buildtools/gcc/mpfr/atanh.c
Jérôme Duval b58ddff026 * modified gcc Makefile.in to copy gmp-impl.h and longlong.h headers to build gmp directory (see http://gcc.gnu.org/bugzilla/show_bug.cgi?id=44455 ).
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk


git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
2010-07-03 15:21:01 +00:00

128 lines
3.9 KiB
C

/* mpfr_atanh -- Inverse Hyperbolic Tangente
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of atanh is done by
atanh= 1/2*ln(x+1)-1/2*ln(1-x) */
int
mpfr_atanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode)
{
int inexact;
mpfr_t x, t, te;
mpfr_prec_t Nx, Ny, Nt;
mpfr_exp_t err;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
/* Special cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
{
/* atanh(NaN) = NaN, and atanh(+/-Inf) = NaN since tanh gives a result
between -1 and 1 */
if (MPFR_IS_NAN (xt) || MPFR_IS_INF (xt))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else /* necessarily xt is 0 */
{
MPFR_ASSERTD (MPFR_IS_ZERO (xt));
MPFR_SET_ZERO (y); /* atanh(0) = 0 */
MPFR_SET_SAME_SIGN (y,xt);
MPFR_RET (0);
}
}
/* atanh (x) = NaN as soon as |x| > 1, and arctanh(+/-1) = +/-Inf */
if (MPFR_UNLIKELY (MPFR_EXP (xt) > 0))
{
if (MPFR_EXP (xt) == 1 && mpfr_powerof2_raw (xt))
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, xt);
MPFR_RET (0);
}
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
/* atanh(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 1,
rnd_mode, {});
MPFR_SAVE_EXPO_MARK (expo);
/* Compute initial precision */
Nx = MPFR_PREC (xt);
MPFR_TMP_INIT_ABS (x, xt);
Ny = MPFR_PREC (y);
Nt = MAX (Nx, Ny);
/* the optimal number of bits : see algorithms.ps */
Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;
/* initialise of intermediary variable */
mpfr_init2 (t, Nt);
mpfr_init2 (te, Nt);
/* First computation of cosh */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute atanh */
mpfr_ui_sub (te, 1, x, MPFR_RNDU); /* (1-xt)*/
mpfr_add_ui (t, x, 1, MPFR_RNDD); /* (xt+1)*/
mpfr_div (t, t, te, MPFR_RNDN); /* (1+xt)/(1-xt)*/
mpfr_log (t, t, MPFR_RNDN); /* ln((1+xt)/(1-xt))*/
mpfr_div_2ui (t, t, 1, MPFR_RNDN); /* (1/2)*ln((1+xt)/(1-xt))*/
/* error estimate: see algorithms.tex */
/* FIXME: this does not correspond to the value in algorithms.tex!!! */
/* err=Nt-__gmpfr_ceil_log2(1+5*pow(2,1-MPFR_EXP(t)));*/
err = Nt - (MAX (4 - MPFR_GET_EXP (t), 0) + 1);
if (MPFR_LIKELY (MPFR_IS_ZERO (t)
|| MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
/* reactualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
mpfr_set_prec (te, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));
mpfr_clear(t);
mpfr_clear(te);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}