mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-20 05:11:26 +01:00
5904152eeb
git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37371 a95241bf-73f2-0310-859d-f6bbb57e9c96
1254 lines
35 KiB
C
1254 lines
35 KiB
C
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Helper add functions (for fma)
|
|
*
|
|
* __BID_INLINE__ UINT64 get_add64(
|
|
* UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
|
* UINT64 sign_y, int exponent_y, UINT64 coefficient_y,
|
|
* int rounding_mode)
|
|
*
|
|
* __BID_INLINE__ UINT64 get_add128(
|
|
* UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
|
* UINT64 sign_y, int final_exponent_y, UINT128 CY,
|
|
* int extra_digits, int rounding_mode)
|
|
*
|
|
*****************************************************************************
|
|
*
|
|
* Algorithm description:
|
|
*
|
|
* get_add64: same as BID64 add, but arguments are unpacked and there
|
|
* are no special case checks
|
|
*
|
|
* get_add128: add 64-bit coefficient to 128-bit product (which contains
|
|
* 16+extra_digits decimal digits),
|
|
* return BID64 result
|
|
* - the exponents are compared and the two coefficients are
|
|
* properly aligned for addition/subtraction
|
|
* - multiple paths are needed
|
|
* - final result exponent is calculated and the lower term is
|
|
* rounded first if necessary, to avoid manipulating
|
|
* coefficients longer than 128 bits
|
|
*
|
|
****************************************************************************/
|
|
|
|
#ifndef _INLINE_BID_ADD_H_
|
|
#define _INLINE_BID_ADD_H_
|
|
|
|
#include "bid_internal.h"
|
|
|
|
#define MAX_FORMAT_DIGITS 16
|
|
#define DECIMAL_EXPONENT_BIAS 398
|
|
#define MASK_BINARY_EXPONENT 0x7ff0000000000000ull
|
|
#define BINARY_EXPONENT_BIAS 0x3ff
|
|
#define UPPER_EXPON_LIMIT 51
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
//
|
|
// get_add64() is essentially the same as bid_add(), except that
|
|
// the arguments are unpacked
|
|
//
|
|
//////////////////////////////////////////////////////////////////////
|
|
__BID_INLINE__ UINT64
|
|
get_add64 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
|
UINT64 sign_y, int exponent_y, UINT64 coefficient_y,
|
|
int rounding_mode, unsigned *fpsc) {
|
|
UINT128 CA, CT, CT_new;
|
|
UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab,
|
|
rem_a;
|
|
UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp,
|
|
C64_new;
|
|
int_double tempx;
|
|
int exponent_a, exponent_b, diff_dec_expon;
|
|
int bin_expon_ca, extra_digits, amount, scale_k, scale_ca;
|
|
unsigned rmode, status;
|
|
|
|
// sort arguments by exponent
|
|
if (exponent_x <= exponent_y) {
|
|
sign_a = sign_y;
|
|
exponent_a = exponent_y;
|
|
coefficient_a = coefficient_y;
|
|
sign_b = sign_x;
|
|
exponent_b = exponent_x;
|
|
coefficient_b = coefficient_x;
|
|
} else {
|
|
sign_a = sign_x;
|
|
exponent_a = exponent_x;
|
|
coefficient_a = coefficient_x;
|
|
sign_b = sign_y;
|
|
exponent_b = exponent_y;
|
|
coefficient_b = coefficient_y;
|
|
}
|
|
|
|
// exponent difference
|
|
diff_dec_expon = exponent_a - exponent_b;
|
|
|
|
/* get binary coefficients of x and y */
|
|
|
|
//--- get number of bits in the coefficients of x and y ---
|
|
|
|
tempx.d = (double) coefficient_a;
|
|
bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
|
|
if (!coefficient_a) {
|
|
return get_BID64 (sign_b, exponent_b, coefficient_b, rounding_mode,
|
|
fpsc);
|
|
}
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
|
// normalize a to a 16-digit coefficient
|
|
|
|
scale_ca = estimate_decimal_digits[bin_expon_ca];
|
|
if (coefficient_a >= power10_table_128[scale_ca].w[0])
|
|
scale_ca++;
|
|
|
|
scale_k = 16 - scale_ca;
|
|
|
|
coefficient_a *= power10_table_128[scale_k].w[0];
|
|
|
|
diff_dec_expon -= scale_k;
|
|
exponent_a -= scale_k;
|
|
|
|
/* get binary coefficients of x and y */
|
|
|
|
//--- get number of bits in the coefficients of x and y ---
|
|
tempx.d = (double) coefficient_a;
|
|
bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (coefficient_b) {
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
|
}
|
|
#endif
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (((rounding_mode) & 3) && coefficient_b) // not ROUNDING_TO_NEAREST
|
|
{
|
|
switch (rounding_mode) {
|
|
case ROUNDING_DOWN:
|
|
if (sign_b) {
|
|
coefficient_a -= ((((SINT64) sign_a) >> 63) | 1);
|
|
if (coefficient_a < 1000000000000000ull) {
|
|
exponent_a--;
|
|
coefficient_a = 9999999999999999ull;
|
|
} else if (coefficient_a >= 10000000000000000ull) {
|
|
exponent_a++;
|
|
coefficient_a = 1000000000000000ull;
|
|
}
|
|
}
|
|
break;
|
|
case ROUNDING_UP:
|
|
if (!sign_b) {
|
|
coefficient_a += ((((SINT64) sign_a) >> 63) | 1);
|
|
if (coefficient_a < 1000000000000000ull) {
|
|
exponent_a--;
|
|
coefficient_a = 9999999999999999ull;
|
|
} else if (coefficient_a >= 10000000000000000ull) {
|
|
exponent_a++;
|
|
coefficient_a = 1000000000000000ull;
|
|
}
|
|
}
|
|
break;
|
|
default: // RZ
|
|
if (sign_a != sign_b) {
|
|
coefficient_a--;
|
|
if (coefficient_a < 1000000000000000ull) {
|
|
exponent_a--;
|
|
coefficient_a = 9999999999999999ull;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
} else
|
|
#endif
|
|
#endif
|
|
// check special case here
|
|
if ((coefficient_a == 1000000000000000ull)
|
|
&& (diff_dec_expon == MAX_FORMAT_DIGITS + 1)
|
|
&& (sign_a ^ sign_b)
|
|
&& (coefficient_b > 5000000000000000ull)) {
|
|
coefficient_a = 9999999999999999ull;
|
|
exponent_a--;
|
|
}
|
|
|
|
return get_BID64 (sign_a, exponent_a, coefficient_a,
|
|
rounding_mode, fpsc);
|
|
}
|
|
}
|
|
// test whether coefficient_a*10^(exponent_a-exponent_b) may exceed 2^62
|
|
if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) {
|
|
// coefficient_a*10^(exponent_a-exponent_b)<2^63
|
|
|
|
// multiply by 10^(exponent_a-exponent_b)
|
|
coefficient_a *= power10_table_128[diff_dec_expon].w[0];
|
|
|
|
// sign mask
|
|
sign_b = ((SINT64) sign_b) >> 63;
|
|
// apply sign to coeff. of b
|
|
coefficient_b = (coefficient_b + sign_b) ^ sign_b;
|
|
|
|
// apply sign to coefficient a
|
|
sign_a = ((SINT64) sign_a) >> 63;
|
|
coefficient_a = (coefficient_a + sign_a) ^ sign_a;
|
|
|
|
coefficient_a += coefficient_b;
|
|
// get sign
|
|
sign_s = ((SINT64) coefficient_a) >> 63;
|
|
coefficient_a = (coefficient_a + sign_s) ^ sign_s;
|
|
sign_s &= 0x8000000000000000ull;
|
|
|
|
// coefficient_a < 10^16 ?
|
|
if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) {
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (rounding_mode == ROUNDING_DOWN && (!coefficient_a)
|
|
&& sign_a != sign_b)
|
|
sign_s = 0x8000000000000000ull;
|
|
#endif
|
|
#endif
|
|
return get_BID64 (sign_s, exponent_b, coefficient_a,
|
|
rounding_mode, fpsc);
|
|
}
|
|
// otherwise rounding is necessary
|
|
|
|
// already know coefficient_a<10^19
|
|
// coefficient_a < 10^17 ?
|
|
if (coefficient_a < power10_table_128[17].w[0])
|
|
extra_digits = 1;
|
|
else if (coefficient_a < power10_table_128[18].w[0])
|
|
extra_digits = 2;
|
|
else
|
|
extra_digits = 3;
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
rmode = rounding_mode;
|
|
if (sign_s && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
#else
|
|
rmode = 0;
|
|
#endif
|
|
#else
|
|
rmode = 0;
|
|
#endif
|
|
coefficient_a += round_const_table[rmode][extra_digits];
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_64x64_to_128 (CT, coefficient_a,
|
|
reciprocals10_64[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
|
amount = short_recip_scale[extra_digits];
|
|
C64 = CT.w[1] >> amount;
|
|
|
|
} else {
|
|
// coefficient_a*10^(exponent_a-exponent_b) is large
|
|
sign_s = sign_a;
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
rmode = rounding_mode;
|
|
if (sign_s && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
#else
|
|
rmode = 0;
|
|
#endif
|
|
#else
|
|
rmode = 0;
|
|
#endif
|
|
|
|
// check whether we can take faster path
|
|
scale_ca = estimate_decimal_digits[bin_expon_ca];
|
|
|
|
sign_ab = sign_a ^ sign_b;
|
|
sign_ab = ((SINT64) sign_ab) >> 63;
|
|
|
|
// T1 = 10^(16-diff_dec_expon)
|
|
T1 = power10_table_128[16 - diff_dec_expon].w[0];
|
|
|
|
// get number of digits in coefficient_a
|
|
//P_ca = power10_table_128[scale_ca].w[0];
|
|
//P_ca_m1 = power10_table_128[scale_ca-1].w[0];
|
|
if (coefficient_a >= power10_table_128[scale_ca].w[0]) {
|
|
scale_ca++;
|
|
//P_ca_m1 = P_ca;
|
|
//P_ca = power10_table_128[scale_ca].w[0];
|
|
}
|
|
|
|
scale_k = 16 - scale_ca;
|
|
|
|
// apply sign
|
|
//Ts = (T1 + sign_ab) ^ sign_ab;
|
|
|
|
// test range of ca
|
|
//X = coefficient_a + Ts - P_ca_m1;
|
|
|
|
// addition
|
|
saved_ca = coefficient_a - T1;
|
|
coefficient_a =
|
|
(SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0];
|
|
extra_digits = diff_dec_expon - scale_k;
|
|
|
|
// apply sign
|
|
saved_cb = (coefficient_b + sign_ab) ^ sign_ab;
|
|
// add 10^16 and rounding constant
|
|
coefficient_b =
|
|
saved_cb + 10000000000000000ull +
|
|
round_const_table[rmode][extra_digits];
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_64x64_to_128 (CT, coefficient_b,
|
|
reciprocals10_64[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
|
amount = short_recip_scale[extra_digits];
|
|
C0_64 = CT.w[1] >> amount;
|
|
|
|
// result coefficient
|
|
C64 = C0_64 + coefficient_a;
|
|
// filter out difficult (corner) cases
|
|
// the following test is equivalent to
|
|
// ( (initial_coefficient_a + Ts) < P_ca &&
|
|
// (initial_coefficient_a + Ts) > P_ca_m1 ),
|
|
// which ensures the number of digits in coefficient_a does not change
|
|
// after adding (the appropriately scaled and rounded) coefficient_b
|
|
if ((UINT64) (C64 - 1000000000000000ull - 1) >
|
|
9000000000000000ull - 2) {
|
|
if (C64 >= 10000000000000000ull) {
|
|
// result has more than 16 digits
|
|
if (!scale_k) {
|
|
// must divide coeff_a by 10
|
|
saved_ca = saved_ca + T1;
|
|
__mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull);
|
|
//reciprocals10_64[1]);
|
|
coefficient_a = CA.w[1] >> 1;
|
|
rem_a =
|
|
saved_ca - (coefficient_a << 3) - (coefficient_a << 1);
|
|
coefficient_a = coefficient_a - T1;
|
|
|
|
saved_cb +=
|
|
/*90000000000000000 */ +rem_a *
|
|
power10_table_128[diff_dec_expon].w[0];
|
|
} else
|
|
coefficient_a =
|
|
(SINT64) (saved_ca - T1 -
|
|
(T1 << 3)) * (SINT64) power10_table_128[scale_k -
|
|
1].w[0];
|
|
|
|
extra_digits++;
|
|
coefficient_b =
|
|
saved_cb + 100000000000000000ull +
|
|
round_const_table[rmode][extra_digits];
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_64x64_to_128 (CT, coefficient_b,
|
|
reciprocals10_64[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
|
amount = short_recip_scale[extra_digits];
|
|
C0_64 = CT.w[1] >> amount;
|
|
|
|
// result coefficient
|
|
C64 = C0_64 + coefficient_a;
|
|
} else if (C64 <= 1000000000000000ull) {
|
|
// less than 16 digits in result
|
|
coefficient_a =
|
|
(SINT64) saved_ca *(SINT64) power10_table_128[scale_k +
|
|
1].w[0];
|
|
//extra_digits --;
|
|
exponent_b--;
|
|
coefficient_b =
|
|
(saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull +
|
|
round_const_table[rmode][extra_digits];
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_64x64_to_128 (CT_new, coefficient_b,
|
|
reciprocals10_64[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
|
|
amount = short_recip_scale[extra_digits];
|
|
C0_64 = CT_new.w[1] >> amount;
|
|
|
|
// result coefficient
|
|
C64_new = C0_64 + coefficient_a;
|
|
if (C64_new < 10000000000000000ull) {
|
|
C64 = C64_new;
|
|
#ifdef SET_STATUS_FLAGS
|
|
CT = CT_new;
|
|
#endif
|
|
} else
|
|
exponent_b++;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
|
#endif
|
|
if (C64 & 1) {
|
|
// check whether fractional part of initial_P/10^extra_digits
|
|
// is exactly .5
|
|
// this is the same as fractional part of
|
|
// (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
|
|
|
|
// get remainder
|
|
remainder_h = CT.w[1] << (64 - amount);
|
|
|
|
// test whether fractional part is 0
|
|
if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) {
|
|
C64--;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
status = INEXACT_EXCEPTION;
|
|
|
|
// get remainder
|
|
remainder_h = CT.w[1] << (64 - amount);
|
|
|
|
switch (rmode) {
|
|
case ROUNDING_TO_NEAREST:
|
|
case ROUNDING_TIES_AWAY:
|
|
// test whether fractional part is 0
|
|
if ((remainder_h == 0x8000000000000000ull)
|
|
&& (CT.w[0] < reciprocals10_64[extra_digits]))
|
|
status = EXACT_STATUS;
|
|
break;
|
|
case ROUNDING_DOWN:
|
|
case ROUNDING_TO_ZERO:
|
|
if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits]))
|
|
status = EXACT_STATUS;
|
|
break;
|
|
default:
|
|
// round up
|
|
__add_carry_out (tmp, carry, CT.w[0],
|
|
reciprocals10_64[extra_digits]);
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
|
(((UINT64) 1) << amount))
|
|
status = EXACT_STATUS;
|
|
break;
|
|
}
|
|
__set_status_flags (fpsc, status);
|
|
|
|
#endif
|
|
|
|
return get_BID64 (sign_s, exponent_b + extra_digits, C64,
|
|
rounding_mode, fpsc);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// round 128-bit coefficient and return result in BID64 format
|
|
// do not worry about midpoint cases
|
|
//////////////////////////////////////////////////////////////////
|
|
static UINT64
|
|
__bid_simple_round64_sticky (UINT64 sign, int exponent, UINT128 P,
|
|
int extra_digits, int rounding_mode,
|
|
unsigned *fpsc) {
|
|
UINT128 Q_high, Q_low, C128;
|
|
UINT64 C64;
|
|
int amount, rmode;
|
|
|
|
rmode = rounding_mode;
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
#endif
|
|
#endif
|
|
__add_128_64 (P, P, round_const_table[rmode][extra_digits]);
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
|
reciprocals10_128[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
|
amount = recip_scale[extra_digits];
|
|
__shr_128 (C128, Q_high, amount);
|
|
|
|
C64 = __low_64 (C128);
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
|
|
|
#endif
|
|
|
|
return get_BID64 (sign, exponent, C64, rounding_mode, fpsc);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// round 128-bit coefficient and return result in BID64 format
|
|
///////////////////////////////////////////////////////////////////
|
|
static UINT64
|
|
__bid_full_round64 (UINT64 sign, int exponent, UINT128 P,
|
|
int extra_digits, int rounding_mode,
|
|
unsigned *fpsc) {
|
|
UINT128 Q_high, Q_low, C128, Stemp, PU;
|
|
UINT64 remainder_h, C64, carry, CY;
|
|
int amount, amount2, rmode, status = 0;
|
|
|
|
if (exponent < 0) {
|
|
if (exponent >= -16 && (extra_digits + exponent < 0)) {
|
|
extra_digits = -exponent;
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (extra_digits > 0) {
|
|
rmode = rounding_mode;
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
__add_128_128 (PU, P,
|
|
round_const_table_128[rmode][extra_digits]);
|
|
if (__unsigned_compare_gt_128
|
|
(power10_table_128[extra_digits + 15], PU))
|
|
status = UNDERFLOW_EXCEPTION;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (extra_digits > 0) {
|
|
exponent += extra_digits;
|
|
rmode = rounding_mode;
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
__add_128_128 (P, P, round_const_table_128[rmode][extra_digits]);
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
|
reciprocals10_128[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
|
amount = recip_scale[extra_digits];
|
|
__shr_128_long (C128, Q_high, amount);
|
|
|
|
C64 = __low_64 (C128);
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
|
#endif
|
|
if (C64 & 1) {
|
|
// check whether fractional part of initial_P/10^extra_digits
|
|
// is exactly .5
|
|
|
|
// get remainder
|
|
amount2 = 64 - amount;
|
|
remainder_h = 0;
|
|
remainder_h--;
|
|
remainder_h >>= amount2;
|
|
remainder_h = remainder_h & Q_high.w[0];
|
|
|
|
if (!remainder_h
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
|
&& Q_low.w[0] <
|
|
reciprocals10_128[extra_digits].w[0]))) {
|
|
C64--;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
status |= INEXACT_EXCEPTION;
|
|
|
|
// get remainder
|
|
remainder_h = Q_high.w[0] << (64 - amount);
|
|
|
|
switch (rmode) {
|
|
case ROUNDING_TO_NEAREST:
|
|
case ROUNDING_TIES_AWAY:
|
|
// test whether fractional part is 0
|
|
if (remainder_h == 0x8000000000000000ull
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
|
&& Q_low.w[0] <
|
|
reciprocals10_128[extra_digits].w[0])))
|
|
status = EXACT_STATUS;
|
|
break;
|
|
case ROUNDING_DOWN:
|
|
case ROUNDING_TO_ZERO:
|
|
if (!remainder_h
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
|
&& Q_low.w[0] <
|
|
reciprocals10_128[extra_digits].w[0])))
|
|
status = EXACT_STATUS;
|
|
break;
|
|
default:
|
|
// round up
|
|
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
|
|
reciprocals10_128[extra_digits].w[0]);
|
|
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
|
|
reciprocals10_128[extra_digits].w[1], CY);
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
|
(((UINT64) 1) << amount))
|
|
status = EXACT_STATUS;
|
|
}
|
|
|
|
__set_status_flags (fpsc, status);
|
|
|
|
#endif
|
|
} else {
|
|
C64 = P.w[0];
|
|
if (!C64) {
|
|
sign = 0;
|
|
if (rounding_mode == ROUNDING_DOWN)
|
|
sign = 0x8000000000000000ull;
|
|
}
|
|
}
|
|
return get_BID64 (sign, exponent, C64, rounding_mode, fpsc);
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
// round 192-bit coefficient (P, remainder_P) and return result in BID64 format
|
|
// the lowest 64 bits (remainder_P) are used for midpoint checking only
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static UINT64
|
|
__bid_full_round64_remainder (UINT64 sign, int exponent, UINT128 P,
|
|
int extra_digits, UINT64 remainder_P,
|
|
int rounding_mode, unsigned *fpsc,
|
|
unsigned uf_status) {
|
|
UINT128 Q_high, Q_low, C128, Stemp;
|
|
UINT64 remainder_h, C64, carry, CY;
|
|
int amount, amount2, rmode, status = uf_status;
|
|
|
|
rmode = rounding_mode;
|
|
if (sign && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
if (rmode == ROUNDING_UP && remainder_P) {
|
|
P.w[0]++;
|
|
if (!P.w[0])
|
|
P.w[1]++;
|
|
}
|
|
|
|
if (extra_digits) {
|
|
__add_128_64 (P, P, round_const_table[rmode][extra_digits]);
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
|
reciprocals10_128[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
|
amount = recip_scale[extra_digits];
|
|
__shr_128 (C128, Q_high, amount);
|
|
|
|
C64 = __low_64 (C128);
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
|
#endif
|
|
if (!remainder_P && (C64 & 1)) {
|
|
// check whether fractional part of initial_P/10^extra_digits
|
|
// is exactly .5
|
|
|
|
// get remainder
|
|
amount2 = 64 - amount;
|
|
remainder_h = 0;
|
|
remainder_h--;
|
|
remainder_h >>= amount2;
|
|
remainder_h = remainder_h & Q_high.w[0];
|
|
|
|
if (!remainder_h
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
|
&& Q_low.w[0] <
|
|
reciprocals10_128[extra_digits].w[0]))) {
|
|
C64--;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
status |= INEXACT_EXCEPTION;
|
|
|
|
if (!remainder_P) {
|
|
// get remainder
|
|
remainder_h = Q_high.w[0] << (64 - amount);
|
|
|
|
switch (rmode) {
|
|
case ROUNDING_TO_NEAREST:
|
|
case ROUNDING_TIES_AWAY:
|
|
// test whether fractional part is 0
|
|
if (remainder_h == 0x8000000000000000ull
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
|
&& Q_low.w[0] <
|
|
reciprocals10_128[extra_digits].w[0])))
|
|
status = EXACT_STATUS;
|
|
break;
|
|
case ROUNDING_DOWN:
|
|
case ROUNDING_TO_ZERO:
|
|
if (!remainder_h
|
|
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|
|
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
|
|
&& Q_low.w[0] <
|
|
reciprocals10_128[extra_digits].w[0])))
|
|
status = EXACT_STATUS;
|
|
break;
|
|
default:
|
|
// round up
|
|
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
|
|
reciprocals10_128[extra_digits].w[0]);
|
|
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
|
|
reciprocals10_128[extra_digits].w[1], CY);
|
|
if ((remainder_h >> (64 - amount)) + carry >=
|
|
(((UINT64) 1) << amount))
|
|
status = EXACT_STATUS;
|
|
}
|
|
}
|
|
__set_status_flags (fpsc, status);
|
|
|
|
#endif
|
|
} else {
|
|
C64 = P.w[0];
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (remainder_P) {
|
|
__set_status_flags (fpsc, uf_status | INEXACT_EXCEPTION);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return get_BID64 (sign, exponent + extra_digits, C64, rounding_mode,
|
|
fpsc);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// get P/10^extra_digits
|
|
// result fits in 64 bits
|
|
///////////////////////////////////////////////////////////////////
|
|
__BID_INLINE__ UINT64
|
|
__truncate (UINT128 P, int extra_digits)
|
|
// extra_digits <= 16
|
|
{
|
|
UINT128 Q_high, Q_low, C128;
|
|
UINT64 C64;
|
|
int amount;
|
|
|
|
// get P*(2^M[extra_digits])/10^extra_digits
|
|
__mul_128x128_full (Q_high, Q_low, P,
|
|
reciprocals10_128[extra_digits]);
|
|
|
|
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
|
|
amount = recip_scale[extra_digits];
|
|
__shr_128 (C128, Q_high, amount);
|
|
|
|
C64 = __low_64 (C128);
|
|
|
|
return C64;
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
// return number of decimal digits in 128-bit value X
|
|
///////////////////////////////////////////////////////////////////
|
|
__BID_INLINE__ int
|
|
__get_dec_digits64 (UINT128 X) {
|
|
int_double tempx;
|
|
int digits_x, bin_expon_cx;
|
|
|
|
if (!X.w[1]) {
|
|
//--- get number of bits in the coefficients of x and y ---
|
|
tempx.d = (double) X.w[0];
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
// get number of decimal digits in the coeff_x
|
|
digits_x = estimate_decimal_digits[bin_expon_cx];
|
|
if (X.w[0] >= power10_table_128[digits_x].w[0])
|
|
digits_x++;
|
|
return digits_x;
|
|
}
|
|
tempx.d = (double) X.w[1];
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
// get number of decimal digits in the coeff_x
|
|
digits_x = estimate_decimal_digits[bin_expon_cx + 64];
|
|
if (__unsigned_compare_ge_128 (X, power10_table_128[digits_x]))
|
|
digits_x++;
|
|
|
|
return digits_x;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// add 64-bit coefficient to 128-bit coefficient, return result in BID64 format
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
__BID_INLINE__ UINT64
|
|
get_add128 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
|
|
UINT64 sign_y, int final_exponent_y, UINT128 CY,
|
|
int extra_digits, int rounding_mode, unsigned *fpsc) {
|
|
UINT128 CY_L, CX, FS, F, CT, ST, T2;
|
|
UINT64 CYh, CY0L, T, S, coefficient_y, remainder_y;
|
|
SINT64 D = 0;
|
|
int_double tempx;
|
|
int diff_dec_expon, extra_digits2, exponent_y, status;
|
|
int extra_dx, diff_dec2, bin_expon_cx, digits_x, rmode;
|
|
|
|
// CY has more than 16 decimal digits
|
|
|
|
exponent_y = final_exponent_y - extra_digits;
|
|
|
|
#ifdef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
rounding_mode = 0;
|
|
#endif
|
|
#ifdef IEEE_ROUND_NEAREST
|
|
rounding_mode = 0;
|
|
#endif
|
|
|
|
if (exponent_x > exponent_y) {
|
|
// normalize x
|
|
//--- get number of bits in the coefficients of x and y ---
|
|
tempx.d = (double) coefficient_x;
|
|
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
// get number of decimal digits in the coeff_x
|
|
digits_x = estimate_decimal_digits[bin_expon_cx];
|
|
if (coefficient_x >= power10_table_128[digits_x].w[0])
|
|
digits_x++;
|
|
|
|
extra_dx = 16 - digits_x;
|
|
coefficient_x *= power10_table_128[extra_dx].w[0];
|
|
if ((sign_x ^ sign_y) && (coefficient_x == 1000000000000000ull)) {
|
|
extra_dx++;
|
|
coefficient_x = 10000000000000000ull;
|
|
}
|
|
exponent_x -= extra_dx;
|
|
|
|
if (exponent_x > exponent_y) {
|
|
|
|
// exponent_x > exponent_y
|
|
diff_dec_expon = exponent_x - exponent_y;
|
|
|
|
if (exponent_x <= final_exponent_y + 1) {
|
|
__mul_64x64_to_128 (CX, coefficient_x,
|
|
power10_table_128[diff_dec_expon].w[0]);
|
|
|
|
if (sign_x == sign_y) {
|
|
__add_128_128 (CT, CY, CX);
|
|
if ((exponent_x >
|
|
final_exponent_y) /*&& (final_exponent_y>0) */ )
|
|
extra_digits++;
|
|
if (__unsigned_compare_ge_128
|
|
(CT, power10_table_128[16 + extra_digits]))
|
|
extra_digits++;
|
|
} else {
|
|
__sub_128_128 (CT, CY, CX);
|
|
if (((SINT64) CT.w[1]) < 0) {
|
|
CT.w[0] = 0 - CT.w[0];
|
|
CT.w[1] = 0 - CT.w[1];
|
|
if (CT.w[0])
|
|
CT.w[1]--;
|
|
sign_y = sign_x;
|
|
} else if (!(CT.w[1] | CT.w[0])) {
|
|
sign_y =
|
|
(rounding_mode !=
|
|
ROUNDING_DOWN) ? 0 : 0x8000000000000000ull;
|
|
}
|
|
if ((exponent_x + 1 >=
|
|
final_exponent_y) /*&& (final_exponent_y>=0) */ ) {
|
|
extra_digits = __get_dec_digits64 (CT) - 16;
|
|
if (extra_digits <= 0) {
|
|
if (!CT.w[0] && rounding_mode == ROUNDING_DOWN)
|
|
sign_y = 0x8000000000000000ull;
|
|
return get_BID64 (sign_y, exponent_y, CT.w[0],
|
|
rounding_mode, fpsc);
|
|
}
|
|
} else
|
|
if (__unsigned_compare_gt_128
|
|
(power10_table_128[15 + extra_digits], CT))
|
|
extra_digits--;
|
|
}
|
|
|
|
return __bid_full_round64 (sign_y, exponent_y, CT, extra_digits,
|
|
rounding_mode, fpsc);
|
|
}
|
|
// diff_dec2+extra_digits is the number of digits to eliminate from
|
|
// argument CY
|
|
diff_dec2 = exponent_x - final_exponent_y;
|
|
|
|
if (diff_dec2 >= 17) {
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
if ((rounding_mode) & 3) {
|
|
switch (rounding_mode) {
|
|
case ROUNDING_UP:
|
|
if (!sign_y) {
|
|
D = ((SINT64) (sign_x ^ sign_y)) >> 63;
|
|
D = D + D + 1;
|
|
coefficient_x += D;
|
|
}
|
|
break;
|
|
case ROUNDING_DOWN:
|
|
if (sign_y) {
|
|
D = ((SINT64) (sign_x ^ sign_y)) >> 63;
|
|
D = D + D + 1;
|
|
coefficient_x += D;
|
|
}
|
|
break;
|
|
case ROUNDING_TO_ZERO:
|
|
if (sign_y != sign_x) {
|
|
D = 0 - 1;
|
|
coefficient_x += D;
|
|
}
|
|
break;
|
|
}
|
|
if (coefficient_x < 1000000000000000ull) {
|
|
coefficient_x -= D;
|
|
coefficient_x =
|
|
D + (coefficient_x << 1) + (coefficient_x << 3);
|
|
exponent_x--;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (CY.w[1] | CY.w[0])
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
|
#endif
|
|
return get_BID64 (sign_x, exponent_x, coefficient_x,
|
|
rounding_mode, fpsc);
|
|
}
|
|
// here exponent_x <= 16+final_exponent_y
|
|
|
|
// truncate CY to 16 dec. digits
|
|
CYh = __truncate (CY, extra_digits);
|
|
|
|
// get remainder
|
|
T = power10_table_128[extra_digits].w[0];
|
|
__mul_64x64_to_64 (CY0L, CYh, T);
|
|
|
|
remainder_y = CY.w[0] - CY0L;
|
|
|
|
// align coeff_x, CYh
|
|
__mul_64x64_to_128 (CX, coefficient_x,
|
|
power10_table_128[diff_dec2].w[0]);
|
|
|
|
if (sign_x == sign_y) {
|
|
__add_128_64 (CT, CX, CYh);
|
|
if (__unsigned_compare_ge_128
|
|
(CT, power10_table_128[16 + diff_dec2]))
|
|
diff_dec2++;
|
|
} else {
|
|
if (remainder_y)
|
|
CYh++;
|
|
__sub_128_64 (CT, CX, CYh);
|
|
if (__unsigned_compare_gt_128
|
|
(power10_table_128[15 + diff_dec2], CT))
|
|
diff_dec2--;
|
|
}
|
|
|
|
return __bid_full_round64_remainder (sign_x, final_exponent_y, CT,
|
|
diff_dec2, remainder_y,
|
|
rounding_mode, fpsc, 0);
|
|
}
|
|
}
|
|
// Here (exponent_x <= exponent_y)
|
|
{
|
|
diff_dec_expon = exponent_y - exponent_x;
|
|
|
|
if (diff_dec_expon > MAX_FORMAT_DIGITS) {
|
|
rmode = rounding_mode;
|
|
|
|
if ((sign_x ^ sign_y)) {
|
|
if (!CY.w[0])
|
|
CY.w[1]--;
|
|
CY.w[0]--;
|
|
if (__unsigned_compare_gt_128
|
|
(power10_table_128[15 + extra_digits], CY)) {
|
|
if (rmode & 3) {
|
|
extra_digits--;
|
|
final_exponent_y--;
|
|
} else {
|
|
CY.w[0] = 1000000000000000ull;
|
|
CY.w[1] = 0;
|
|
extra_digits = 0;
|
|
}
|
|
}
|
|
}
|
|
__scale128_10 (CY, CY);
|
|
extra_digits++;
|
|
CY.w[0] |= 1;
|
|
|
|
return __bid_simple_round64_sticky (sign_y, final_exponent_y, CY,
|
|
extra_digits, rmode, fpsc);
|
|
}
|
|
// apply sign to coeff_x
|
|
sign_x ^= sign_y;
|
|
sign_x = ((SINT64) sign_x) >> 63;
|
|
CX.w[0] = (coefficient_x + sign_x) ^ sign_x;
|
|
CX.w[1] = sign_x;
|
|
|
|
// check whether CY (rounded to 16 digits) and CX have
|
|
// any digits in the same position
|
|
diff_dec2 = final_exponent_y - exponent_x;
|
|
|
|
if (diff_dec2 <= 17) {
|
|
// align CY to 10^ex
|
|
S = power10_table_128[diff_dec_expon].w[0];
|
|
__mul_64x128_short (CY_L, S, CY);
|
|
|
|
__add_128_128 (ST, CY_L, CX);
|
|
extra_digits2 = __get_dec_digits64 (ST) - 16;
|
|
return __bid_full_round64 (sign_y, exponent_x, ST, extra_digits2,
|
|
rounding_mode, fpsc);
|
|
}
|
|
// truncate CY to 16 dec. digits
|
|
CYh = __truncate (CY, extra_digits);
|
|
|
|
// get remainder
|
|
T = power10_table_128[extra_digits].w[0];
|
|
__mul_64x64_to_64 (CY0L, CYh, T);
|
|
|
|
coefficient_y = CY.w[0] - CY0L;
|
|
// add rounding constant
|
|
rmode = rounding_mode;
|
|
if (sign_y && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (!(rmode & 3)) //ROUNDING_TO_NEAREST
|
|
#endif
|
|
#endif
|
|
{
|
|
coefficient_y += round_const_table[rmode][extra_digits];
|
|
}
|
|
// align coefficient_y, coefficient_x
|
|
S = power10_table_128[diff_dec_expon].w[0];
|
|
__mul_64x64_to_128 (F, coefficient_y, S);
|
|
|
|
// fraction
|
|
__add_128_128 (FS, F, CX);
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (rmode == 0) //ROUNDING_TO_NEAREST
|
|
#endif
|
|
{
|
|
// rounding code, here RN_EVEN
|
|
// 10^(extra_digits+diff_dec_expon)
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
|
if (__unsigned_compare_gt_128 (FS, T2)
|
|
|| ((CYh & 1) && __test_equal_128 (FS, T2))) {
|
|
CYh++;
|
|
__sub_128_128 (FS, FS, T2);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
if (rmode == 4) //ROUNDING_TO_NEAREST
|
|
#endif
|
|
{
|
|
// rounding code, here RN_AWAY
|
|
// 10^(extra_digits+diff_dec_expon)
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
|
if (__unsigned_compare_ge_128 (FS, T2)) {
|
|
CYh++;
|
|
__sub_128_128 (FS, FS, T2);
|
|
}
|
|
}
|
|
#endif
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
switch (rmode) {
|
|
case ROUNDING_DOWN:
|
|
case ROUNDING_TO_ZERO:
|
|
if ((SINT64) FS.w[1] < 0) {
|
|
CYh--;
|
|
if (CYh < 1000000000000000ull) {
|
|
CYh = 9999999999999999ull;
|
|
final_exponent_y--;
|
|
}
|
|
} else {
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
|
if (__unsigned_compare_ge_128 (FS, T2)) {
|
|
CYh++;
|
|
__sub_128_128 (FS, FS, T2);
|
|
}
|
|
}
|
|
break;
|
|
case ROUNDING_UP:
|
|
if ((SINT64) FS.w[1] < 0)
|
|
break;
|
|
T2 = power10_table_128[diff_dec_expon + extra_digits];
|
|
if (__unsigned_compare_gt_128 (FS, T2)) {
|
|
CYh += 2;
|
|
__sub_128_128 (FS, FS, T2);
|
|
} else if ((FS.w[1] == T2.w[1]) && (FS.w[0] == T2.w[0])) {
|
|
CYh++;
|
|
FS.w[1] = FS.w[0] = 0;
|
|
} else if (FS.w[1] | FS.w[0])
|
|
CYh++;
|
|
break;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
status = INEXACT_EXCEPTION;
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
if (!(rmode & 3))
|
|
#endif
|
|
#endif
|
|
{
|
|
// RN modes
|
|
if ((FS.w[1] ==
|
|
round_const_table_128[0][diff_dec_expon + extra_digits].w[1])
|
|
&& (FS.w[0] ==
|
|
round_const_table_128[0][diff_dec_expon +
|
|
extra_digits].w[0]))
|
|
status = EXACT_STATUS;
|
|
}
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
else if (!FS.w[1] && !FS.w[0])
|
|
status = EXACT_STATUS;
|
|
#endif
|
|
#endif
|
|
|
|
__set_status_flags (fpsc, status);
|
|
#endif
|
|
|
|
return get_BID64 (sign_y, final_exponent_y, CYh, rounding_mode,
|
|
fpsc);
|
|
}
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// If coefficient_z is less than 16 digits long, normalize to 16 digits
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
static UINT64
|
|
BID_normalize (UINT64 sign_z, int exponent_z,
|
|
UINT64 coefficient_z, UINT64 round_dir, int round_flag,
|
|
int rounding_mode, unsigned *fpsc) {
|
|
SINT64 D;
|
|
int_double tempx;
|
|
int digits_z, bin_expon, scale, rmode;
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
rmode = rounding_mode;
|
|
if (sign_z && (unsigned) (rmode - 1) < 2)
|
|
rmode = 3 - rmode;
|
|
#else
|
|
if (coefficient_z >= power10_table_128[15].w[0])
|
|
return z;
|
|
#endif
|
|
#endif
|
|
|
|
//--- get number of bits in the coefficients of x and y ---
|
|
tempx.d = (double) coefficient_z;
|
|
bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
// get number of decimal digits in the coeff_x
|
|
digits_z = estimate_decimal_digits[bin_expon];
|
|
if (coefficient_z >= power10_table_128[digits_z].w[0])
|
|
digits_z++;
|
|
|
|
scale = 16 - digits_z;
|
|
exponent_z -= scale;
|
|
if (exponent_z < 0) {
|
|
scale += exponent_z;
|
|
exponent_z = 0;
|
|
}
|
|
coefficient_z *= power10_table_128[scale].w[0];
|
|
|
|
#ifdef SET_STATUS_FLAGS
|
|
if (round_flag) {
|
|
__set_status_flags (fpsc, INEXACT_EXCEPTION);
|
|
if (coefficient_z < 1000000000000000ull)
|
|
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
|
|
else if ((coefficient_z == 1000000000000000ull) && !exponent_z
|
|
&& ((SINT64) (round_dir ^ sign_z) < 0) && round_flag
|
|
&& (rmode == ROUNDING_DOWN || rmode == ROUNDING_TO_ZERO))
|
|
__set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
|
|
}
|
|
#endif
|
|
|
|
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
|
|
#ifndef IEEE_ROUND_NEAREST
|
|
if (round_flag && (rmode & 3)) {
|
|
D = round_dir ^ sign_z;
|
|
|
|
if (rmode == ROUNDING_UP) {
|
|
if (D >= 0)
|
|
coefficient_z++;
|
|
} else {
|
|
if (D < 0)
|
|
coefficient_z--;
|
|
if (coefficient_z < 1000000000000000ull && exponent_z) {
|
|
coefficient_z = 9999999999999999ull;
|
|
exponent_z--;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
return get_BID64 (sign_z, exponent_z, coefficient_z, rounding_mode,
|
|
fpsc);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// 0*10^ey + cz*10^ez, ey<ez
|
|
//
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
__BID_INLINE__ UINT64
|
|
add_zero64 (int exponent_y, UINT64 sign_z, int exponent_z,
|
|
UINT64 coefficient_z, unsigned *prounding_mode,
|
|
unsigned *fpsc) {
|
|
int_double tempx;
|
|
int bin_expon, scale_k, scale_cz;
|
|
int diff_expon;
|
|
|
|
diff_expon = exponent_z - exponent_y;
|
|
|
|
tempx.d = (double) coefficient_z;
|
|
bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
|
|
scale_cz = estimate_decimal_digits[bin_expon];
|
|
if (coefficient_z >= power10_table_128[scale_cz].w[0])
|
|
scale_cz++;
|
|
|
|
scale_k = 16 - scale_cz;
|
|
if (diff_expon < scale_k)
|
|
scale_k = diff_expon;
|
|
coefficient_z *= power10_table_128[scale_k].w[0];
|
|
|
|
return get_BID64 (sign_z, exponent_z - scale_k, coefficient_z,
|
|
*prounding_mode, fpsc);
|
|
}
|
|
#endif
|