mirror of
https://review.haiku-os.org/buildtools
synced 2025-02-14 17:57:39 +01:00
Change-Id: I42dc2a783b3e0082a7583cc7ecaa6b043ba162f4 Reviewed-on: https://review.haiku-os.org/c/buildtools/+/3021 Reviewed-by: Fredrik Holmqvist <fredrik.holmqvist@gmail.com>
340 lines
11 KiB
C
340 lines
11 KiB
C
/* mpfr_get_ld, mpfr_get_ld_2exp -- convert a multiple precision floating-point
|
|
number to a machine long double
|
|
|
|
Copyright 2002-2020 Free Software Foundation, Inc.
|
|
Contributed by the AriC and Caramba projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#include <float.h> /* needed so that MPFR_LDBL_MANT_DIG is correctly defined */
|
|
|
|
#include "mpfr-impl.h"
|
|
|
|
#if defined(HAVE_LDOUBLE_IS_DOUBLE)
|
|
|
|
/* special code when "long double" is the same format as "double" */
|
|
long double
|
|
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
|
|
{
|
|
return (long double) mpfr_get_d (x, rnd_mode);
|
|
}
|
|
|
|
#elif defined(HAVE_LDOUBLE_IEEE_EXT_LITTLE)
|
|
|
|
/* Note: The code will return a result with a 64-bit precision, even
|
|
if the rounding precision is only 53 bits like on FreeBSD and
|
|
NetBSD 6- (or with GCC's -mpc64 option to simulate this on other
|
|
platforms). This is consistent with how strtold behaves in these
|
|
cases, for instance. */
|
|
|
|
/* special code for IEEE 754 little-endian extended format */
|
|
long double
|
|
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
|
|
{
|
|
mpfr_long_double_t ld;
|
|
mpfr_t tmp;
|
|
int inex;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
mpfr_init2 (tmp, MPFR_LDBL_MANT_DIG);
|
|
inex = mpfr_set (tmp, x, rnd_mode);
|
|
|
|
mpfr_set_emin (-16381-63); /* emin=-16444, see below */
|
|
mpfr_set_emax (16384);
|
|
mpfr_subnormalize (tmp, mpfr_check_range (tmp, inex, rnd_mode), rnd_mode);
|
|
mpfr_prec_round (tmp, 64, MPFR_RNDZ); /* exact */
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (tmp)))
|
|
ld.ld = (long double) mpfr_get_d (tmp, rnd_mode);
|
|
else
|
|
{
|
|
mp_limb_t *tmpmant;
|
|
mpfr_exp_t e, denorm;
|
|
|
|
tmpmant = MPFR_MANT (tmp);
|
|
e = MPFR_GET_EXP (tmp);
|
|
/* The smallest positive normal number is 2^(-16382), which is
|
|
0.5*2^(-16381) in MPFR, thus any exponent <= -16382 corresponds to a
|
|
subnormal number. The smallest positive subnormal number is 2^(-16445)
|
|
which is 0.5*2^(-16444) in MPFR thus 0 <= denorm <= 63. */
|
|
denorm = MPFR_UNLIKELY (e <= -16382) ? - e - 16382 + 1 : 0;
|
|
MPFR_ASSERTD (0 <= denorm && denorm < 64);
|
|
#if GMP_NUMB_BITS >= 64
|
|
ld.s.manl = (tmpmant[0] >> denorm);
|
|
ld.s.manh = (tmpmant[0] >> denorm) >> 32;
|
|
#elif GMP_NUMB_BITS == 32
|
|
if (MPFR_LIKELY (denorm == 0))
|
|
{
|
|
ld.s.manl = tmpmant[0];
|
|
ld.s.manh = tmpmant[1];
|
|
}
|
|
else if (denorm < 32)
|
|
{
|
|
ld.s.manl = (tmpmant[0] >> denorm) | (tmpmant[1] << (32 - denorm));
|
|
ld.s.manh = tmpmant[1] >> denorm;
|
|
}
|
|
else /* 32 <= denorm < 64 */
|
|
{
|
|
ld.s.manl = tmpmant[1] >> (denorm - 32);
|
|
ld.s.manh = 0;
|
|
}
|
|
#elif GMP_NUMB_BITS == 16
|
|
if (MPFR_LIKELY (denorm == 0))
|
|
{
|
|
/* manl = tmpmant[1] | tmpmant[0]
|
|
manh = tmpmant[3] | tmpmant[2] */
|
|
ld.s.manl = tmpmant[0] | ((unsigned long) tmpmant[1] << 16);
|
|
ld.s.manh = tmpmant[2] | ((unsigned long) tmpmant[3] << 16);
|
|
}
|
|
else if (denorm < 16)
|
|
{
|
|
/* manl = low(mant[2],denorm) | mant[1] | high(mant[0],16-denorm)
|
|
manh = mant[3] | high(mant[2],16-denorm) */
|
|
ld.s.manl = (tmpmant[0] >> denorm)
|
|
| ((unsigned long) tmpmant[1] << (16 - denorm))
|
|
| ((unsigned long) tmpmant[2] << (32 - denorm));
|
|
ld.s.manh = (tmpmant[2] >> denorm)
|
|
| ((unsigned long) tmpmant[3] << (16 - denorm));
|
|
}
|
|
else if (denorm == 16)
|
|
{
|
|
/* manl = tmpmant[2] | tmpmant[1]
|
|
manh = 0000000000 | tmpmant[3] */
|
|
ld.s.manl = tmpmant[1] | ((unsigned long) tmpmant[2] << 16);
|
|
ld.s.manh = tmpmant[3];
|
|
}
|
|
else if (denorm < 32)
|
|
{
|
|
/* manl = low(mant[3],denorm-16) | mant[2] | high(mant[1],32-denorm)
|
|
manh = high(mant[3],32-denorm) */
|
|
ld.s.manl = (tmpmant[1] >> (denorm - 16))
|
|
| ((unsigned long) tmpmant[2] << (32 - denorm))
|
|
| ((unsigned long) tmpmant[3] << (48 - denorm));
|
|
ld.s.manh = tmpmant[3] >> (denorm - 16);
|
|
}
|
|
else if (denorm == 32)
|
|
{
|
|
/* manl = tmpmant[3] | tmpmant[2]
|
|
manh = 0 */
|
|
ld.s.manl = tmpmant[2] | ((unsigned long) tmpmant[3] << 16);
|
|
ld.s.manh = 0;
|
|
}
|
|
else if (denorm < 48)
|
|
{
|
|
/* manl = zero(denorm-32) | tmpmant[3] | high(tmpmant[2],48-denorm)
|
|
manh = 0 */
|
|
ld.s.manl = (tmpmant[2] >> (denorm - 32))
|
|
| ((unsigned long) tmpmant[3] << (48 - denorm));
|
|
ld.s.manh = 0;
|
|
}
|
|
else /* 48 <= denorm < 64 */
|
|
{
|
|
/* we assume a right shift of 0 is identity */
|
|
ld.s.manl = tmpmant[3] >> (denorm - 48);
|
|
ld.s.manh = 0;
|
|
}
|
|
#elif GMP_NUMB_BITS == 8
|
|
{
|
|
unsigned long long mant = 0;
|
|
int i;
|
|
for (i = 0; i < 8; i++)
|
|
mant |= ((unsigned long) tmpmant[i] << (8*i));
|
|
mant >>= denorm;
|
|
ld.s.manl = mant;
|
|
ld.s.manh = mant >> 32;
|
|
}
|
|
#else
|
|
# error "GMP_NUMB_BITS must be 16, 32 or >= 64"
|
|
/* Other values have never been supported anyway. */
|
|
#endif
|
|
if (MPFR_LIKELY (denorm == 0))
|
|
{
|
|
ld.s.exph = (e + 0x3FFE) >> 8;
|
|
ld.s.expl = (e + 0x3FFE);
|
|
}
|
|
else
|
|
ld.s.exph = ld.s.expl = 0;
|
|
ld.s.sign = MPFR_IS_NEG (x);
|
|
}
|
|
|
|
mpfr_clear (tmp);
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return ld.ld;
|
|
}
|
|
|
|
#else
|
|
|
|
/* generic code */
|
|
long double
|
|
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
|
|
{
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
return (long double) mpfr_get_d (x, rnd_mode);
|
|
else /* now x is a normal non-zero number */
|
|
{
|
|
long double r; /* result */
|
|
double s; /* part of result */
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
#if defined(HAVE_LDOUBLE_MAYBE_DOUBLE_DOUBLE)
|
|
if (MPFR_LDBL_MANT_DIG == 106)
|
|
{
|
|
/* Assume double-double format (as found with the PowerPC ABI).
|
|
The generic code below isn't used because numbers with
|
|
precision > 106 would not be supported. */
|
|
s = mpfr_get_d (x, MPFR_RNDN); /* high part of x */
|
|
/* Let's first consider special cases separately. The test for
|
|
infinity is really needed to avoid a NaN result. The test
|
|
for NaN is mainly for optimization. The test for 0 is useful
|
|
to get the correct sign (assuming mpfr_get_d supports signed
|
|
zeros on the implementation). */
|
|
if (s == 0 || DOUBLE_ISNAN (s) || DOUBLE_ISINF (s))
|
|
r = (long double) s;
|
|
else
|
|
{
|
|
mpfr_t y, z;
|
|
|
|
mpfr_init2 (y, mpfr_get_prec (x));
|
|
mpfr_init2 (z, IEEE_DBL_MANT_DIG); /* keep the precision small */
|
|
mpfr_set_d (z, s, MPFR_RNDN); /* exact */
|
|
mpfr_sub (y, x, z, MPFR_RNDN); /* exact */
|
|
/* Add the second part of y (in the correct rounding mode). */
|
|
r = (long double) s + (long double) mpfr_get_d (y, rnd_mode);
|
|
mpfr_clear (z);
|
|
mpfr_clear (y);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
long double m;
|
|
mpfr_exp_t sh; /* exponent shift -> x/2^sh is in the double range */
|
|
mpfr_t y, z;
|
|
int sign;
|
|
|
|
/* First round x to the target long double precision, so that
|
|
all subsequent operations are exact (this avoids double rounding
|
|
problems). However if the format contains numbers that have more
|
|
precision, MPFR won't be able to generate such numbers. */
|
|
mpfr_init2 (y, MPFR_LDBL_MANT_DIG);
|
|
mpfr_init2 (z, MPFR_LDBL_MANT_DIG);
|
|
/* Note about the precision of z: even though IEEE_DBL_MANT_DIG is
|
|
sufficient, z has been set to the same precision as y so that
|
|
the mpfr_sub below calls mpfr_sub1sp, which is faster than the
|
|
generic subtraction, even in this particular case (from tests
|
|
done by Patrick Pelissier on a 64-bit Core2 Duo against r7285).
|
|
But here there is an important cancellation in the subtraction.
|
|
TODO: get more information about what has been tested. */
|
|
|
|
mpfr_set (y, x, rnd_mode);
|
|
sh = MPFR_GET_EXP (y);
|
|
sign = MPFR_SIGN (y);
|
|
MPFR_SET_EXP (y, 0);
|
|
MPFR_SET_POS (y);
|
|
|
|
r = 0.0;
|
|
do
|
|
{
|
|
s = mpfr_get_d (y, MPFR_RNDN); /* high part of y */
|
|
r += (long double) s;
|
|
mpfr_set_d (z, s, MPFR_RNDN); /* exact */
|
|
mpfr_sub (y, y, z, MPFR_RNDN); /* exact */
|
|
}
|
|
while (!MPFR_IS_ZERO (y));
|
|
|
|
mpfr_clear (z);
|
|
mpfr_clear (y);
|
|
|
|
/* we now have to multiply back by 2^sh */
|
|
MPFR_ASSERTD (r > 0);
|
|
if (sh != 0)
|
|
{
|
|
/* An overflow may occur (example: 0.5*2^1024) */
|
|
while (r < 1.0)
|
|
{
|
|
r += r;
|
|
sh--;
|
|
}
|
|
|
|
if (sh > 0)
|
|
m = 2.0;
|
|
else
|
|
{
|
|
m = 0.5;
|
|
sh = -sh;
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
if (sh % 2)
|
|
r = r * m;
|
|
sh >>= 1;
|
|
if (sh == 0)
|
|
break;
|
|
m = m * m;
|
|
}
|
|
}
|
|
if (sign < 0)
|
|
r = -r;
|
|
}
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* contributed by Damien Stehle */
|
|
long double
|
|
mpfr_get_ld_2exp (long *expptr, mpfr_srcptr src, mpfr_rnd_t rnd_mode)
|
|
{
|
|
long double ret;
|
|
mpfr_exp_t exp;
|
|
mpfr_t tmp;
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (src)))
|
|
return (long double) mpfr_get_d_2exp (expptr, src, rnd_mode);
|
|
|
|
MPFR_ALIAS (tmp, src, MPFR_SIGN (src), 0);
|
|
ret = mpfr_get_ld (tmp, rnd_mode);
|
|
|
|
exp = MPFR_GET_EXP (src);
|
|
|
|
/* rounding can give 1.0, adjust back to 0.5 <= abs(ret) < 1.0 */
|
|
if (ret == 1.0)
|
|
{
|
|
ret = 0.5;
|
|
exp ++;
|
|
}
|
|
else if (ret == -1.0)
|
|
{
|
|
ret = -0.5;
|
|
exp ++;
|
|
}
|
|
|
|
MPFR_ASSERTN ((ret >= 0.5 && ret < 1.0)
|
|
|| (ret <= -0.5 && ret > -1.0));
|
|
MPFR_ASSERTN (exp >= LONG_MIN && exp <= LONG_MAX);
|
|
|
|
*expptr = exp;
|
|
return ret;
|
|
}
|