buildtools/ppl/tests/Polyhedron/nncminimize1.cc
Jerome Duval 5873a060ca imported PPL 0.11.1 and CLooG 0.18.0.
* these are dependencies for gcc 4 Graphite engine build.
* CLooG 0.18.0 includes ISL 0.11.1 which is the backend that the build script enables.
* PPL is needed by GCC build even if it isn't the chosen backend.
2013-04-06 15:10:34 +02:00

381 lines
10 KiB
C++

/* Test minimization of NNC polyhedra.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include "ppl_test.hh"
#include <algorithm>
namespace {
bool
test01() {
Variable x(0);
Variable y(1);
// Building a square.
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 6);
cs.insert(y >= 0);
cs.insert(y <= 6);
NNC_Polyhedron ph(cs);
nout << "Topologically closed square" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
// Removing all the vertices using strict inequalities.
cs.clear();
cs.insert(x + y > 0);
cs.insert(x + y < 12);
cs.insert(x - y < 6);
cs.insert(x - y > -6);
ph.add_constraints(cs);
nout << "After vertices removal:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
ph.minimized_generators();
Generator_System gs;
gs.insert(closure_point());
gs.insert(closure_point(6*x));
gs.insert(closure_point(6*y));
gs.insert(closure_point(6*x + 6*y));
gs.insert(point(3*x));
gs.insert(point(3*y));
gs.insert(point(3*x + 6*y));
gs.insert(point(6*x + 3*y));
NNC_Polyhedron known_result(gs);
bool ok = (ph == known_result);
const Generator_System& min_gs = ph.minimized_generators();
bool ok1 = (std::distance(min_gs.begin(), min_gs.end()) == 8);
nout << "After NNC minimization:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
return ok && ok1;
}
bool
test02() {
Variable x(0);
Variable y(1);
// Building a square.
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
NNC_Polyhedron ph(cs);
nout << "Topologically closed square" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
// Removing all the vertices using strict inequalities.
cs.clear();
cs.insert(x + y > 0);
cs.insert(x + y < 2);
cs.insert(x - y < 1);
cs.insert(x - y > -1);
ph.add_constraints(cs);
nout << "After vertices removal:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
ph.minimized_generators();
Generator_System gs;
gs.insert(closure_point());
gs.insert(closure_point(x));
gs.insert(closure_point(y));
gs.insert(closure_point(x + y));
gs.insert(point(x, 10));
gs.insert(point(y, 10));
gs.insert(point(x + 10*y, 10));
gs.insert(point(10*x + y, 10));
NNC_Polyhedron known_result(gs);
bool ok = (ph == known_result);
const Generator_System& min_gs = ph.minimized_generators();
bool ok1 = (std::distance(min_gs.begin(), min_gs.end()) == 8);
nout << "After NNC minimization:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
nout << endl;
nout << "known result" << endl;
print_constraints(known_result.constraints(), "*** known constraints ***");
print_generators(known_result.generators(), "*** known generators ***");
return ok && ok1;
}
bool
test03() {
Variable x(0);
Variable y(1);
// Building a square.
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
NNC_Polyhedron ph(cs);
nout << "Topologically closed square" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
// Removing all the vertices using strict inequalities.
cs.clear();
cs.insert(x + y > 0);
cs.insert(x + y < 2);
cs.insert(x - y < 1);
cs.insert(x - y > -1);
ph.add_constraints(cs);
nout << "After vertices removal:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
Generator_System gs;
gs.insert(point(x + y, 4));
gs.insert(point(x + 5*y, 4));
gs.insert(point(5*x + y, 4));
gs.insert(point(5*x + 5*y, 4));
NNC_Polyhedron ph2(gs);
ph.intersection_assign(ph2);
nout << "After intersection:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
ph.minimized_generators();
gs.clear();
gs.insert(closure_point(x + y));
gs.insert(point(x + y, 4));
gs.insert(point(x + 4*y, 4));
gs.insert(point(4*x + y, 4));
NNC_Polyhedron known_result(gs);
bool ok = (ph == known_result);
const Generator_System& min_gs = ph.minimized_generators();
bool ok1 = (std::distance(min_gs.begin(), min_gs.end()) == 4);
nout << "After NNC minimization:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
return ok && ok1;
}
bool
test04() {
Variable x(0);
Variable y(1);
// Building an open square.
Generator_System gs;
gs.insert(closure_point());
gs.insert(closure_point(15*x));
gs.insert(closure_point(15*y));
gs.insert(closure_point(15*x + 15*y));
// All of these points, but a (any) single one of them, are redundant.
gs.insert(point(3*x + 3*y));
gs.insert(point(6*x + y));
gs.insert(point(9*x + y));
gs.insert(point(12*x + 3*y));
gs.insert(point(3*x + 12*y));
gs.insert(point(6*x + 14*y));
gs.insert(point(9*x + 14*y));
gs.insert(point(12*x + 12*y));
gs.insert(point(x + 6*y));
gs.insert(point(x + 9*y));
gs.insert(point(14*x + 6*y));
gs.insert(point(14*x + 9*y));
NNC_Polyhedron ph(gs);
nout << endl << "Before NNC minimization:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
ph.minimized_constraints();
nout << endl << "After NNC minimization:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
gs.clear();
gs.insert(closure_point());
gs.insert(closure_point(15*x));
gs.insert(closure_point(15*y));
gs.insert(closure_point(15*x + 15*y));
gs.insert(point(x + y));
NNC_Polyhedron known_result(gs);
bool ok = (ph == known_result);
const Generator_System& min_gs = ph.minimized_generators();
bool ok1 = (std::distance(min_gs.begin(), min_gs.end()) == 5);
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
print_constraints(known_result.constraints(),
"*** known_result constraints ***");
print_generators(known_result.generators(),
"*** known_result generators ***");
return ok && ok1;
}
bool
test05() {
Variable x(0);
Constraint_System cs;
cs.insert(x > 0);
cs.insert(x < 2);
NNC_Polyhedron ph1(cs);
cs.clear();
cs.insert(x > 2);
cs.insert(x < 3);
NNC_Polyhedron ph2(cs);
ph1.upper_bound_assign(ph2);
(void) ph1.is_empty();
nout << "(Weakly) minimized poly hull" << endl;
print_constraints(ph1.constraints(), "*** ph1 constraints ***");
print_generators(ph1.generators(), "*** ph1 generators ***");
NNC_Polyhedron copy_ph1(ph1);
const Constraint_System& ph1_cs = ph1.constraints();
const int num_constraints = std::distance(ph1_cs.begin(), ph1_cs.end());
const Constraint_System& ph1_min_cs = ph1.minimized_constraints();
const int num_minimized_constraints = std::distance(ph1_min_cs.begin(),
ph1_min_cs.end());
print_constraints(ph1, "*** after ph1.minimized_constraints() ***");
nout << "num_constraints = " << num_constraints << endl;
nout << "num_minimized_constraints = "
<< num_minimized_constraints << endl;
int num_points = 0;
for (Generator_System::const_iterator i = copy_ph1.generators().begin(),
gs_end = copy_ph1.generators().end(); i != gs_end; ++i)
if ((*i).is_point() || (*i).is_closure_point())
++num_points;
copy_ph1.minimized_generators();
int num_minimized_points = 0;
for (Generator_System::const_iterator i = copy_ph1.generators().begin(),
gs_end = copy_ph1.generators().end(); i != gs_end; ++i)
if ((*i).is_point() || (*i).is_closure_point())
++num_minimized_points;
bool ok = (num_constraints == num_minimized_constraints + 1
&& num_points == num_minimized_points + 1);
print_generators(copy_ph1,
"*** after copy_ph1_minimized_generators() ***");
nout << "num_points = " << num_points << endl;
nout << "num_minimized_points = "
<< num_minimized_points << endl;
return ok;
}
bool
test06() {
Variable x(0);
Constraint_System cs;
cs.insert(x > 0);
NNC_Polyhedron ph(cs);
cs.clear();
cs.insert(3*x >= 1);
cs.insert(2*x <= 1);
ph.add_constraints(cs);
nout << endl << "Before NNC minimization:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
ph.minimized_constraints();
NNC_Polyhedron known_result(1);
known_result.add_constraint(3*x >= 1);
known_result.add_constraint(2*x <= 1);
bool ok = (ph == known_result);
nout << endl << "After NNC minimization:" << endl;
print_constraints(ph.constraints(), "*** ph constraints ***");
print_generators(ph.generators(), "*** ph generators ***");
return ok;
}
} // namespace
BEGIN_MAIN
DO_TEST_F8A(test01);
DO_TEST_F8(test02);
DO_TEST(test03);
DO_TEST_F8(test04);
DO_TEST(test05);
DO_TEST(test06);
END_MAIN