Jérôme Duval b58ddff026 * modified gcc Makefile.in to copy gmp-impl.h and longlong.h headers to build gmp directory (see http://gcc.gnu.org/bugzilla/show_bug.cgi?id=44455 ).
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk


git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
2010-07-03 15:21:01 +00:00

512 lines
18 KiB
C

/* mpfr_mul -- multiply two floating-point numbers
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/********* BEGINNING CHECK *************/
/* Check if we have to check the result of mpfr_mul.
TODO: Find a better (and faster?) check than using old implementation */
#ifdef WANT_ASSERT
# if WANT_ASSERT >= 3
int mpfr_mul2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode);
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
/* Old implementation */
int sign_product, cc, inexact;
mpfr_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL(marker);
/* deal with special cases */
if (MPFR_ARE_SINGULAR(b,c))
{
if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
if (MPFR_IS_INF(b))
{
if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
{
MPFR_SET_SIGN(a,sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF(c))
{
if (MPFR_NOTZERO(b))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_ZERO(a);
MPFR_RET(0); /* 0 * 0 is exact */
}
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
bq = MPFR_PREC(b);
cq = MPFR_PREC(c);
MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of b */
cn = (cq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
/* <= k, thus no int overflow */
MPFR_ASSERTD(tn <= k);
/* Check for no size_t overflow*/
MPFR_ASSERTD((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
MPFR_TMP_MARK(marker);
tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
b1 = (MPFR_LIKELY(bn >= cn)) ?
mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
: mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
MPFR_IS_NEG_SIGN(sign_product),
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
MPFR_TMP_FREE(marker);
{
mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign_product);
if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == MPFR_RNDN &&
(ax + (mpfr_exp_t) b1 < __gmpfr_emin ||
(mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, sign_product);
}
MPFR_SET_EXP (a, ax2);
MPFR_SET_SIGN(a, sign_product);
}
MPFR_RET (inexact);
}
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
mpfr_t ta, tb, tc;
int inexact1, inexact2;
mpfr_init2 (ta, MPFR_PREC (a));
mpfr_init2 (tb, MPFR_PREC (b));
mpfr_init2 (tc, MPFR_PREC (c));
MPFR_ASSERTN (mpfr_set (tb, b, MPFR_RNDN) == 0);
MPFR_ASSERTN (mpfr_set (tc, c, MPFR_RNDN) == 0);
inexact2 = mpfr_mul3 (ta, tb, tc, rnd_mode);
inexact1 = mpfr_mul2 (a, b, c, rnd_mode);
if (mpfr_cmp (ta, a) || inexact1*inexact2 < 0
|| (inexact1*inexact2 == 0 && (inexact1|inexact2) != 0))
{
fprintf (stderr, "mpfr_mul return different values for %s\n"
"Prec_a = %lu, Prec_b = %lu, Prec_c = %lu\nB = ",
mpfr_print_rnd_mode (rnd_mode),
MPFR_PREC (a), MPFR_PREC (b), MPFR_PREC (c));
mpfr_out_str (stderr, 16, 0, tb, MPFR_RNDN);
fprintf (stderr, "\nC = ");
mpfr_out_str (stderr, 16, 0, tc, MPFR_RNDN);
fprintf (stderr, "\nOldMul: ");
mpfr_out_str (stderr, 16, 0, ta, MPFR_RNDN);
fprintf (stderr, "\nNewMul: ");
mpfr_out_str (stderr, 16, 0, a, MPFR_RNDN);
fprintf (stderr, "\nNewInexact = %d | OldInexact = %d\n",
inexact1, inexact2);
MPFR_ASSERTN(0);
}
mpfr_clears (ta, tb, tc, (mpfr_ptr) 0);
return inexact1;
}
# define mpfr_mul mpfr_mul2
# endif
#endif
/****** END OF CHECK *******/
/* Multiply 2 mpfr_t */
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
int sign, inexact;
mpfr_exp_t ax, ax2;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL (marker);
MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode),
("a[%#R]=%R inexact=%d", a, a, inexact));
/* deal with special cases */
if (MPFR_ARE_SINGULAR (b, c))
{
if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
if (MPFR_IS_INF (b))
{
if (!MPFR_IS_ZERO (c))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET (0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF (c))
{
if (!MPFR_IS_ZERO (b))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET(0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN (a, sign);
MPFR_SET_ZERO (a);
MPFR_RET (0);
}
}
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
/* Note: the exponent of the exact result will be e = bx + cx + ec with
ec in {-1,0,1} and the following assumes that e is representable. */
/* FIXME: Useful since we do an exponent check after ?
* It is useful iff the precision is big, there is an overflow
* and we are doing further mults...*/
#ifdef HUGE
if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2))
return mpfr_underflow (a, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
sign);
#endif
bq = MPFR_PREC (b);
cq = MPFR_PREC (c);
MPFR_ASSERTD (bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of b */
cn = (cq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */
/* Check for no size_t overflow*/
MPFR_ASSERTD ((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
MPFR_TMP_MARK (marker);
tmp = (mp_limb_t *) MPFR_TMP_ALLOC ((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
if (MPFR_UNLIKELY (bn < cn))
{
mpfr_srcptr z = b;
mp_size_t zn = bn;
b = c;
bn = cn;
c = z;
cn = zn;
}
MPFR_ASSERTD (bn >= cn);
if (MPFR_LIKELY (bn <= 2))
{
if (bn == 1)
{
/* 1 limb * 1 limb */
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
b1 = tmp[1];
}
else if (MPFR_UNLIKELY (cn == 1))
{
/* 2 limbs * 1 limb */
mp_limb_t t;
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
umul_ppmm (tmp[2], t, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t);
b1 = tmp[2];
}
else
{
/* 2 limbs * 2 limbs */
mp_limb_t t1, t2, t3;
/* First 2 limbs * 1 limb */
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
umul_ppmm (tmp[2], t1, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t1);
/* Second, the other 2 limbs * 1 limb product */
umul_ppmm (t1, t2, MPFR_MANT (b)[0], MPFR_MANT (c)[1]);
umul_ppmm (tmp[3], t3, MPFR_MANT (b)[1], MPFR_MANT (c)[1]);
add_ssaaaa (tmp[3], t1, tmp[3], t1, 0, t3);
/* Sum those two partial products */
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], t1, t2);
tmp[3] += (tmp[2] < t1);
b1 = tmp[3];
}
b1 >>= (GMP_NUMB_BITS - 1);
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
else
/* Mulders' mulhigh. Disable if squaring, since it is not tuned for
such a case */
if (MPFR_UNLIKELY (bn > MPFR_MUL_THRESHOLD && b != c))
{
mp_limb_t *bp, *cp;
mp_size_t n;
mpfr_prec_t p;
/* Fist check if we can reduce the precision of b or c:
exact values are a nightmare for the short product trick */
bp = MPFR_MANT (b);
cp = MPFR_MANT (c);
MPFR_ASSERTN (MPFR_MUL_THRESHOLD >= 1);
if (MPFR_UNLIKELY ((bp[0] == 0 && bp[1] == 0) ||
(cp[0] == 0 && cp[1] == 0)))
{
mpfr_t b_tmp, c_tmp;
MPFR_TMP_FREE (marker);
/* Check for b */
while (*bp == 0)
{
bp++;
bn--;
MPFR_ASSERTD (bn > 0);
} /* This must end since the MSL is != 0 */
/* Check for c too */
while (*cp == 0)
{
cp++;
cn--;
MPFR_ASSERTD (cn > 0);
} /* This must end since the MSL is != 0 */
/* It is not the faster way, but it is safer */
MPFR_SET_SAME_SIGN (b_tmp, b);
MPFR_SET_EXP (b_tmp, MPFR_GET_EXP (b));
MPFR_PREC (b_tmp) = bn * GMP_NUMB_BITS;
MPFR_MANT (b_tmp) = bp;
MPFR_SET_SAME_SIGN (c_tmp, c);
MPFR_SET_EXP (c_tmp, MPFR_GET_EXP (c));
MPFR_PREC (c_tmp) = cn * GMP_NUMB_BITS;
MPFR_MANT (c_tmp) = cp;
/* Call again mpfr_mul with the fixed arguments */
return mpfr_mul (a, b_tmp, c_tmp, rnd_mode);
}
/* Compute estimated precision of mulhigh.
We could use `+ (n < cn) + (n < bn)' instead of `+ 2',
but does it worth it? */
n = MPFR_LIMB_SIZE (a) + 1;
n = MIN (n, cn);
MPFR_ASSERTD (n >= 1 && 2*n <= k && n <= cn && n <= bn);
p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
bp += bn - n;
cp += cn - n;
/* Check if MulHigh can produce a roundable result.
We may lost 1 bit due to RNDN, 1 due to final shift. */
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5))
{
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5 + GMP_NUMB_BITS
|| bn <= MPFR_MUL_THRESHOLD+1))
{
/* MulHigh can't produce a roundable result. */
MPFR_LOG_MSG (("mpfr_mulhigh can't be used (%lu VS %lu)\n",
MPFR_PREC (a), p));
goto full_multiply;
}
/* Add one extra limb to mantissa of b and c. */
if (bn > n)
bp --;
else
{
bp = (mp_limb_t*) MPFR_TMP_ALLOC ((n+1) * sizeof (mp_limb_t));
bp[0] = 0;
MPN_COPY (bp + 1, MPFR_MANT (b) + bn - n, n);
}
if (cn > n)
cp --; /* FIXME: Could this happen? */
else
{
cp = (mp_limb_t*) MPFR_TMP_ALLOC ((n+1) * sizeof (mp_limb_t));
cp[0] = 0;
MPN_COPY (cp + 1, MPFR_MANT (c) + cn - n, n);
}
/* We will compute with one extra limb */
n++;
p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
/* Due to some nasty reasons we can have only 4 bits */
MPFR_ASSERTD (MPFR_PREC (a) <= p - 4);
if (MPFR_LIKELY (k < 2*n))
{
tmp = (mp_limb_t*) MPFR_TMP_ALLOC (2 * n * sizeof (mp_limb_t));
tmp += 2*n-k; /* `tmp' still points to an area of `k' limbs */
}
}
MPFR_LOG_MSG (("Use mpfr_mulhigh (%lu VS %lu)\n", MPFR_PREC (a), p));
/* Compute an approximation of the product of b and c */
mpfr_mulhigh_n (tmp + k - 2 * n, bp, cp, n);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 = tmp[k-1] >> (GMP_NUMB_BITS - 1); /* msb from the product */
/* If the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
if (MPFR_UNLIKELY (b1 == 0))
/* Warning: the mpfr_mulhigh_n call above only surely affects
tmp[k-n-1..k-1], thus we shift only those limbs */
mpn_lshift (tmp + k - n - 1, tmp + k - n - 1, n + 1, 1);
tmp += k - tn;
MPFR_ASSERTD (MPFR_LIMB_MSB (tmp[tn-1]) != 0);
if (MPFR_UNLIKELY (!mpfr_round_p (tmp, tn, p+b1-1, MPFR_PREC(a)
+ (rnd_mode == MPFR_RNDN))))
{
tmp -= k - tn; /* tmp may have changed, FIX IT!!!!! */
goto full_multiply;
}
}
else
{
full_multiply:
MPFR_LOG_MSG (("Use mpn_mul\n", 0));
b1 = mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
ax2 = ax + (mpfr_exp_t) (b1 - 1);
MPFR_RNDRAW (inexact, a, tmp, bq+cq, rnd_mode, sign, ax2++);
MPFR_TMP_FREE (marker);
MPFR_EXP (a) = ax2; /* Can't use MPFR_SET_EXP: Expo may be out of range */
MPFR_SET_SIGN (a, sign);
if (MPFR_UNLIKELY (ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == MPFR_RNDN
&& (ax + (mpfr_exp_t) b1 < __gmpfr_emin
|| (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, sign);
}
MPFR_RET (inexact);
}