mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-19 12:51:22 +01:00
b58ddff026
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
175 lines
5.7 KiB
C
175 lines
5.7 KiB
C
/* mpfr_log -- natural logarithm of a floating-point number
|
|
|
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* The computation of log(x) is done using the formula :
|
|
if we want p bits of the result,
|
|
|
|
pi
|
|
log(x) ~ ------------ - m log 2
|
|
2 AG(1,4/s)
|
|
|
|
where s = x 2^m > 2^(p/2)
|
|
|
|
More precisely, if F(x) = int(1/sqrt(1-(1-x^2)*sin(t)^2), t=0..PI/2),
|
|
then for s>=1.26 we have log(s) < F(4/s) < log(s)*(1+4/s^2)
|
|
from which we deduce pi/2/AG(1,4/s)*(1-4/s^2) < log(s) < pi/2/AG(1,4/s)
|
|
so the relative error 4/s^2 is < 4/2^p i.e. 4 ulps.
|
|
*/
|
|
|
|
int
|
|
mpfr_log (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
|
|
{
|
|
int inexact;
|
|
mpfr_prec_t p, q;
|
|
mpfr_t tmp1, tmp2;
|
|
mp_limb_t *tmp1p, *tmp2p;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
MPFR_ZIV_DECL (loop);
|
|
MPFR_TMP_DECL(marker);
|
|
|
|
MPFR_LOG_FUNC (("a[%#R]=%R rnd=%d", a, a, rnd_mode),
|
|
("r[%#R]=%R inexact=%d", r, r, inexact));
|
|
|
|
/* Special cases */
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
|
|
{
|
|
/* If a is NaN, the result is NaN */
|
|
if (MPFR_IS_NAN (a))
|
|
{
|
|
MPFR_SET_NAN (r);
|
|
MPFR_RET_NAN;
|
|
}
|
|
/* check for infinity before zero */
|
|
else if (MPFR_IS_INF (a))
|
|
{
|
|
if (MPFR_IS_NEG (a))
|
|
/* log(-Inf) = NaN */
|
|
{
|
|
MPFR_SET_NAN (r);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else /* log(+Inf) = +Inf */
|
|
{
|
|
MPFR_SET_INF (r);
|
|
MPFR_SET_POS (r);
|
|
MPFR_RET (0);
|
|
}
|
|
}
|
|
else /* a is zero */
|
|
{
|
|
MPFR_ASSERTD (MPFR_IS_ZERO (a));
|
|
MPFR_SET_INF (r);
|
|
MPFR_SET_NEG (r);
|
|
MPFR_RET (0); /* log(0) is an exact -infinity */
|
|
}
|
|
}
|
|
/* If a is negative, the result is NaN */
|
|
else if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
|
|
{
|
|
MPFR_SET_NAN (r);
|
|
MPFR_RET_NAN;
|
|
}
|
|
/* If a is 1, the result is 0 */
|
|
else if (MPFR_UNLIKELY (MPFR_GET_EXP (a) == 1 && mpfr_cmp_ui (a, 1) == 0))
|
|
{
|
|
MPFR_SET_ZERO (r);
|
|
MPFR_SET_POS (r);
|
|
MPFR_RET (0); /* only "normal" case where the result is exact */
|
|
}
|
|
|
|
q = MPFR_PREC (r);
|
|
|
|
/* use initial precision about q+lg(q)+5 */
|
|
p = q + 5 + 2 * MPFR_INT_CEIL_LOG2 (q);
|
|
/* % ~(mpfr_prec_t)GMP_NUMB_BITS ;
|
|
m=q; while (m) { p++; m >>= 1; } */
|
|
/* if (MPFR_LIKELY(p % GMP_NUMB_BITS != 0))
|
|
p += GMP_NUMB_BITS - (p%GMP_NUMB_BITS); */
|
|
|
|
MPFR_TMP_MARK(marker);
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
MPFR_ZIV_INIT (loop, p);
|
|
for (;;)
|
|
{
|
|
mp_size_t size;
|
|
long m;
|
|
mpfr_exp_t cancel;
|
|
|
|
/* Calculus of m (depends on p) */
|
|
m = (p + 1) / 2 - MPFR_GET_EXP (a) + 1;
|
|
|
|
/* All the mpfr_t needed have a precision of p */
|
|
size = (p-1)/GMP_NUMB_BITS+1;
|
|
MPFR_TMP_INIT (tmp1p, tmp1, p, size);
|
|
MPFR_TMP_INIT (tmp2p, tmp2, p, size);
|
|
|
|
mpfr_mul_2si (tmp2, a, m, MPFR_RNDN); /* s=a*2^m, err<=1 ulp */
|
|
mpfr_div (tmp1, __gmpfr_four, tmp2, MPFR_RNDN);/* 4/s, err<=2 ulps */
|
|
mpfr_agm (tmp2, __gmpfr_one, tmp1, MPFR_RNDN); /* AG(1,4/s),err<=3 ulps */
|
|
mpfr_mul_2ui (tmp2, tmp2, 1, MPFR_RNDN); /* 2*AG(1,4/s), err<=3 ulps */
|
|
mpfr_const_pi (tmp1, MPFR_RNDN); /* compute pi, err<=1ulp */
|
|
mpfr_div (tmp2, tmp1, tmp2, MPFR_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */
|
|
mpfr_const_log2 (tmp1, MPFR_RNDN); /* compute log(2), err<=1ulp */
|
|
mpfr_mul_si (tmp1, tmp1, m, MPFR_RNDN); /* compute m*log(2),err<=2ulps */
|
|
mpfr_sub (tmp1, tmp2, tmp1, MPFR_RNDN); /* log(a), err<=7ulps+cancel */
|
|
|
|
if (MPFR_LIKELY (MPFR_IS_PURE_FP (tmp1) && MPFR_IS_PURE_FP (tmp2)))
|
|
{
|
|
cancel = MPFR_GET_EXP (tmp2) - MPFR_GET_EXP (tmp1);
|
|
MPFR_LOG_MSG (("canceled bits=%ld\n", (long) cancel));
|
|
MPFR_LOG_VAR (tmp1);
|
|
if (MPFR_UNLIKELY (cancel < 0))
|
|
cancel = 0;
|
|
|
|
/* we have 7 ulps of error from the above roundings,
|
|
4 ulps from the 4/s^2 second order term,
|
|
plus the canceled bits */
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp1, p-cancel-4, q, rnd_mode)))
|
|
break;
|
|
|
|
/* VL: I think it is better to have an increment that it isn't
|
|
too low; in particular, the increment must be positive even
|
|
if cancel = 0 (can this occur?). */
|
|
p += cancel >= 8 ? cancel : 8;
|
|
}
|
|
else
|
|
{
|
|
/* TODO: find why this case can occur and what is best to do
|
|
with it. */
|
|
p += 32;
|
|
}
|
|
|
|
MPFR_ZIV_NEXT (loop, p);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
inexact = mpfr_set (r, tmp1, rnd_mode);
|
|
/* We clean */
|
|
MPFR_TMP_FREE(marker);
|
|
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (r, inexact, rnd_mode);
|
|
}
|