mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-19 12:51:22 +01:00
b58ddff026
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
399 lines
15 KiB
C
399 lines
15 KiB
C
/* mpfr_gamma -- gamma function
|
|
|
|
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
#define IS_GAMMA
|
|
#include "lngamma.c"
|
|
#undef IS_GAMMA
|
|
|
|
/* return a sufficient precision such that 2-x is exact, assuming x < 0 */
|
|
static mpfr_prec_t
|
|
mpfr_gamma_2_minus_x_exact (mpfr_srcptr x)
|
|
{
|
|
/* Since x < 0, 2-x = 2+y with y := -x.
|
|
If y < 2, a precision w >= PREC(y) + EXP(2)-EXP(y) = PREC(y) + 2 - EXP(y)
|
|
is enough, since no overlap occurs in 2+y, so no carry happens.
|
|
If y >= 2, either ULP(y) <= 2, and we need w >= PREC(y)+1 since a
|
|
carry can occur, or ULP(y) > 2, and we need w >= EXP(y)-1:
|
|
(a) if EXP(y) <= 1, w = PREC(y) + 2 - EXP(y)
|
|
(b) if EXP(y) > 1 and EXP(y)-PREC(y) <= 1, w = PREC(y) + 1
|
|
(c) if EXP(y) > 1 and EXP(y)-PREC(y) > 1, w = EXP(y) - 1 */
|
|
return (MPFR_GET_EXP(x) <= 1) ? MPFR_PREC(x) + 2 - MPFR_GET_EXP(x)
|
|
: ((MPFR_GET_EXP(x) <= MPFR_PREC(x) + 1) ? MPFR_PREC(x) + 1
|
|
: MPFR_GET_EXP(x) - 1);
|
|
}
|
|
|
|
/* return a sufficient precision such that 1-x is exact, assuming x < 1 */
|
|
static mpfr_prec_t
|
|
mpfr_gamma_1_minus_x_exact (mpfr_srcptr x)
|
|
{
|
|
if (MPFR_IS_POS(x))
|
|
return MPFR_PREC(x) - MPFR_GET_EXP(x);
|
|
else if (MPFR_GET_EXP(x) <= 0)
|
|
return MPFR_PREC(x) + 1 - MPFR_GET_EXP(x);
|
|
else if (MPFR_PREC(x) >= MPFR_GET_EXP(x))
|
|
return MPFR_PREC(x) + 1;
|
|
else
|
|
return MPFR_GET_EXP(x);
|
|
}
|
|
|
|
/* returns a lower bound of the number of significant bits of n!
|
|
(not counting the low zero bits).
|
|
We know n! >= (n/e)^n*sqrt(2*Pi*n) for n >= 1, and the number of zero bits
|
|
is floor(n/2) + floor(n/4) + floor(n/8) + ...
|
|
This approximation is exact for n <= 500000, except for n = 219536, 235928,
|
|
298981, 355854, 464848, 493725, 498992 where it returns a value 1 too small.
|
|
*/
|
|
static unsigned long
|
|
bits_fac (unsigned long n)
|
|
{
|
|
mpfr_t x, y;
|
|
unsigned long r, k;
|
|
mpfr_init2 (x, 38);
|
|
mpfr_init2 (y, 38);
|
|
mpfr_set_ui (x, n, MPFR_RNDZ);
|
|
mpfr_set_str_binary (y, "10.101101111110000101010001011000101001"); /* upper bound of e */
|
|
mpfr_div (x, x, y, MPFR_RNDZ);
|
|
mpfr_pow_ui (x, x, n, MPFR_RNDZ);
|
|
mpfr_const_pi (y, MPFR_RNDZ);
|
|
mpfr_mul_ui (y, y, 2 * n, MPFR_RNDZ);
|
|
mpfr_sqrt (y, y, MPFR_RNDZ);
|
|
mpfr_mul (x, x, y, MPFR_RNDZ);
|
|
mpfr_log2 (x, x, MPFR_RNDZ);
|
|
r = mpfr_get_ui (x, MPFR_RNDU);
|
|
for (k = 2; k <= n; k *= 2)
|
|
r -= n / k;
|
|
mpfr_clear (x);
|
|
mpfr_clear (y);
|
|
return r;
|
|
}
|
|
|
|
/* We use the reflection formula
|
|
Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
|
|
in order to treat the case x <= 1,
|
|
i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
|
|
*/
|
|
int
|
|
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
|
|
{
|
|
mpfr_t xp, GammaTrial, tmp, tmp2;
|
|
mpz_t fact;
|
|
mpfr_prec_t realprec;
|
|
int compared, inex, is_integer;
|
|
MPFR_GROUP_DECL (group);
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
MPFR_ZIV_DECL (loop);
|
|
|
|
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
|
|
("gamma[%#R]=%R inexact=%d", gamma, gamma, inex));
|
|
|
|
/* Trivial cases */
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
{
|
|
if (MPFR_IS_NAN (x))
|
|
{
|
|
MPFR_SET_NAN (gamma);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_IS_INF (x))
|
|
{
|
|
if (MPFR_IS_NEG (x))
|
|
{
|
|
MPFR_SET_NAN (gamma);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else
|
|
{
|
|
MPFR_SET_INF (gamma);
|
|
MPFR_SET_POS (gamma);
|
|
MPFR_RET (0); /* exact */
|
|
}
|
|
}
|
|
else /* x is zero */
|
|
{
|
|
MPFR_ASSERTD(MPFR_IS_ZERO(x));
|
|
MPFR_SET_INF(gamma);
|
|
MPFR_SET_SAME_SIGN(gamma, x);
|
|
MPFR_RET (0); /* exact */
|
|
}
|
|
}
|
|
|
|
/* Check for tiny arguments, where gamma(x) ~ 1/x - euler + ....
|
|
We know from "Bound on Runs of Zeros and Ones for Algebraic Functions",
|
|
Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal
|
|
number of consecutive zeroes or ones after the round bit is n-1 for an
|
|
input of n bits. But we need a more precise lower bound. Assume x has
|
|
n bits, and 1/x is near a floating-point number y of n+1 bits. We can
|
|
write x = X*2^e, y = Y/2^f with X, Y integers of n and n+1 bits.
|
|
Thus X*Y^2^(e-f) is near from 1, i.e., X*Y is near from 2^(f-e).
|
|
Two cases can happen:
|
|
(i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y
|
|
are themselves powers of two, i.e., x is a power of two;
|
|
(ii) or X*Y is at distance at least one from 2^(f-e), thus
|
|
|xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n).
|
|
Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means
|
|
that the distance |y-1/x| >= 2^(-2n) ufp(y).
|
|
Now assuming |gamma(x)-1/x| <= 1, which is true for x <= 1,
|
|
if 2^(-2n) ufp(y) >= 2, the error is at most 2^(-2n-1) ufp(y),
|
|
and round(1/x) with precision >= 2n+2 gives the correct result.
|
|
If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
|
|
A sufficient condition is thus EXP(x) + 2 <= -2 MAX(PREC(x),PREC(Y)).
|
|
*/
|
|
if (MPFR_EXP(x) + 2 <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma)))
|
|
{
|
|
int positive = MPFR_IS_POS (x);
|
|
inex = mpfr_ui_div (gamma, 1, x, rnd_mode);
|
|
if (inex == 0) /* x is a power of two */
|
|
{
|
|
if (positive)
|
|
{
|
|
if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDN)
|
|
inex = 1;
|
|
else /* round to zero or to -Inf */
|
|
{
|
|
mpfr_nextbelow (gamma); /* 2^k - epsilon */
|
|
inex = -1;
|
|
}
|
|
}
|
|
else /* negative */
|
|
{
|
|
if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDZ)
|
|
{
|
|
mpfr_nextabove (gamma); /* -2^k + epsilon */
|
|
inex = 1;
|
|
}
|
|
else /* round to nearest and to -Inf */
|
|
inex = -1;
|
|
}
|
|
}
|
|
return inex;
|
|
}
|
|
|
|
is_integer = mpfr_integer_p (x);
|
|
/* gamma(x) for x a negative integer gives NaN */
|
|
if (is_integer && MPFR_IS_NEG(x))
|
|
{
|
|
MPFR_SET_NAN (gamma);
|
|
MPFR_RET_NAN;
|
|
}
|
|
|
|
compared = mpfr_cmp_ui (x, 1);
|
|
if (compared == 0)
|
|
return mpfr_set_ui (gamma, 1, rnd_mode);
|
|
|
|
/* if x is an integer that fits into an unsigned long, use mpfr_fac_ui
|
|
if argument is not too large.
|
|
If precision is p, fac_ui costs O(u*p), whereas gamma costs O(p*M(p)),
|
|
so for u <= M(p), fac_ui should be faster.
|
|
We approximate here M(p) by p*log(p)^2, which is not a bad guess.
|
|
Warning: since the generic code does not handle exact cases,
|
|
we want all cases where gamma(x) is exact to be treated here.
|
|
*/
|
|
if (is_integer && mpfr_fits_ulong_p (x, MPFR_RNDN))
|
|
{
|
|
unsigned long int u;
|
|
mpfr_prec_t p = MPFR_PREC(gamma);
|
|
u = mpfr_get_ui (x, MPFR_RNDN);
|
|
if (u < 44787929UL && bits_fac (u - 1) <= p + (rnd_mode == MPFR_RNDN))
|
|
/* bits_fac: lower bound on the number of bits of m,
|
|
where gamma(x) = (u-1)! = m*2^e with m odd. */
|
|
return mpfr_fac_ui (gamma, u - 1, rnd_mode);
|
|
/* if bits_fac(...) > p (resp. p+1 for rounding to nearest),
|
|
then gamma(x) cannot be exact in precision p (resp. p+1).
|
|
FIXME: remove the test u < 44787929UL after changing bits_fac
|
|
to return a mpz_t or mpfr_t. */
|
|
}
|
|
|
|
/* check for overflow: according to (6.1.37) in Abramowitz & Stegun,
|
|
gamma(x) >= exp(-x) * x^(x-1/2) * sqrt(2*Pi)
|
|
>= 2 * (x/e)^x / x for x >= 1 */
|
|
if (compared > 0)
|
|
{
|
|
mpfr_t yp;
|
|
MPFR_BLOCK_DECL (flags);
|
|
|
|
/* 1/e rounded down to 53 bits */
|
|
#define EXPM1_STR "0.010111100010110101011000110110001011001110111100111"
|
|
mpfr_init2 (xp, 53);
|
|
mpfr_init2 (yp, 53);
|
|
mpfr_set_str_binary (xp, EXPM1_STR);
|
|
mpfr_mul (xp, x, xp, MPFR_RNDZ);
|
|
mpfr_sub_ui (yp, x, 2, MPFR_RNDZ);
|
|
mpfr_pow (xp, xp, yp, MPFR_RNDZ); /* (x/e)^(x-2) */
|
|
mpfr_set_str_binary (yp, EXPM1_STR);
|
|
mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^(x-1) */
|
|
mpfr_mul (xp, xp, yp, MPFR_RNDZ); /* x^(x-2) / e^x */
|
|
mpfr_mul (xp, xp, x, MPFR_RNDZ); /* lower bound on x^(x-1) / e^x */
|
|
MPFR_BLOCK (flags, mpfr_mul_2ui (xp, xp, 1, MPFR_RNDZ));
|
|
mpfr_clear (xp);
|
|
mpfr_clear (yp);
|
|
return MPFR_OVERFLOW (flags) ? mpfr_overflow (gamma, rnd_mode, 1)
|
|
: mpfr_gamma_aux (gamma, x, rnd_mode);
|
|
}
|
|
|
|
/* now compared < 0 */
|
|
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
/* check for underflow: for x < 1,
|
|
gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x).
|
|
Since gamma(2-x) >= 2 * ((2-x)/e)^(2-x) / (2-x), we have
|
|
|gamma(x)| <= Pi*(1-x)*(2-x)/2/((2-x)/e)^(2-x) / |sin(Pi*(2-x))|
|
|
<= 12 * ((2-x)/e)^x / |sin(Pi*(2-x))|.
|
|
To avoid an underflow in ((2-x)/e)^x, we compute the logarithm.
|
|
*/
|
|
if (MPFR_IS_NEG(x))
|
|
{
|
|
int underflow = 0, sgn, ck;
|
|
mpfr_prec_t w;
|
|
|
|
mpfr_init2 (xp, 53);
|
|
mpfr_init2 (tmp, 53);
|
|
mpfr_init2 (tmp2, 53);
|
|
/* we want an upper bound for x * [log(2-x)-1].
|
|
since x < 0, we need a lower bound on log(2-x) */
|
|
mpfr_ui_sub (xp, 2, x, MPFR_RNDD);
|
|
mpfr_log (xp, xp, MPFR_RNDD);
|
|
mpfr_sub_ui (xp, xp, 1, MPFR_RNDD);
|
|
mpfr_mul (xp, xp, x, MPFR_RNDU);
|
|
|
|
/* we need an upper bound on 1/|sin(Pi*(2-x))|,
|
|
thus a lower bound on |sin(Pi*(2-x))|.
|
|
If 2-x is exact, then the error of Pi*(2-x) is (1+u)^2 with u = 2^(-p)
|
|
thus the error on sin(Pi*(2-x)) is less than 1/2ulp + 3Pi(2-x)u,
|
|
assuming u <= 1, thus <= u + 3Pi(2-x)u */
|
|
|
|
w = mpfr_gamma_2_minus_x_exact (x); /* 2-x is exact for prec >= w */
|
|
w += 17; /* to get tmp2 small enough */
|
|
mpfr_set_prec (tmp, w);
|
|
mpfr_set_prec (tmp2, w);
|
|
ck = mpfr_ui_sub (tmp, 2, x, MPFR_RNDN);
|
|
MPFR_ASSERTD (ck == 0);
|
|
mpfr_const_pi (tmp2, MPFR_RNDN);
|
|
mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN); /* Pi*(2-x) */
|
|
mpfr_sin (tmp, tmp2, MPFR_RNDN); /* sin(Pi*(2-x)) */
|
|
sgn = mpfr_sgn (tmp);
|
|
mpfr_abs (tmp, tmp, MPFR_RNDN);
|
|
mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDU); /* 3Pi(2-x) */
|
|
mpfr_add_ui (tmp2, tmp2, 1, MPFR_RNDU); /* 3Pi(2-x)+1 */
|
|
mpfr_div_2ui (tmp2, tmp2, mpfr_get_prec (tmp), MPFR_RNDU);
|
|
/* if tmp2<|tmp|, we get a lower bound */
|
|
if (mpfr_cmp (tmp2, tmp) < 0)
|
|
{
|
|
mpfr_sub (tmp, tmp, tmp2, MPFR_RNDZ); /* low bnd on |sin(Pi*(2-x))| */
|
|
mpfr_ui_div (tmp, 12, tmp, MPFR_RNDU); /* upper bound */
|
|
mpfr_log (tmp, tmp, MPFR_RNDU);
|
|
mpfr_add (tmp, tmp, xp, MPFR_RNDU);
|
|
underflow = mpfr_cmp_si (xp, expo.saved_emin - 2) <= 0;
|
|
}
|
|
|
|
mpfr_clear (xp);
|
|
mpfr_clear (tmp);
|
|
mpfr_clear (tmp2);
|
|
if (underflow) /* the sign is the opposite of that of sin(Pi*(2-x)) */
|
|
{
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_underflow (gamma, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, -sgn);
|
|
}
|
|
}
|
|
|
|
realprec = MPFR_PREC (gamma);
|
|
/* we want both 1-x and 2-x to be exact */
|
|
{
|
|
mpfr_prec_t w;
|
|
w = mpfr_gamma_1_minus_x_exact (x);
|
|
if (realprec < w)
|
|
realprec = w;
|
|
w = mpfr_gamma_2_minus_x_exact (x);
|
|
if (realprec < w)
|
|
realprec = w;
|
|
}
|
|
realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20;
|
|
MPFR_ASSERTD(realprec >= 5);
|
|
|
|
MPFR_GROUP_INIT_4 (group, realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20,
|
|
xp, tmp, tmp2, GammaTrial);
|
|
mpz_init (fact);
|
|
MPFR_ZIV_INIT (loop, realprec);
|
|
for (;;)
|
|
{
|
|
mpfr_exp_t err_g;
|
|
int ck;
|
|
MPFR_GROUP_REPREC_4 (group, realprec, xp, tmp, tmp2, GammaTrial);
|
|
|
|
/* reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) */
|
|
|
|
ck = mpfr_ui_sub (xp, 2, x, MPFR_RNDN);
|
|
MPFR_ASSERTD(ck == 0); /* 2-x, exact */
|
|
mpfr_gamma (tmp, xp, MPFR_RNDN); /* gamma(2-x), error (1+u) */
|
|
mpfr_const_pi (tmp2, MPFR_RNDN); /* Pi, error (1+u) */
|
|
mpfr_mul (GammaTrial, tmp2, xp, MPFR_RNDN); /* Pi*(2-x), error (1+u)^2 */
|
|
err_g = MPFR_GET_EXP(GammaTrial);
|
|
mpfr_sin (GammaTrial, GammaTrial, MPFR_RNDN); /* sin(Pi*(2-x)) */
|
|
err_g = err_g + 1 - MPFR_GET_EXP(GammaTrial);
|
|
/* let g0 the true value of Pi*(2-x), g the computed value.
|
|
We have g = g0 + h with |h| <= |(1+u^2)-1|*g.
|
|
Thus sin(g) = sin(g0) + h' with |h'| <= |(1+u^2)-1|*g.
|
|
The relative error is thus bounded by |(1+u^2)-1|*g/sin(g)
|
|
<= |(1+u^2)-1|*2^err_g. <= 2.25*u*2^err_g for |u|<=1/4.
|
|
With the rounding error, this gives (0.5 + 2.25*2^err_g)*u. */
|
|
ck = mpfr_sub_ui (xp, x, 1, MPFR_RNDN);
|
|
MPFR_ASSERTD(ck == 0); /* x-1, exact */
|
|
mpfr_mul (xp, tmp2, xp, MPFR_RNDN); /* Pi*(x-1), error (1+u)^2 */
|
|
mpfr_mul (GammaTrial, GammaTrial, tmp, MPFR_RNDN);
|
|
/* [1 + (0.5 + 2.25*2^err_g)*u]*(1+u)^2 = 1 + (2.5 + 2.25*2^err_g)*u
|
|
+ (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2.
|
|
For err_g <= realprec-2, we have (0.5 + 2.25*2^err_g)*u <=
|
|
0.5*u + 2.25/4 <= 0.6875 and u^2 <= u/4, thus
|
|
(0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2 <= 0.6875*(2u+u/4) + u/4
|
|
<= 1.8*u, thus the rel. error is bounded by (4.5 + 2.25*2^err_g)*u. */
|
|
mpfr_div (GammaTrial, xp, GammaTrial, MPFR_RNDN);
|
|
/* the error is of the form (1+u)^3/[1 + (4.5 + 2.25*2^err_g)*u].
|
|
For realprec >= 5 and err_g <= realprec-2, [(4.5 + 2.25*2^err_g)*u]^2
|
|
<= 0.71, and for |y|<=0.71, 1/(1-y) can be written 1+a*y with a<=4.
|
|
(1+u)^3 * (1+4*(4.5 + 2.25*2^err_g)*u)
|
|
= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (55+27*2^err_g)*u^3
|
|
+ (18+9*2^err_g)*u^4
|
|
<= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (56+28*2^err_g)*u^3
|
|
<= 1 + (21 + 9*2^err_g)*u + (59+28*2^err_g)*u^2
|
|
<= 1 + (23 + 10*2^err_g)*u.
|
|
The final error is thus bounded by (23 + 10*2^err_g) ulps,
|
|
which is <= 2^6 for err_g<=2, and <= 2^(err_g+4) for err_g >= 2. */
|
|
err_g = (err_g <= 2) ? 6 : err_g + 4;
|
|
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (GammaTrial, realprec - err_g,
|
|
MPFR_PREC(gamma), rnd_mode)))
|
|
break;
|
|
MPFR_ZIV_NEXT (loop, realprec);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
inex = mpfr_set (gamma, GammaTrial, rnd_mode);
|
|
MPFR_GROUP_CLEAR (group);
|
|
mpz_clear (fact);
|
|
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (gamma, inex, rnd_mode);
|
|
}
|