buildtools/ppl/tests/ppl_test.hh
Jerome Duval 5873a060ca imported PPL 0.11.1 and CLooG 0.18.0.
* these are dependencies for gcc 4 Graphite engine build.
* CLooG 0.18.0 includes ISL 0.11.1 which is the backend that the build script enables.
* PPL is needed by GCC build even if it isn't the chosen backend.
2013-04-06 15:10:34 +02:00

1128 lines
33 KiB
C++

/* Header file for test programs.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_ppl_test_hh
#define PPL_ppl_test_hh 1
#include "ppl_header.hh"
#include "Random_Number_Generator.defs.hh"
#include <stdexcept>
#include <sstream>
#include <list>
#include <map>
#include <iterator>
#include <string>
#include <iostream>
#include <algorithm>
#include <typeinfo>
#include <cstdlib>
#ifndef NOISY
#define NOISY 0
#endif
#ifndef VERY_NOISY
#define VERY_NOISY 0
#endif
#define TRY try
#define CATCH \
catch (const std::overflow_error& e) { \
std::cerr << "arithmetic overflow (" << e.what() << ")" \
<< std::endl; \
exit(1); \
} \
catch (const std::exception& e) { \
std::cerr << "std::exception caught: " \
<< e.what() << " (type == " << typeid(e).name() << ")" \
<< std::endl; \
exit(1); \
}
#define BEGIN_MAIN \
int \
main() try { \
set_handlers(); \
bool succeeded = false; \
bool overflow = false; \
std::list<std::string> failed_tests; \
std::list<std::string> unexpectedly_succeeded_tests;
#define END_MAIN \
if (!failed_tests.empty()) { \
std::cerr << "tests failed: "; \
std::copy(failed_tests.begin(), \
failed_tests.end(), \
std::ostream_iterator<std::string>(std::cerr, " ")); \
std::cerr << std::endl; \
return 1; \
} \
if (!unexpectedly_succeeded_tests.empty()) { \
std::cerr << "tests unexpectedly succeeded: "; \
std::copy(unexpectedly_succeeded_tests.begin(), \
unexpectedly_succeeded_tests.end(), \
std::ostream_iterator<std::string>(std::cerr, " ")); \
std::cerr << std::endl; \
return 1; \
} \
return 0; \
} \
catch (const std::overflow_error& e) { \
std::cerr << "arithmetic overflow (" << e.what() << ")" \
<< std::endl; \
exit(1); \
} \
catch (const std::exception& e) { \
std::cerr << "std::exception caught: " \
<< e.what() << " (type == " << typeid(e).name() << ")" \
<< std::endl; \
exit(1); \
}
#define ANNOUNCE_TEST(test) \
nout << "\n=== " #test " ===" << std::endl
#define RUN_TEST(test) \
try { \
overflow = false; \
succeeded = test(); \
} \
catch (const std::overflow_error& e) { \
nout << "arithmetic overflow (" << e.what() << ")" \
<< std::endl; \
overflow = true; \
succeeded = false; \
} \
catch (const std::exception& e) { \
nout << "std::exception caught: " \
<< e.what() << " (type == " << typeid(e).name() << ")" \
<< std::endl; \
succeeded = false; \
} \
catch (...) { \
nout << "unknown exception caught" \
<< std::endl; \
succeeded = false; \
}
#define DO_TEST(test) \
ANNOUNCE_TEST(test); \
RUN_TEST(test); \
if (!succeeded) \
failed_tests.push_back(#test);
#define DO_TEST_F(test) \
ANNOUNCE_TEST(test); \
RUN_TEST(test); \
if (succeeded) \
unexpectedly_succeeded_tests.push_back(#test);
#define DO_TEST_OVERFLOW(test) \
ANNOUNCE_TEST(test); \
RUN_TEST(test); \
if (succeeded) \
unexpectedly_succeeded_tests.push_back(#test); \
else if (!overflow) \
failed_tests.push_back(#test);
#define DO_TEST_MAY_OVERFLOW_IF_INEXACT(test, shape) \
ANNOUNCE_TEST(test); \
RUN_TEST(test); \
if (!succeeded) \
if (!overflow || has_exact_coefficient_type(shape(0, EMPTY))) \
failed_tests.push_back(#test);
// Macros for arbitrary combination of preprocessor conditions.
#define PPL_CPP_AND_false_false false
#define PPL_CPP_AND_false_true false
#define PPL_CPP_AND_true_false false
#define PPL_CPP_AND_true_true true
#define PPL_CPP_AND_(x,y) PPL_CPP_AND_ ## x ## _ ## y
#define PPL_CPP_AND(x,y) PPL_CPP_AND_(x, y)
#define PPL_CPP_OR_false_false false
#define PPL_CPP_OR_false_true true
#define PPL_CPP_OR_true_false true
#define PPL_CPP_OR_true_true true
#define PPL_CPP_OR_(x,y) PPL_CPP_OR_ ## x ## _ ## y
#define PPL_CPP_OR(x,y) PPL_CPP_OR_(x, y)
#define PPL_CPP_NOT_false true
#define PPL_CPP_NOT_true false
#define PPL_CPP_NOT_(x) PPL_CPP_NOT_ ## x
#define PPL_CPP_NOT(x) PPL_CPP_NOT_(x)
#define PPL_CPP_VAL_true_ true
#define PPL_CPP_VAL_false_ false
#define PPL_CPP_VAL_false(v) PPL_CPP_VAL_true
#define PPL_CPP_VAL_b(v) PPL_CPP_VAL_false
#define PPL_CPP_VAL_a(v) PPL_CPP_VAL_b(v)
#define PPL_CPP_IS_NEGx_arg_neg 0)(0
#define PPL_CPP_IS_NEGx(v) PPL_CPP_VAL_a(PPL_CPP_IS_NEGx_arg_##v)
#define PPL_CPP_IS_NEG__(v) v ## _
#define PPL_CPP_IS_NEG_(v) PPL_CPP_IS_NEG__(v)
#define PPL_CPP_IS_NEG(v) PPL_CPP_IS_NEG_(PPL_CPP_IS_NEGx(v))
#define PPL_CPP_IS_ZEROx_arg_0 0)(0
#define PPL_CPP_IS_ZEROx(v) PPL_CPP_VAL_a(PPL_CPP_IS_ZEROx_arg_##v)
#define PPL_CPP_IS_ZERO__(v) v ## _
#define PPL_CPP_IS_ZERO_(v) PPL_CPP_IS_ZERO__(v)
#define PPL_CPP_IS_ZERO(v) PPL_CPP_IS_ZERO_(PPL_CPP_IS_ZEROx(v))
#define PPL_CPP_DECR_neg neg
#define PPL_CPP_DECR_0 neg
#define PPL_CPP_DECR_1 0
#define PPL_CPP_DECR_2 1
#define PPL_CPP_DECR_3 2
#define PPL_CPP_DECR_4 3
#define PPL_CPP_DECR_5 4
#define PPL_CPP_DECR_6 5
#define PPL_CPP_DECR_7 6
#define PPL_CPP_DECR_8 7
#define PPL_CPP_DECR_9 8
#define PPL_CPP_DECR_(x) PPL_CPP_DECR_ ## x
#define PPL_CPP_DECR(x) PPL_CPP_DECR_(x)
#define PPL_CPP_SUB_0(x) x
#define PPL_CPP_SUB_1(x) PPL_CPP_DECR(x)
#define PPL_CPP_SUB_2(x) PPL_CPP_DECR(PPL_CPP_SUB_1(x))
#define PPL_CPP_SUB_3(x) PPL_CPP_DECR(PPL_CPP_SUB_2(x))
#define PPL_CPP_SUB_4(x) PPL_CPP_DECR(PPL_CPP_SUB_3(x))
#define PPL_CPP_SUB_5(x) PPL_CPP_DECR(PPL_CPP_SUB_4(x))
#define PPL_CPP_SUB_6(x) PPL_CPP_DECR(PPL_CPP_SUB_5(x))
#define PPL_CPP_SUB_7(x) PPL_CPP_DECR(PPL_CPP_SUB_6(x))
#define PPL_CPP_SUB_8(x) PPL_CPP_DECR(PPL_CPP_SUB_7(x))
#define PPL_CPP_SUB_9(x) PPL_CPP_DECR(PPL_CPP_SUB_8(x))
#define PPL_CPP_SUB_(x, y) PPL_CPP_SUB_ ## y (x)
#define PPL_CPP_SUB(x, y) PPL_CPP_SUB_(x, y)
#define PPL_CPP_LT(x, y) PPL_CPP_IS_NEG(PPL_CPP_SUB(x, y))
#define PPL_CPP_GT(x, y) PPL_CPP_LT(y, x)
#define PPL_CPP_LE(x, y) PPL_CPP_NOT(PPL_CPP_LT(y, x))
#define PPL_CPP_GE(x, y) PPL_CPP_NOT(PPL_CPP_LT(x, y))
#define PPL_CPP_EQ(x, y) PPL_CPP_IS_ZERO(PPL_CPP_SUB(x, y))
#define PPL_CPP_NE(x, y) PPL_CPP_NOT(PPL_CPP_EQ(x,y))
#define PPL_CPP_LOG2_64 6
#define PPL_CPP_LOG2_32 5
#define PPL_CPP_LOG2_16 4
#define PPL_CPP_LOG2_8 3
#define PPL_CPP_LOG2_0 neg
#define PPL_CPP_LOG2_(x) PPL_CPP_LOG2_ ## x
#define PPL_CPP_LOG2(x) PPL_CPP_LOG2_(x)
#define COND_MACRO_2(prefix, v) prefix ## _ ## v
#define COND_MACRO_1(prefix, v) COND_MACRO_2(prefix, v)
#define COND_MACRO(prefix, expr) COND_MACRO_1(prefix, expr)
#define PPL_CPP_LOGBITS PPL_CPP_LOG2(PPL_COEFFICIENT_BITS)
#define COND_F64 PPL_CPP_LT(PPL_CPP_LOGBITS, 0)
#define COND_F32 PPL_CPP_OR(PPL_CPP_GT(PPL_CPP_LOGBITS, 5), \
PPL_CPP_LT(PPL_CPP_LOGBITS, 0))
#define COND_F16 PPL_CPP_OR(PPL_CPP_GT(PPL_CPP_LOGBITS, 4), \
PPL_CPP_LT(PPL_CPP_LOGBITS, 0))
#define COND_F8 PPL_CPP_OR(PPL_CPP_GT(PPL_CPP_LOGBITS, 3), \
PPL_CPP_LT(PPL_CPP_LOGBITS, 0))
#ifndef NDEBUG
# define COND_ASSERT_OFF false
#else
# define COND_ASSERT_OFF true
#endif
#define COND_SUCC_64_ONLY \
PPL_CPP_AND(PPL_CPP_EQ(PPL_CPP_LOGBITS, 6), COND_ASSERT_OFF)
#define COND_SUCC_32_ONLY \
PPL_CPP_AND(PPL_CPP_EQ(PPL_CPP_LOGBITS, 5), COND_ASSERT_OFF)
#define COND_SUCC_16_ONLY \
PPL_CPP_AND(PPL_CPP_EQ(PPL_CPP_LOGBITS, 4), COND_ASSERT_OFF)
#define COND_SUCC_8_ONLY \
PPL_CPP_AND(PPL_CPP_EQ(PPL_CPP_LOGBITS, 3), COND_ASSERT_OFF)
#define COND_F64A PPL_CPP_OR(COND_F64, COND_SUCC_64_ONLY)
#define COND_F32A PPL_CPP_OR(COND_F32, COND_SUCC_32_ONLY)
#define COND_F16A PPL_CPP_OR(COND_F16, COND_SUCC_16_ONLY)
#define COND_F8A PPL_CPP_OR(COND_F8, COND_SUCC_8_ONLY)
#define COND_DO_TEST_false(test) DO_TEST_OVERFLOW(test)
#define COND_DO_TEST_true(test) DO_TEST(test)
#define COND_DO_TEST(cond, test) COND_MACRO(COND_DO_TEST, cond)(test)
#define DO_TEST_F64(test) COND_DO_TEST(COND_F64, test)
#define DO_TEST_F64A(test) COND_DO_TEST(COND_F64A, test)
#define DO_TEST_F32(test) COND_DO_TEST(COND_F32, test)
#define DO_TEST_F32A(test) COND_DO_TEST(COND_F32A, test)
#define DO_TEST_F16(test) COND_DO_TEST(COND_F16, test)
#define DO_TEST_F16A(test) COND_DO_TEST(COND_F16A, test)
#define DO_TEST_F8(test) COND_DO_TEST(COND_F8, test)
#define DO_TEST_F8A(test) COND_DO_TEST(COND_F8A, test)
#define COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT_false(test, shape) \
DO_TEST_OVERFLOW(test)
#define COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT_true(test, shape) \
DO_TEST_MAY_OVERFLOW_IF_INEXACT(test, shape)
#define COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(cond, test, shape) \
COND_MACRO(COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT, cond)(test, shape)
#define DO_TEST_F64_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F64, test, shape)
#define DO_TEST_F64A_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F64A, test, shape)
#define DO_TEST_F32_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F32, test, shape)
#define DO_TEST_F32A_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F32A, test, shape)
#define DO_TEST_F16_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F16, test, shape)
#define DO_TEST_F16A_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F16A, test, shape)
#define DO_TEST_F8_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F8, test, shape)
#define DO_TEST_F8A_MAY_OVERFLOW_IF_INEXACT(test, shape) \
COND_DO_TEST_MAY_OVERFLOW_IF_INEXACT(COND_F8A, test, shape)
// Encoding floating point formats.
#define PPL_CPP_FP_FORMAT_float 1
#define PPL_CPP_FP_FORMAT_double 2
#define PPL_CPP_FP_FORMAT_long_double 3
#define PPL_CPP_FP_FORMAT_float_ieee754_single 4
#define PPL_CPP_FP_FORMAT_float_ieee754_double 5
#define PPL_CPP_FP_FORMAT_float_ieee754_quad 6
#define PPL_CPP_FP_FORMAT_(format) PPL_CPP_FP_FORMAT_ ## format
#define PPL_CPP_FP_FORMAT(format) PPL_CPP_FP_FORMAT_(format)
// Turn s into a string: PPL_TEST_STR(x + y) => "x + y".
#define PPL_TEST_STR(s) #s
// Turn the expansion of s into a string: PPL_TEST_XSTR(x) => "s expanded".
#define PPL_TEST_XSTR(s) PPL_TEST_STR(s)
#ifdef DERIVED_TEST
#define C_Polyhedron NNC_Polyhedron
#endif
#ifndef BOX_INSTANCE
#define BOX_INSTANCE rt_r_oc
#endif
#ifndef BD_SHAPE_INSTANCE
#define BD_SHAPE_INSTANCE mpq_class
#endif
#ifndef OCTAGONAL_SHAPE_INSTANCE
#define OCTAGONAL_SHAPE_INSTANCE mpq_class
#endif
namespace Parma_Polyhedra_Library {
namespace Test {
static bool
check_noisy(const char*
#if PPL_HAVE_DECL_GETENV || NOISY || VERY_NOISY
environment_variable
#endif
) {
#if PPL_HAVE_DECL_GETENV
return getenv(environment_variable) != 0;
#else
#if NOISY
if (strcmp(environment_variable, "PPL_NOISY_TESTS") == 0)
return true;
#endif
#if VERY_NOISY
if (strcmp(environment_variable, "PPL_VERY_NOISY_TESTS") == 0)
return true;
#endif
return false;
#endif
}
template<typename CharT, typename Traits = std::char_traits<CharT> >
class nullbuf : public std::basic_streambuf<CharT, Traits> {
protected:
virtual typename Traits::int_type overflow(typename Traits::int_type c) {
return Traits::not_eof(c);
}
};
template <class CharT, class Traits = std::char_traits<CharT> >
class noisy_ostream : public std::basic_ostream<CharT, Traits> {
private:
nullbuf<CharT, Traits> black_hole;
public:
noisy_ostream(const std::basic_ostream<CharT, Traits>& os,
const char* environment_variable)
: std::basic_ostream<CharT, Traits>(check_noisy(environment_variable)
? os.rdbuf()
: &black_hole) {
}
};
static noisy_ostream<char> nout(std::cout, "PPL_NOISY_TESTS");
static noisy_ostream<char> vnout(std::cout, "PPL_VERY_NOISY_TESTS");
void
set_handlers();
//! Utility typedef to allow a macro argument to denote the long double type.
typedef long double long_double;
struct Floating_Real_Open_Interval_Info_Policy {
const_bool_nodef(store_special, false);
const_bool_nodef(store_open, true);
const_bool_nodef(cache_empty, true);
const_bool_nodef(cache_singleton, true);
const_bool_nodef(cache_normalized, false);
const_int_nodef(next_bit, 0);
const_bool_nodef(may_be_empty, true);
const_bool_nodef(may_contain_infinity, false);
const_bool_nodef(check_empty_result, false);
const_bool_nodef(check_inexact, false);
};
struct Floating_Real_Closed_Interval_Info_Policy {
const_bool_nodef(store_special, false);
const_bool_nodef(store_open, false);
const_bool_nodef(cache_empty, false);
const_bool_nodef(cache_singleton, true);
const_bool_nodef(cache_normalized, false);
const_int_nodef(next_bit, 0);
const_bool_nodef(may_be_empty, false);
const_bool_nodef(may_contain_infinity, false);
const_bool_nodef(check_empty_result, false);
const_bool_nodef(check_inexact, false);
};
typedef Interval_Restriction_None
<Interval_Info_Bitset<unsigned int, Floating_Real_Open_Interval_Info_Policy> >
Floating_Real_Open_Interval_Info;
typedef Interval<float, Floating_Real_Open_Interval_Info> fl_r_oc;
typedef Interval<double, Floating_Real_Open_Interval_Info> db_r_oc;
typedef Interval<long double, Floating_Real_Open_Interval_Info> ld_r_oc;
struct Rational_Real_Open_Interval_Info_Policy {
const_bool_nodef(store_special, true);
const_bool_nodef(store_open, true);
const_bool_nodef(cache_empty, true);
const_bool_nodef(cache_singleton, true);
const_bool_nodef(cache_normalized, false);
const_int_nodef(next_bit, 0);
const_bool_nodef(may_be_empty, true);
const_bool_nodef(may_contain_infinity, false);
const_bool_nodef(check_empty_result, false);
const_bool_nodef(check_inexact, false);
};
typedef Interval_Restriction_None
<Interval_Info_Bitset<unsigned int, Rational_Real_Open_Interval_Info_Policy> >
Rational_Real_Open_Interval_Info;
typedef Interval<mpq_class, Rational_Real_Open_Interval_Info> rt_r_oc;
//! The incarnation of Box under test.
typedef Box<BOX_INSTANCE> TBox;
//! The incarnation of BD_Shape under test.
typedef BD_Shape<BD_SHAPE_INSTANCE> TBD_Shape;
//! The incarnation of Octagonal_Shape under test.
typedef Octagonal_Shape<OCTAGONAL_SHAPE_INSTANCE> TOctagonal_Shape;
template <typename Shape>
inline bool
has_exact_coefficient_type(const Shape&) {
return std::numeric_limits<typename Shape::coefficient_type>::is_exact;
}
template <typename Interval>
inline bool
has_exact_coefficient_type(const Box<Interval>&) {
return std::numeric_limits<typename Interval::boundary_type>::is_exact;
}
bool
check_distance(const Checked_Number<mpq_class, Extended_Number_Policy>& d,
const char* max_d_s, const char* d_name);
template <typename T>
bool
check_result_i(const BD_Shape<T>& computed_result,
const BD_Shape<mpq_class>& known_result,
const char* max_r_d_s,
const char* max_e_d_s,
const char* max_l_d_s) {
BD_Shape<mpq_class> q_computed_result(computed_result);
// Handle in a more efficient way the case where equality is expected.
if (max_r_d_s == 0 && max_e_d_s == 0 && max_l_d_s == 0) {
if (q_computed_result != known_result) {
using IO_Operators::operator<<;
nout << "Equality does not hold:"
<< "\ncomputed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
return false;
}
else
return true;
}
if (!q_computed_result.contains(known_result)) {
using IO_Operators::operator<<;
nout << "Containment does not hold:"
<< "\ncomputed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
return false;
}
Checked_Number<mpq_class, Extended_Number_Policy> r_d;
rectilinear_distance_assign(r_d, known_result, q_computed_result, ROUND_UP);
Checked_Number<mpq_class, Extended_Number_Policy> e_d;
euclidean_distance_assign(e_d, known_result, q_computed_result, ROUND_UP);
Checked_Number<mpq_class, Extended_Number_Policy> l_d;
l_infinity_distance_assign(l_d, known_result, q_computed_result, ROUND_UP);
bool ok_r = check_distance(r_d, max_r_d_s, "rectilinear");
bool ok_e = check_distance(e_d, max_e_d_s, "euclidean");
bool ok_l = check_distance(l_d, max_l_d_s, "l_infinity");
bool ok = ok_r && ok_e && ok_l;
if (!ok) {
using IO_Operators::operator<<;
nout << "Computed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
}
return ok;
}
template <typename T>
bool
check_result(const BD_Shape<T>& computed_result,
const BD_Shape<mpq_class>& known_result,
const char* max_r_d_s,
const char* max_e_d_s,
const char* max_l_d_s) {
return std::numeric_limits<T>::is_integer
? check_result_i(computed_result, known_result,
"+inf", "+inf", "+inf")
: check_result_i(computed_result, known_result,
max_r_d_s, max_e_d_s, max_l_d_s);
}
template <typename T>
bool
check_result(const BD_Shape<T>& computed_result,
const BD_Shape<T>& known_result) {
if (computed_result == known_result)
return true;
else {
using IO_Operators::operator<<;
nout << "Equality does not hold:"
<< "\ncomputed result is\n"
<< computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
return false;
}
}
template <typename T>
bool
check_result(const BD_Shape<T>& computed_result,
const BD_Shape<mpq_class>& known_result) {
return std::numeric_limits<T>::is_integer
? check_result_i(computed_result, known_result, "+inf", "+inf", "+inf")
: check_result_i(computed_result, known_result, 0, 0, 0);
}
bool
check_result(const BD_Shape<mpq_class>& computed_result,
const BD_Shape<mpq_class>& known_result);
template <typename T>
bool
check_result_i(const Octagonal_Shape<T>& computed_result,
const Octagonal_Shape<mpq_class>& known_result,
const char* max_r_d_s,
const char* max_e_d_s,
const char* max_l_d_s) {
Octagonal_Shape<mpq_class> q_computed_result(computed_result);
// Handle in a more efficient way the case where equality is expected.
if (max_r_d_s == 0 && max_e_d_s == 0 && max_l_d_s == 0) {
if (q_computed_result != known_result) {
using IO_Operators::operator<<;
nout << "Equality does not hold:"
<< "\ncomputed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
return false;
}
else
return true;
}
if (!q_computed_result.contains(known_result)) {
using IO_Operators::operator<<;
nout << "Containment does not hold:"
<< "\ncomputed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
return false;
}
Checked_Number<mpq_class, Extended_Number_Policy> r_d;
rectilinear_distance_assign(r_d, known_result, q_computed_result, ROUND_UP);
Checked_Number<mpq_class, Extended_Number_Policy> e_d;
euclidean_distance_assign(e_d, known_result, q_computed_result, ROUND_UP);
Checked_Number<mpq_class, Extended_Number_Policy> l_d;
l_infinity_distance_assign(l_d, known_result, q_computed_result, ROUND_UP);
bool ok_r = check_distance(r_d, max_r_d_s, "rectilinear");
bool ok_e = check_distance(e_d, max_e_d_s, "euclidean");
bool ok_l = check_distance(l_d, max_l_d_s, "l_infinity");
bool ok = ok_r && ok_e && ok_l;
if (!ok) {
using IO_Operators::operator<<;
nout << "Computed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
}
return ok;
}
template <typename T>
bool
check_result(const Octagonal_Shape<T>& computed_result,
const Octagonal_Shape<mpq_class>& known_result,
const char* max_r_d_s,
const char* max_e_d_s,
const char* max_l_d_s) {
return std::numeric_limits<T>::is_integer
? check_result_i(computed_result, known_result,
"+inf", "+inf", "+inf")
: check_result_i(computed_result, known_result,
max_r_d_s, max_e_d_s, max_l_d_s);
}
template <>
inline bool
check_result(const Octagonal_Shape<mpq_class>& computed_result,
const Octagonal_Shape<mpq_class>& known_result,
const char*,
const char*,
const char*) {
return check_result_i(computed_result, known_result,
0, 0, 0);
}
template <typename T>
bool
check_result(const Octagonal_Shape<T>& computed_result,
const Octagonal_Shape<mpq_class>& known_result) {
return std::numeric_limits<T>::is_integer
? check_result_i(computed_result, known_result, "+inf", "+inf", "+inf")
: check_result_i(computed_result, known_result, 0, 0, 0);
}
template <typename Interval>
bool
check_result_i(const Box<Interval>& computed_result,
const Rational_Box& known_result,
const char* max_r_d_s,
const char* max_e_d_s,
const char* max_l_d_s) {
Rational_Box q_computed_result(computed_result);
// Handle in a more efficient way the case where equality is expected.
if (max_r_d_s == 0 && max_e_d_s == 0 && max_l_d_s == 0) {
if (q_computed_result != known_result) {
using IO_Operators::operator<<;
nout << "Equality does not hold:"
<< "\ncomputed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
return false;
}
else
return true;
}
if (!q_computed_result.contains(known_result)) {
using IO_Operators::operator<<;
nout << "Containment does not hold:"
<< "\ncomputed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
nout << "Individual dimensions where containment does not hold"
<< "\n(Variable: computed-result known-result):\n";
for (dimension_type i = 0; i < computed_result.space_dimension(); ++i) {
if (!q_computed_result.get_interval(Variable(i))
.contains(known_result.get_interval(Variable(i)))) {
using IO_Operators::operator<<;
nout << Variable(i) << ": "
<< q_computed_result.get_interval(Variable(i))
<< ' '
<< known_result.get_interval(Variable(i))
<< std::endl;
}
}
return false;
}
Checked_Number<mpq_class, Extended_Number_Policy> r_d;
rectilinear_distance_assign(r_d, known_result, q_computed_result, ROUND_UP);
Checked_Number<mpq_class, Extended_Number_Policy> e_d;
euclidean_distance_assign(e_d, known_result, q_computed_result, ROUND_UP);
Checked_Number<mpq_class, Extended_Number_Policy> l_d;
l_infinity_distance_assign(l_d, known_result, q_computed_result, ROUND_UP);
bool ok_r = check_distance(r_d, max_r_d_s, "rectilinear");
bool ok_e = check_distance(e_d, max_e_d_s, "euclidean");
bool ok_l = check_distance(l_d, max_l_d_s, "l_infinity");
bool ok = ok_r && ok_e && ok_l;
if (!ok) {
using IO_Operators::operator<<;
nout << "Computed result is\n"
<< q_computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
}
return ok;
}
template <typename Interval>
bool
check_result(const Box<Interval>& computed_result,
const Rational_Box& known_result,
const char* max_r_d_s,
const char* max_e_d_s,
const char* max_l_d_s) {
return std::numeric_limits<typename Interval::boundary_type>::is_integer
? check_result_i(computed_result, known_result,
"+inf", "+inf", "+inf")
: check_result_i(computed_result, known_result,
max_r_d_s, max_e_d_s, max_l_d_s);
}
template <typename Interval>
bool
check_result(const Box<Interval>& computed_result,
const Box<Interval>& known_result) {
if (computed_result == known_result)
return true;
else {
using IO_Operators::operator<<;
nout << "Equality does not hold:"
<< "\ncomputed result is\n"
<< computed_result
<< "\nknown result is\n"
<< known_result
<< std::endl;
return false;
}
}
template <typename Interval>
bool
check_result(const Box<Interval>& computed_result,
const Rational_Box& known_result) {
return std::numeric_limits<typename Interval::boundary_type>::is_integer
? check_result_i(computed_result, known_result, "+inf", "+inf", "+inf")
: check_result_i(computed_result, known_result, 0, 0, 0);
}
bool
check_result(const Rational_Box& computed_result,
const Rational_Box& known_result);
bool
check_result(const Generator& computed_result,
const Generator& known_result,
const char* max_r_d_s,
const char* max_e_d_s,
const char* max_l_d_s);
bool
check_result(const Checked_Number<mpq_class, Extended_Number_Policy>& computed,
const Checked_Number<mpq_class, Extended_Number_Policy>& known,
const char* max_r_d_s);
class FCAIBVP;
bool
operator==(const FCAIBVP& x, const FCAIBVP& y);
bool
operator!=(const FCAIBVP& x, const FCAIBVP& y);
std::ostream&
operator<<(std::ostream& s, const FCAIBVP& x);
/*! \brief
A class for representing Finite Conjunctions of Attribute
Independent Boolean Variable Properties.
*/
class FCAIBVP {
private:
typedef size_t dim_t;
typedef std::set<dim_t> Set;
Set set;
public:
FCAIBVP();
explicit FCAIBVP(const Variable& x);
explicit FCAIBVP(const Variables_Set& y);
FCAIBVP(const FCAIBVP& y, unsigned offset);
memory_size_type total_memory_in_bytes() const;
memory_size_type external_memory_in_bytes() const;
bool is_top() const;
bool is_bottom() const;
bool definitely_entails(const FCAIBVP& y) const;
void upper_bound_assign(const FCAIBVP& y);
void difference_assign(const FCAIBVP& y);
void meet_assign(const FCAIBVP& y);
void weakening_assign(const FCAIBVP& y);
static bool has_nontrivial_weakening();
bool OK() const;
friend std::ostream&
Parma_Polyhedra_Library::Test::operator<<(std::ostream& s,
const FCAIBVP& x);
};
inline
FCAIBVP::FCAIBVP()
: set() {
}
inline
FCAIBVP::FCAIBVP(const Variable& x)
: set() {
set.insert(x.id());
}
inline
FCAIBVP::FCAIBVP(const Variables_Set& y)
: set() {
for (Variables_Set::const_iterator i = y.begin(),
y_end = y.end(); i != y_end; ++i)
set.insert(*i);
}
inline
FCAIBVP::FCAIBVP(const FCAIBVP& y, unsigned offset)
: set() {
for (Set::const_iterator i = y.set.begin(),
y_set_end = y.set.end(); i != y_set_end; ++i)
set.insert(*i + offset);
}
inline memory_size_type
FCAIBVP::total_memory_in_bytes() const {
return 1;
}
inline bool
FCAIBVP::is_top() const {
return set.empty();
}
inline bool
FCAIBVP::is_bottom() const {
return false;
}
inline bool
FCAIBVP::definitely_entails(const FCAIBVP& y) const{
const FCAIBVP& x = *this;
return std::includes(x.set.begin(), x.set.end(),
y.set.begin(), y.set.end());
}
inline void
FCAIBVP::upper_bound_assign(const FCAIBVP& y) {
FCAIBVP& x = *this;
FCAIBVP z;
std::set_intersection(x.set.begin(), x.set.end(),
y.set.begin(), y.set.end(),
std::inserter(z.set, z.set.begin()));
std::swap(x, z);
}
inline void
FCAIBVP::difference_assign(const FCAIBVP& y) {
FCAIBVP& x = *this;
FCAIBVP z;
std::set_difference(x.set.begin(), x.set.end(),
y.set.begin(), y.set.end(),
std::inserter(z.set, z.set.begin()));
std::swap(x, z);
}
inline void
FCAIBVP::meet_assign(const FCAIBVP& y) {
set.insert(y.set.begin(), y.set.end());
}
inline void
FCAIBVP::weakening_assign(const FCAIBVP& y) {
difference_assign(y);
}
inline bool
FCAIBVP::has_nontrivial_weakening() {
return true;
}
inline bool
FCAIBVP::OK() const {
return true;
}
inline bool
operator==(const FCAIBVP& x, const FCAIBVP& y) {
return x.definitely_entails(y) && y.definitely_entails(x);
}
inline bool
operator!=(const FCAIBVP& x, const FCAIBVP& y) {
return !(x == y);
}
void
print_constraint(const Constraint& c,
const std::string& intro = "",
std::ostream& s = nout);
void
print_constraints(const Constraint_System& cs,
const std::string& intro = "",
std::ostream& s = nout);
void
print_constraints(const Polyhedron& ph,
const std::string& intro = "",
std::ostream& s = nout);
#if 0
void
print_constraints(const Affine_Space& affs,
const std::string& intro = "",
std::ostream& s = nout);
#endif
template <typename Interval>
void
print_constraints(const Box<Interval>& box,
const std::string& intro = "",
std::ostream& s = nout) {
if (!intro.empty())
s << intro << std::endl;
using IO_Operators::operator<<;
s << box << std::endl;
}
template <typename T>
void
print_constraints(const BD_Shape<T>& bd,
const std::string& intro = "",
std::ostream& s = nout) {
if (!intro.empty())
s << intro << std::endl;
using IO_Operators::operator<<;
s << bd << std::endl;
}
template <typename T>
void
print_constraints(const Octagonal_Shape<T>& oc,
const std::string& intro = "",
std::ostream& s = nout) {
if (!intro.empty())
s << intro << std::endl;
using IO_Operators::operator<<;
s << oc << std::endl;
}
template <typename PH>
void
print_constraints(const Pointset_Powerset<PH>& pps,
const std::string& intro = "",
std::ostream& s = nout) {
if (!intro.empty())
s << intro << std::endl;
using IO_Operators::operator<<;
s << pps << std::endl;
}
template <typename PH>
void
print_congruences(const Pointset_Powerset<PH>& pps,
const std::string& intro = "",
std::ostream& s = nout) {
if (!intro.empty())
s << intro << std::endl;
using IO_Operators::operator<<;
s << pps << std::endl;
}
/*
template <typename PH>
void
print_constraints(const Pointset_Ask_Tell<PH>& pat,
const std::string& intro = "",
std::ostream& s = nout) {
if (!intro.empty())
s << intro << std::endl;
using IO_Operators::operator<<;
s << pat << std::endl;
}
*/
void
print_congruence(const Congruence& c,
const std::string& intro = "",
std::ostream& s = nout);
void
print_congruences(const Congruence_System& cgs,
const std::string& intro = "",
std::ostream& s = nout);
void
print_congruences(const Grid& gr,
const std::string& intro = "",
std::ostream& s = nout);
void
print_generator(const Generator& g,
const std::string& intro = "",
std::ostream& s = nout);
void
print_generator(const Grid_Generator& g,
const std::string& intro = "",
std::ostream& s = nout);
void
print_generators(const Generator_System& gs,
const std::string& intro = "",
std::ostream& s = nout);
void
print_generators(const Grid_Generator_System& gs,
const std::string& intro = "",
std::ostream& s = nout);
void
print_generators(const Polyhedron& ph,
const std::string& intro = "",
std::ostream& s = nout);
void
print_generators(const Grid& gr,
const std::string& intro = "",
std::ostream& s = nout);
template <typename D1, typename D2, typename R>
void
print_constraints(const Partially_Reduced_Product<D1, D2, R>& pd,
const std::string& intro = "",
std::ostream& s = nout) {
print_constraints(pd.constraints(), intro, s);
}
template <typename D1, typename D2, typename R>
void
print_congruences(const Partially_Reduced_Product<D1, D2, R>& pd,
const std::string& intro = "",
std::ostream& s = nout) {
print_congruences(pd.congruences(), intro, s);
}
void
print_function(const Parma_Polyhedra_Library::Partial_Function& function,
const std::string& intro = "",
std::ostream& s = nout);
} // namespace Test
} // namespace Parma_Polyhedra_Library
// These using directive and declaration are just to avoid the
// corresponding namespace qualifications in all the tests.
using namespace Parma_Polyhedra_Library;
using namespace Parma_Polyhedra_Library::Test;
using std::endl;
#endif // !defined(PPL_ppl_test_hh)