Jérôme Duval 3c24538123 Adding inline mpc directory so the MPC library is built as part of GCC 4.5
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@42242 a95241bf-73f2-0310-859d-f6bbb57e9c96
2011-06-19 13:22:38 +00:00

118 lines
5.7 KiB
Plaintext

# Data file for mpc_add.
#
# Copyright (C) INRIA, 2008
#
# This file is part of the MPC Library.
#
# The MPC Library is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation; either version 2.1 of the License, or (at your
# option) any later version.
#
# The MPC Library is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with the MPC Library; see the file COPYING.LIB. If not, write to
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
# MA 02111-1307, USA.
#
# The line format respects the parameter order in function prototype as
# follow:
#
# INEX_RE INEX_IM PREC_ROP_RE ROP_RE PREC_ROP_IM ROP_IM PREC_OP1_RE OP1_RE PREC_OP1_IM OP1_IM PREC_OP2_RE OP2_RE PREC_OP2_IM OP2_IM RND_RE RND_IM
#
# where op1 = op1_re + i * op1_im, op2 = op2_re + i * op2_im, rop = rop_re + i * rop_im,
# The data are read from the file and stored in variables op1, op2, rop using
# rounding to nearest when needed, for instance: rop_re is ROP_RE rounded to
# nearest to the precision of PREC_ROP_RE.
# ROP_RE is checked against Re(op1 + op2) rounded to the precision PREC_ROP_RE
# in the direction RND_RE
# ROP_IM is checked against Im(op1 + op2) rounded to the precision PREC_ROP_IM
# in the direction RND_IM
# INEX_RE is the ternary value for the real part with the following notation:
# "?" ternary value not checked
# "+" if ROP_RE is greater than the exact mathematical result
# "0" if ROP_RE is exactly the mathematical result
# "-" if ROP_RE is less than the exact mathematical result
# (m.m. INEX_IM)
# rounding modes notation:
# "N" is rounding to nearest
# "Z" is rounding towards zero
# "U" is rounding towards plus infinity
# "D" is rounding towards minus infinity
# Use prefixes "0b" for values in base two, "0x" for values in base sixteen,
# no prefix for value in base ten.
# In all bases, "nan" is NaN, "inf" is infinity;
# The sign of the result is checked with "+inf", "-inf", "-0", or "+0".
# special values (following ISO C99 standard)
0 0 53 -inf 53 -inf 53 -inf 53 -inf 53 -inf 53 -inf N Z
0 0 53 -inf 53 nan 53 -inf 53 +inf 53 +1 53 -inf Z U
0 0 53 +inf 53 -inf 53 +inf 53 -inf 53 +inf 53 +0 U D
0 0 53 +inf 53 +inf 53 +inf 53 +inf 53 -0 53 -1 D N
0 0 53 -inf 53 -inf 53 -inf 53 -inf 53 -0 53 -1 N U
0 0 53 nan 53 nan 53 -inf 53 +inf 53 +inf 53 nan Z D # check this is true in ISO C99
0 0 53 nan 53 -inf 53 +inf 53 -inf 53 nan 53 -1 U N
0 0 53 +inf 53 nan 53 +inf 53 +inf 53 -0 53 nan D Z
0 0 53 nan 53 nan 53 -inf 53 -inf 53 nan 53 nan N D
0 0 53 +inf 53 -inf 53 -1 53 -inf 53 +inf 53 -1 N D
0 0 53 nan 53 +1 53 -inf 53 +1 53 +inf 53 -0 Z N
0 0 53 +1 53 -inf 53 +1 53 -inf 53 -0 53 +1 U Z
0 0 53 +inf 53 +1 53 +inf 53 +1 53 -0 53 -0 D U
0 0 53 +inf 53 nan 53 -1 53 -inf 53 +inf 53 nan N N
0 0 53 nan 53 +2 53 -inf 53 +1 53 nan 53 +1 Z Z
0 0 53 +1 53 nan 53 +1 53 -inf 53 -0 53 nan U U # check this
0 0 53 nan 53 nan 53 +inf 53 +1 53 nan 53 nan D D
0 0 53 -0 53 nan 53 -0 53 -inf 53 +0 53 +inf D D
0 0 53 -inf 53 +0 53 -inf 53 +0 53 +1 53 -0 N Z
0 0 53 +0 53 -inf 53 +0 53 -inf 53 -0 53 -0 Z U
0 0 53 nan 53 nan 53 +inf 53 +0 53 -inf 53 nan U D # check
0 0 53 nan 53 -inf 53 -0 53 -inf 53 nan 53 -1 D N
0 0 53 -inf 53 nan 53 -inf 53 +0 53 +0 53 nan N U
0 0 53 nan 53 nan 53 +0 53 -inf 53 nan 53 nan Z D
0 0 53 +0 53 -0 53 +0 53 +1 53 -0 53 -1 Z D
0 0 53 -1 53 -0 53 -1 53 -0 53 +0 53 -0 U N
0 0 53 nan 53 +inf 53 -0 53 +1 53 nan 53 +inf D Z
0 0 53 +0 53 nan 53 +1 53 -0 53 -1 53 nan N D
0 0 53 nan 53 +1 53 +0 53 +1 53 nan 53 -0 Z N
0 0 53 nan 53 nan 53 -1 53 -0 53 nan 53 nan U Z
0 0 53 +0 53 +0 53 -0 53 +0 53 +0 53 -0 U Z
0 0 53 nan 53 -inf 53 +0 53 -0 53 nan 53 -inf D U
0 0 53 -1 53 nan 53 +0 53 +0 53 -1 53 nan N N
0 0 53 nan 53 -0 53 -0 53 -0 53 nan 53 -0 Z Z
0 0 53 nan 53 nan 53 -0 53 +0 53 nan 53 nan U U
0 0 53 nan 53 nan 53 nan 53 -inf 53 nan 53 +inf U U # check
0 0 53 +inf 53 nan 53 +inf 53 nan 53 -1 53 nan D D
0 0 53 nan 53 -inf 53 nan 53 -inf 53 nan 53 -0 N Z
0 0 53 nan 53 nan 53 -inf 53 nan 53 nan 53 nan Z U # check
0 0 53 nan 53 nan 53 +1 53 nan 53 nan 53 -1 Z U
0 0 53 nan 53 nan 53 nan 53 +1 53 -0 53 nan U D
0 0 53 nan 53 nan 53 -1 53 nan 53 nan 53 nan D N
0 0 53 nan 53 nan 53 nan 53 +0 53 +0 53 nan D N
0 0 53 nan 53 nan 53 +0 53 nan 53 nan 53 nan N U
0 0 53 nan 53 nan 53 nan 53 nan 53 nan 53 nan N U
# pure real argument
+ 0 53 0x10000000000001p-52 53 -0 53 +1 53 -0 53 0x10000000000001p-105 53 -0 N N
- 0 53 0x10000000000000p-52 53 -0 53 +1 53 -0 53 0x10000000000001p-105 53 -0 Z Z
+ 0 53 0x10000000000001p-52 53 -0 53 +1 53 -0 53 0x10000000000001p-105 53 -0 U U
- 0 53 0x10000000000000p-52 53 -0 53 +1 53 -0 53 0x10000000000001p-105 53 -0 D D
# pure imaginary argument
0 + 53 -0 53 0x10000000000001p-52 53 -0 53 0x10000000000001p-105 53 -0 53 +1 N N
0 - 53 +0 53 0x10000000000000p-52 53 +0 53 0x10000000000001p-105 53 -0 53 +1 Z Z
0 + 53 +0 53 0x10000000000001p-52 53 +0 53 0x10000000000001p-105 53 -0 53 +1 U U
0 - 53 -0 53 0x10000000000000p-52 53 -0 53 0x10000000000001p-105 53 -0 53 +1 D D