mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-31 10:34:41 +01:00
4389066602
GCC had a horrible .gitignore, untracked files were not applied
253 lines
6.3 KiB
C
253 lines
6.3 KiB
C
/* mpn_fib2m -- calculate Fibonacci numbers, modulo m.
|
|
|
|
Contributed to the GNU project by Marco Bodrato, based on the previous
|
|
fib2_ui.c file.
|
|
|
|
THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
|
|
CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
|
|
FUTURE GNU MP RELEASES.
|
|
|
|
Copyright 2001, 2002, 2005, 2009, 2018 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU MP Library.
|
|
|
|
The GNU MP Library is free software; you can redistribute it and/or modify
|
|
it under the terms of either:
|
|
|
|
* the GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
or
|
|
|
|
* the GNU General Public License as published by the Free Software
|
|
Foundation; either version 2 of the License, or (at your option) any
|
|
later version.
|
|
|
|
or both in parallel, as here.
|
|
|
|
The GNU MP Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received copies of the GNU General Public License and the
|
|
GNU Lesser General Public License along with the GNU MP Library. If not,
|
|
see https://www.gnu.org/licenses/. */
|
|
|
|
#include <stdio.h>
|
|
#include "gmp-impl.h"
|
|
#include "longlong.h"
|
|
|
|
|
|
/* Stores |{ap,n}-{bp,n}| in {rp,n},
|
|
returns the sign of {ap,n}-{bp,n}. */
|
|
static int
|
|
abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n)
|
|
{
|
|
mp_limb_t x, y;
|
|
while (--n >= 0)
|
|
{
|
|
x = ap[n];
|
|
y = bp[n];
|
|
if (x != y)
|
|
{
|
|
++n;
|
|
if (x > y)
|
|
{
|
|
ASSERT_NOCARRY (mpn_sub_n (rp, ap, bp, n));
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
ASSERT_NOCARRY (mpn_sub_n (rp, bp, ap, n));
|
|
return -1;
|
|
}
|
|
}
|
|
rp[n] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Store F[n] at fp and F[n-1] at f1p. Both are computed modulo m.
|
|
fp and f1p should have room for mn*2+1 limbs.
|
|
|
|
The sign of one or both the values may be flipped (n-F, instead of F),
|
|
the return value is 0 (zero) if the signs are coherent (both positive
|
|
or both negative) and 1 (one) otherwise.
|
|
|
|
Notes:
|
|
|
|
In F[2k+1] with k even, +2 is applied to 4*F[k]^2 just by ORing into the
|
|
low limb.
|
|
|
|
In F[2k+1] with k odd, -2 is applied to F[k-1]^2 just by ORing into the
|
|
low limb.
|
|
|
|
TODO: Should {tp, 2 * mn} be passed as a scratch pointer?
|
|
Should the call to mpn_fib2_ui() obtain (up to) 2*mn limbs?
|
|
*/
|
|
|
|
int
|
|
mpn_fib2m (mp_ptr fp, mp_ptr f1p, mp_srcptr np, mp_size_t nn, mp_srcptr mp, mp_size_t mn)
|
|
{
|
|
unsigned long nfirst;
|
|
mp_limb_t nh;
|
|
mp_bitcnt_t nbi;
|
|
mp_size_t sn, fn;
|
|
int fcnt, ncnt;
|
|
|
|
ASSERT (! MPN_OVERLAP_P (fp, MAX(2*mn+1,5), f1p, MAX(2*mn+1,5)));
|
|
ASSERT (nn > 0 && np[nn - 1] != 0);
|
|
|
|
/* Estimate the maximal n such that fibonacci(n) fits in mn limbs. */
|
|
#if GMP_NUMB_BITS % 16 == 0
|
|
if (UNLIKELY (ULONG_MAX / (23 * (GMP_NUMB_BITS / 16)) <= mn))
|
|
nfirst = ULONG_MAX;
|
|
else
|
|
nfirst = mn * (23 * (GMP_NUMB_BITS / 16));
|
|
#else
|
|
{
|
|
mp_bitcnt_t mbi;
|
|
mbi = (mp_bitcnt_t) mn * GMP_NUMB_BITS;
|
|
|
|
if (UNLIKELY (ULONG_MAX / 23 < mbi))
|
|
{
|
|
if (UNLIKELY (ULONG_MAX / 23 * 16 <= mbi))
|
|
nfirst = ULONG_MAX;
|
|
else
|
|
nfirst = mbi / 16 * 23;
|
|
}
|
|
else
|
|
nfirst = mbi * 23 / 16;
|
|
}
|
|
#endif
|
|
|
|
sn = nn - 1;
|
|
nh = np[sn];
|
|
count_leading_zeros (ncnt, nh);
|
|
count_leading_zeros (fcnt, nfirst);
|
|
|
|
if (fcnt >= ncnt)
|
|
{
|
|
ncnt = fcnt - ncnt;
|
|
nh >>= ncnt;
|
|
}
|
|
else if (sn > 0)
|
|
{
|
|
ncnt -= fcnt;
|
|
nh <<= ncnt;
|
|
ncnt = GMP_NUMB_BITS - ncnt;
|
|
--sn;
|
|
nh |= np[sn] >> ncnt;
|
|
}
|
|
else
|
|
ncnt = 0;
|
|
|
|
nbi = sn * GMP_NUMB_BITS + ncnt;
|
|
if (nh > nfirst)
|
|
{
|
|
nh >>= 1;
|
|
++nbi;
|
|
}
|
|
|
|
ASSERT (nh <= nfirst);
|
|
/* Take a starting pair from mpn_fib2_ui. */
|
|
fn = mpn_fib2_ui (fp, f1p, nh);
|
|
MPN_ZERO (fp + fn, mn - fn);
|
|
MPN_ZERO (f1p + fn, mn - fn);
|
|
|
|
if (nbi == 0)
|
|
{
|
|
if (fn == mn)
|
|
{
|
|
mp_limb_t qp[2];
|
|
mpn_tdiv_qr (qp, fp, 0, fp, fn, mp, mn);
|
|
mpn_tdiv_qr (qp, f1p, 0, f1p, fn, mp, mn);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
mp_ptr tp;
|
|
unsigned pb = nh & 1;
|
|
int neg;
|
|
TMP_DECL;
|
|
|
|
TMP_MARK;
|
|
|
|
tp = TMP_ALLOC_LIMBS (2 * mn + (mn < 2));
|
|
|
|
do
|
|
{
|
|
mp_ptr rp;
|
|
/* Here fp==F[k] and f1p==F[k-1], with k being the bits of n from
|
|
nbi upwards.
|
|
|
|
Based on the next bit of n, we'll double to the pair
|
|
fp==F[2k],f1p==F[2k-1] or fp==F[2k+1],f1p==F[2k], according as
|
|
that bit is 0 or 1 respectively. */
|
|
|
|
mpn_sqr (tp, fp, mn);
|
|
mpn_sqr (fp, f1p, mn);
|
|
|
|
/* Calculate F[2k-1] = F[k]^2 + F[k-1]^2. */
|
|
f1p[2 * mn] = mpn_add_n (f1p, tp, fp, 2 * mn);
|
|
|
|
/* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k.
|
|
pb is the low bit of our implied k. */
|
|
|
|
/* fp is F[k-1]^2 == 0 or 1 mod 4, like all squares. */
|
|
ASSERT ((fp[0] & 2) == 0);
|
|
ASSERT (pb == (pb & 1));
|
|
ASSERT ((fp[0] + (pb ? 2 : 0)) == (fp[0] | (pb << 1)));
|
|
fp[0] |= pb << 1; /* possible -2 */
|
|
#if HAVE_NATIVE_mpn_rsblsh2_n
|
|
fp[2 * mn] = 1 + mpn_rsblsh2_n (fp, fp, tp, 2 * mn);
|
|
MPN_INCR_U(fp, 2 * mn + 1, (1 ^ pb) << 1); /* possible +2 */
|
|
fp[2 * mn] = (fp[2 * mn] - 1) & GMP_NUMB_MAX;
|
|
#else
|
|
{
|
|
mp_limb_t c;
|
|
|
|
c = mpn_lshift (tp, tp, 2 * mn, 2);
|
|
tp[0] |= (1 ^ pb) << 1; /* possible +2 */
|
|
c -= mpn_sub_n (fp, tp, fp, 2 * mn);
|
|
fp[2 * mn] = c & GMP_NUMB_MAX;
|
|
}
|
|
#endif
|
|
neg = fp[2 * mn] == GMP_NUMB_MAX;
|
|
|
|
/* Calculate F[2k-1] = F[k]^2 + F[k-1]^2 */
|
|
/* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k */
|
|
|
|
/* Calculate F[2k] = F[2k+1] - F[2k-1], replacing the unwanted one of
|
|
F[2k+1] and F[2k-1]. */
|
|
--nbi;
|
|
pb = (np [nbi / GMP_NUMB_BITS] >> (nbi % GMP_NUMB_BITS)) & 1;
|
|
rp = pb ? f1p : fp;
|
|
if (neg)
|
|
{
|
|
/* Calculate -(F[2k+1] - F[2k-1]) */
|
|
rp[2 * mn] = f1p[2 * mn] + 1 - mpn_sub_n (rp, f1p, fp, 2 * mn);
|
|
neg = ! pb;
|
|
if (pb) /* fp not overwritten, negate it. */
|
|
fp [2 * mn] = 1 ^ mpn_neg (fp, fp, 2 * mn);
|
|
}
|
|
else
|
|
{
|
|
neg = abs_sub_n (rp, fp, f1p, 2 * mn + 1) < 0;
|
|
}
|
|
|
|
mpn_tdiv_qr (tp, fp, 0, fp, 2 * mn + 1, mp, mn);
|
|
mpn_tdiv_qr (tp, f1p, 0, f1p, 2 * mn + 1, mp, mn);
|
|
}
|
|
while (nbi != 0);
|
|
|
|
TMP_FREE;
|
|
|
|
return neg;
|
|
}
|
|
}
|