mpfr_add (s, s, ti, MPFR_RNDN);
|
|
mpfr_add (s, s, tip1, MPFR_RNDN);
|
|
|
|
/* FIXME: if s==0 */
|
|
test1 = MPFR_IS_ZERO (ti)
|
|
|| (MPFR_GET_EXP (ti) + (mpfr_exp_t)prec + 3 <= MPFR_GET_EXP (s));
|
|
test2 = MPFR_IS_ZERO (tip1)
|
|
|| (MPFR_GET_EXP (tip1) + (mpfr_exp_t)prec + 3 <= MPFR_GET_EXP (s));
|
|
|
|
if ( test1 && test2 && (x3u <= k*(k+1)/2) )
|
|
break; /* FIXME: if k*(k+1) overflows */
|
|
}
|
|
|
|
MPFR_LOG_MSG (("Truncation rank: %lu\n", k));
|
|
|
|
err = 4 + MPFR_INT_CEIL_LOG2 (k) + cond - MPFR_GET_EXP (s);
|
|
|
|
/* err is the number of bits lost due to the evaluation error */
|
|
/* wprec-(prec+1): number of bits lost due to the approximation error */
|
|
MPFR_LOG_MSG (("Roundoff error: %Pu\n", err));
|
|
MPFR_LOG_MSG (("Approxim error: %Pu\n", wprec-prec-1));
|
|
|
|
if (wprec < err + 1)
|
|
correct_bits = 0;
|
|
else if (wprec < err + prec +1)
|
|
correct_bits = wprec - err - 1; /* since wprec > err + 1,
|
|
correct_bits > 0 */
|
|
else
|
|
correct_bits = prec;
|
|
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, correct_bits, MPFR_PREC (y), rnd)))
|
|
break;
|
|
|
|
if (correct_bits == 0)
|
|
{
|
|
assumed_exponent *= 2;
|
|
MPFR_LOG_MSG (("Not a single bit correct (assumed_exponent=%lu)\n",
|
|
assumed_exponent));
|
|
wprec = prec + 5 + MPFR_INT_CEIL_LOG2 (prec) + cond +
|
|
assumed_exponent;
|
|
}
|
|
else if (correct_bits < prec)
|
|
{ /* The precision was badly chosen */
|
|
MPFR_LOG_MSG (("Bad assumption on the exponent of Ai(x)"
|
|
" (E=%" MPFR_EXP_FSPEC "d)\n",
|
|
(mpfr_eexp_t) MPFR_GET_EXP (s)));
|
|
wprec = prec + err + 1;
|
|
}
|
|
else
|
|
{ /* We are really in a bad case of the TMD */
|
|
MPFR_ZIV_NEXT (loop, prec);
|
|
|
|
/* We update wprec */
|
|
/* We assume that K will not be multiplied by more than 4 */
|
|
wprec = prec + (MPFR_INT_CEIL_LOG2 (k) + 2) + 5 + cond
|
|
- MPFR_GET_EXP (s);
|
|
}
|
|
|
|
} /* End of ZIV loop */
|
|
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
r = mpfr_set (y, s, rnd);
|
|
|
|
mpfr_clear (ti);
|
|
mpfr_clear (tip1);
|
|
mpfr_clear (temp1);
|
|
mpfr_clear (temp2);
|
|
mpfr_clear (x3);
|
|
mpfr_clear (s);
|
|
mpfr_clear (tmp_sp);
|
|
mpfr_clear (tmp2_sp);
|
|
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (y, r, rnd);
|
|
}
|
|
|
|
|
|
/* Airy function Ai evaluated by Smith algorithm.
|
|
Assume that x is a finite non-zero number. */
|
|
static int
|
|
mpfr_ai2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
|
|
{
|
|
MPFR_ZIV_DECL (loop);
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
mpfr_prec_t wprec; /* working precision */
|
|
mpfr_prec_t prec; /* target precision */
|
|
mpfr_prec_t err; /* used to estimate the evaluation error */
|
|
mpfr_prec_t correctBits; /* estimates the number of correct bits*/
|
|
unsigned long int i, j, L, t;
|
|
unsigned long int cond; /* condition number of the series */
|
|
unsigned long int assumed_exponent; /* used as a lowerbound of |EXP(Ai(x))| */
|
|
int r; /* returned ternary value */
|
|
mpfr_t s; /* used to store the partial sum */
|
|
mpfr_t u0, u1;
|
|
mpfr_t *z; /* used to store the (x^3j) */
|
|
mpfr_t result;
|
|
mpfr_t tmp_sp, tmp2_sp; /* small precision variables */
|
|
unsigned long int x3u; /* used to store ceil (x^3) */
|
|
mpfr_t temp1, temp2;
|
|
int test0, test1;
|
|
|
|
/* Logging */
|
|
MPFR_LOG_FUNC (
|
|
("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
|
|
("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));
|
|
|
|
/* Save current exponents range */
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
/* FIXME: underflow for large values of |x| */
|
|
|
|
/* Set initial precision */
|
|
/* See the analysis for the naive evaluation */
|
|
|
|
/* We begin with 11 guard bits */
|
|
prec = MPFR_PREC (y) + 11;
|
|
MPFR_ZIV_INIT (loop, prec);
|
|
|
|
mpfr_init2 (tmp_sp, MPFR_SMALL_PRECISION);
|
|
mpfr_init2 (tmp2_sp, MPFR_SMALL_PRECISION);
|
|
mpfr_abs (tmp_sp, x, MPFR_RNDU);
|
|
mpfr_pow_ui (tmp_sp, tmp_sp, 3, MPFR_RNDU);
|
|
mpfr_sqrt (tmp_sp, tmp_sp, MPFR_RNDU); /* tmp_sp ~ |x|^(3/2) */
|
|
|
|
/* 0.96179669392597567 >~ 2/3 * log2(e). See algorithms.tex */
|
|
mpfr_set_str (tmp2_sp, "0.96179669392597567", 10, MPFR_RNDU);
|
|
mpfr_mul (tmp2_sp, tmp_sp, tmp2_sp, MPFR_RNDU);
|
|
|
|
/* cond represents the number of lost bits in the evaluation of the sum */
|
|
if (MPFR_GET_EXP (x) <= 0)
|
|
cond = 0;
|
|
else
|
|
{
|
|
MPFR_BLOCK_DECL (flags);
|
|
|
|
MPFR_BLOCK (flags, cond = mpfr_get_ui (tmp2_sp, MPFR_RNDU));
|
|
MPFR_ASSERTN (! MPFR_ERANGEFLAG (flags));
|
|
cond -= (MPFR_GET_EXP (x) - 1) / 4 + 1;
|
|
}
|
|
|
|
/* This variable is used to store the maximal assumed exponent of */
|
|
/* Ai(x). More precisely, we assume that |Ai(x)| will be greater than */
|
|
/* 2^{-assumed_exponent}. */
|
|
if (MPFR_IS_POS (x))
|
|
{
|
|
if (MPFR_GET_EXP (x) <= 0)
|
|
assumed_exponent = 3;
|
|
else
|
|
{
|
|
unsigned long int t;
|
|
MPFR_BLOCK_DECL (flags);
|
|
|
|
MPFR_BLOCK (flags, t = mpfr_get_ui (tmp2_sp, MPFR_RNDU));
|
|
MPFR_ASSERTN (! MPFR_ERANGEFLAG (flags));
|
|
assumed_exponent = t + 2 + (MPFR_GET_EXP (x) / 4 + 1);
|
|
MPFR_ASSERTN (assumed_exponent > t);
|
|
}
|
|
}
|
|
/* We do not know Ai(x) yet */
|
|
/* We cover the case when EXP(Ai(x))>=-10 */
|
|
else
|
|
assumed_exponent = 10;
|
|
|
|
{
|
|
unsigned long int t, u;
|
|
|
|
t = assumed_exponent + cond;
|
|
MPFR_ASSERTN (t >= cond);
|
|
u = MPFR_INT_CEIL_LOG2 (prec) + 6;
|
|
t += u;
|
|
MPFR_ASSERTN (t >= u);
|
|
wprec = MPFR_ADD_PREC (prec, t);
|
|
}
|
|
|
|
/* We assume that the truncation rank will be ~ prec */
|
|
L = __gmpfr_isqrt (prec);
|
|
MPFR_LOG_MSG (("size of blocks L = %lu\n", L));
|
|
|
|
z = (mpfr_t *) mpfr_allocate_func ( (L + 1) * sizeof (mpfr_t) );
|
|
MPFR_ASSERTN (z != NULL);
|
|
for (j=0; j<=L; j++)
|
|
mpfr_init (z[j]);
|
|
|
|
mpfr_init (s);
|
|
mpfr_init (u0); mpfr_init (u1);
|
|
mpfr_init (result);
|
|
mpfr_init (temp1);
|
|
mpfr_init (temp2);
|
|
|
|
/* ZIV loop */
|
|
for (;;)
|
|
{
|
|
MPFR_LOG_MSG (("working precision: %Pu\n", wprec));
|
|
|
|
for (j=0; j<=L; j++)
|
|
mpfr_set_prec (z[j], wprec);
|
|
mpfr_set_prec (s, wprec);
|
|
mpfr_set_prec (u0, wprec); mpfr_set_prec (u1, wprec);
|
|
mpfr_set_prec (result, wprec);
|
|
|
|
mpfr_set_ui (u0, 1, MPFR_RNDN);
|
|
mpfr_set (u1, x, MPFR_RNDN);
|
|
|
|
mpfr_set_ui (z[0], 1, MPFR_RNDU);
|
|
mpfr_sqr (z[1], u1, MPFR_RNDU);
|
|
mpfr_mul (z[1], z[1], x, (MPFR_IS_POS (x) ? MPFR_RNDU : MPFR_RNDD) );
|
|
|
|
if (MPFR_IS_NEG (x))
|
|
MPFR_CHANGE_SIGN (z[1]);
|
|
x3u = mpfr_get_ui (z[1], MPFR_RNDU); /* x3u >= ceil (x^3) */
|
|
if (MPFR_IS_NEG (x))
|
|
MPFR_CHANGE_SIGN (z[1]);
|
|
|
|
for (j=2; j<=L ;j++)
|
|
{
|
|
if (j%2 == 0)
|
|
mpfr_sqr (z[j], z[j/2], MPFR_RNDN);
|
|
else
|
|
mpfr_mul (z[j], z[j-1], z[1], MPFR_RNDN);
|
|
}
|
|
|
|
mpfr_gamma_one_and_two_third (temp1, temp2, wprec);
|
|
mpfr_set_ui (u0, 9, MPFR_RNDN);
|
|
mpfr_cbrt (u0, u0, MPFR_RNDN);
|
|
mpfr_mul (u0, u0, temp2, MPFR_RNDN);
|
|
mpfr_ui_div (u0, 1, u0 , MPFR_RNDN); /* u0 = 1/( Gamma (2/3)*9^(1/3) ) */
|
|
|
|
mpfr_set_ui (u1, 3, MPFR_RNDN);
|
|
mpfr_cbrt (u1, u1, MPFR_RNDN);
|
|
mpfr_mul (u1, u1, temp1, MPFR_RNDN);
|
|
mpfr_neg (u1, u1, MPFR_RNDN);
|
|
mpfr_div (u1, x, u1, MPFR_RNDN); /* u1 = -x/(Gamma (1/3)*3^(1/3)) */
|
|
|
|
mpfr_set_ui (result, 0, MPFR_RNDN);
|
|
t = 0;
|
|
|
|
/* Evaluation of the series by Smith' method */
|
|
for (i=0; ; i++)
|
|
{
|
|
t += 3 * L;
|
|
|
|
/* k = 0 */
|
|
t -= 3;
|
|
mpfr_set (s, z[L-1], MPFR_RNDN);
|
|
for (j=L-2; ; j--)
|
|
{
|
|
t -= 3;
|
|
mpfr_div_ui2 (s, s, (t+2), (t+3), MPFR_RNDN);
|
|
mpfr_add (s, s, z[j], MPFR_RNDN);
|
|
if (j==0)
|
|
break;
|
|
}
|
|
mpfr_mul (s, s, u0, MPFR_RNDN);
|
|
mpfr_add (result, result, s, MPFR_RNDN);
|
|
|
|
mpfr_mul (u0, u0, z[L], MPFR_RNDN);
|
|
for (j=0; j<=L-1; j++)
|
|
{
|
|
mpfr_div_ui2 (u0, u0, (t + 2), (t + 3), MPFR_RNDN);
|
|
t += 3;
|
|
}
|
|
|
|
t++;
|
|
|
|
/* k = 1 */
|
|
t -= 3;
|
|
mpfr_set (s, z[L-1], MPFR_RNDN);
|
|
for (j=L-2; ; j--)
|
|
{
|
|
t -= 3;
|
|
mpfr_div_ui2 (s, s, (t + 2), (t + 3), MPFR_RNDN);
|
|
mpfr_add (s, s, z[j], MPFR_RNDN);
|
|
if (j==0)
|
|
break;
|
|
}
|
|
mpfr_mul (s, s, u1, MPFR_RNDN);
|
|
mpfr_add (result, result, s, MPFR_RNDN);
|
|
|
|
mpfr_mul (u1, u1, z[L], MPFR_RNDN);
|
|
for (j=0; j<=L-1; j++)
|
|
{
|
|
mpfr_div_ui2 (u1, u1, (t + 2), (t + 3), MPFR_RNDN);
|
|
t += 3;
|
|
}
|
|
|
|
t++;
|
|
|
|
/* k = 2 */
|
|
t++;
|
|
|
|
/* End of the loop over k */
|
|
t -= 3;
|
|
|
|
test0 = MPFR_IS_ZERO (u0) ||
|
|
MPFR_GET_EXP (u0) + (mpfr_exp_t)prec + 4 <= MPFR_GET_EXP (result);
|
|
test1 = MPFR_IS_ZERO (u1) ||
|
|
MPFR_GET_EXP (u1) + (mpfr_exp_t)prec + 4 <= MPFR_GET_EXP (result);
|
|
|
|
if ( test0 && test1 && (x3u <= (t + 2) * (t + 3) / 2) )
|
|
break;
|
|
}
|
|
|
|
MPFR_LOG_MSG (("Truncation rank: %lu\n", t));
|
|
|
|
err = (5 + MPFR_INT_CEIL_LOG2 (L+1) + MPFR_INT_CEIL_LOG2 (i+1)
|
|
+ cond - MPFR_GET_EXP (result));
|
|
|
|
/* err is the number of bits lost due to the evaluation error */
|
|
/* wprec-(prec+1): number of bits lost due to the approximation error */
|
|
MPFR_LOG_MSG (("Roundoff error: %Pu\n", err));
|
|
MPFR_LOG_MSG (("Approxim error: %Pu\n", wprec - prec - 1));
|
|
|
|
if (wprec < err+1)
|
|
correctBits = 0;
|
|
else
|
|
{
|
|
if (wprec < err+prec+1)
|
|
correctBits = wprec - err - 1;
|
|
else
|
|
correctBits = prec;
|
|
}
|
|
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (result, correctBits,
|
|
MPFR_PREC (y), rnd)))
|
|
break;
|
|
|
|
for (j=0; j<=L; j++)
|
|
mpfr_clear (z[j]);
|
|
mpfr_free_func (z, (L + 1) * sizeof (mpfr_t));
|
|
L = __gmpfr_isqrt (t);
|
|
MPFR_LOG_MSG (("size of blocks L = %lu\n", L));
|
|
z = (mpfr_t *) mpfr_allocate_func ( (L + 1) * sizeof (mpfr_t));
|
|
MPFR_ASSERTN (z != NULL);
|
|
for (j=0; j<=L; j++)
|
|
mpfr_init (z[j]);
|
|
|
|
if (correctBits == 0)
|
|
{
|
|
assumed_exponent *= 2;
|
|
MPFR_LOG_MSG (("Not a single bit correct (assumed_exponent=%lu)\n",
|
|
assumed_exponent));
|
|
wprec = prec + 6 + MPFR_INT_CEIL_LOG2 (t) + cond + assumed_exponent;
|
|
}
|
|
else
|
|
{
|
|
if (correctBits < prec)
|
|
{ /* The precision was badly chosen */
|
|
MPFR_LOG_MSG (("Bad assumption on the exponent of Ai(x)"
|
|
" (E=%" MPFR_EXP_FSPEC "d)\n",
|
|
(mpfr_eexp_t) MPFR_GET_EXP (result)));
|
|
wprec = prec + err + 1;
|
|
}
|
|
else
|
|
{ /* We are really in a bad case of the TMD */
|
|
MPFR_ZIV_NEXT (loop, prec);
|
|
|
|
/* We update wprec */
|
|
/* We assume that t will not be multiplied by more than 4 */
|
|
wprec = (prec + (MPFR_INT_CEIL_LOG2 (t) + 2) + 6 + cond
|
|
- MPFR_GET_EXP (result));
|
|
}
|
|
}
|
|
} /* End of ZIV loop */
|
|
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
r = mpfr_set (y, result, rnd);
|
|
|
|
mpfr_clear (tmp_sp);
|
|
mpfr_clear (tmp2_sp);
|
|
for (j=0; j<=L; j++)
|
|
mpfr_clear (z[j]);
|
|
mpfr_free_func (z, (L + 1) * sizeof (mpfr_t));
|
|
|
|
mpfr_clear (s);
|
|
mpfr_clear (u0); mpfr_clear (u1);
|
|
mpfr_clear (result);
|
|
mpfr_clear (temp1);
|
|
mpfr_clear (temp2);
|
|
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (y, r, rnd);
|
|
}
|
|
|
|
/* We consider that the boundary between the area where the naive method
|
|
should preferably be used and the area where Smith' method should preferably
|
|
be used has the following form:
|
|
it is a triangle defined by two lines (one for the negative values of x, and
|
|
one for the positive values of x) crossing at x=0.
|
|
|
|
More precisely,
|
|
|
|
* If x<0 and MPFR_AI_THRESHOLD1*x + MPFR_AI_THRESHOLD2*prec > MPFR_AI_SCALE,
|
|
use Smith' algorithm;
|
|
* If x>0 and MPFR_AI_THRESHOLD3*x + MPFR_AI_THRESHOLD2*prec > MPFR_AI_SCALE,
|
|
use Smith' algorithm;
|
|
* otherwise, use the naive method.
|
|
*/
|
|
|
|
#define MPFR_AI_SCALE 1048576
|
|
|
|
int
|
|
mpfr_ai (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
|
|
{
|
|
mpfr_t temp1, temp2;
|
|
int use_ai2;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
|
|
/* Special cases */
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
{
|
|
if (MPFR_IS_NAN (x))
|
|
{
|
|
MPFR_SET_NAN (y);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_IS_INF (x))
|
|
return mpfr_set_ui (y, 0, rnd);
|
|
/* the cases x = +0 or -0 will be treated below */
|
|
}
|
|
|
|
/* The exponent range must be large enough for the computation of temp1. */
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
mpfr_init2 (temp1, MPFR_SMALL_PRECISION);
|
|
mpfr_init2 (temp2, MPFR_SMALL_PRECISION);
|
|
|
|
mpfr_set (temp1, x, MPFR_RNDN);
|
|
mpfr_set_si (temp2, MPFR_AI_THRESHOLD2, MPFR_RNDN);
|
|
mpfr_mul_ui (temp2, temp2, MPFR_PREC (y) > ULONG_MAX ?
|
|
ULONG_MAX : (unsigned long) MPFR_PREC (y), MPFR_RNDN);
|
|
|
|
if (MPFR_IS_NEG (x))
|
|
mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD1, MPFR_RNDN);
|
|
else
|
|
mpfr_mul_si (temp1, temp1, MPFR_AI_THRESHOLD3, MPFR_RNDN);
|
|
|
|
mpfr_add (temp1, temp1, temp2, MPFR_RNDN);
|
|
mpfr_clear (temp2);
|
|
|
|
use_ai2 = mpfr_cmp_si (temp1, MPFR_AI_SCALE) > 0;
|
|
mpfr_clear (temp1);
|
|
|
|
MPFR_SAVE_EXPO_FREE (expo); /* Ignore all previous exceptions. */
|
|
|
|
/* we use ai2 if |x|*AI_THRESHOLD1/3 + PREC(y)*AI_THRESHOLD2 > AI_SCALE,
|
|
which means x cannot be zero in mpfr_ai2 */
|
|
return use_ai2 ? mpfr_ai2 (y, x, rnd) : mpfr_ai1 (y, x, rnd);
|
|
}
|