mirror of
https://review.haiku-os.org/buildtools
synced 2025-01-31 18:44:48 +01:00
b58ddff026
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
178 lines
6.0 KiB
C
178 lines
6.0 KiB
C
/* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers
|
|
|
|
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* agm(x,y) is between x and y, so we don't need to save exponent range */
|
|
int
|
|
mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mpfr_rnd_t rnd_mode)
|
|
{
|
|
int compare, inexact;
|
|
mp_size_t s;
|
|
mpfr_prec_t p, q;
|
|
mp_limb_t *up, *vp, *tmpp;
|
|
mpfr_t u, v, tmp;
|
|
unsigned long n; /* number of iterations */
|
|
unsigned long err = 0;
|
|
MPFR_ZIV_DECL (loop);
|
|
MPFR_TMP_DECL(marker);
|
|
|
|
MPFR_LOG_FUNC (("op2[%#R]=%R op1[%#R]=%R rnd=%d", op2,op2,op1,op1,rnd_mode),
|
|
("r[%#R]=%R inexact=%d", r, r, inexact));
|
|
|
|
/* Deal with special values */
|
|
if (MPFR_ARE_SINGULAR (op1, op2))
|
|
{
|
|
/* If a or b is NaN, the result is NaN */
|
|
if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
|
|
{
|
|
MPFR_SET_NAN(r);
|
|
MPFR_RET_NAN;
|
|
}
|
|
/* now one of a or b is Inf or 0 */
|
|
/* If a and b is +Inf, the result is +Inf.
|
|
Otherwise if a or b is -Inf or 0, the result is NaN */
|
|
else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
|
|
{
|
|
if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
|
|
{
|
|
MPFR_SET_INF(r);
|
|
MPFR_SET_SAME_SIGN(r, op1);
|
|
MPFR_RET(0); /* exact */
|
|
}
|
|
else
|
|
{
|
|
MPFR_SET_NAN(r);
|
|
MPFR_RET_NAN;
|
|
}
|
|
}
|
|
else /* a and b are neither NaN nor Inf, and one is zero */
|
|
{ /* If a or b is 0, the result is +0 since a sqrt is positive */
|
|
MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
|
|
MPFR_SET_POS (r);
|
|
MPFR_SET_ZERO (r);
|
|
MPFR_RET (0); /* exact */
|
|
}
|
|
}
|
|
|
|
/* If a or b is negative (excluding -Infinity), the result is NaN */
|
|
if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
|
|
{
|
|
MPFR_SET_NAN(r);
|
|
MPFR_RET_NAN;
|
|
}
|
|
|
|
/* Precision of the following calculus */
|
|
q = MPFR_PREC(r);
|
|
p = q + MPFR_INT_CEIL_LOG2(q) + 15;
|
|
MPFR_ASSERTD (p >= 7); /* see algorithms.tex */
|
|
s = (p - 1) / GMP_NUMB_BITS + 1;
|
|
|
|
/* b (op2) and a (op1) are the 2 operands but we want b >= a */
|
|
compare = mpfr_cmp (op1, op2);
|
|
if (MPFR_UNLIKELY( compare == 0 ))
|
|
{
|
|
mpfr_set (r, op1, rnd_mode);
|
|
MPFR_RET (0); /* exact */
|
|
}
|
|
else if (compare > 0)
|
|
{
|
|
mpfr_srcptr t = op1;
|
|
op1 = op2;
|
|
op2 = t;
|
|
}
|
|
/* Now b(=op2) >= a (=op1) */
|
|
|
|
MPFR_TMP_MARK(marker);
|
|
|
|
/* Main loop */
|
|
MPFR_ZIV_INIT (loop, p);
|
|
for (;;)
|
|
{
|
|
mpfr_prec_t eq;
|
|
|
|
/* Init temporary vars */
|
|
MPFR_TMP_INIT (up, u, p, s);
|
|
MPFR_TMP_INIT (vp, v, p, s);
|
|
MPFR_TMP_INIT (tmpp, tmp, p, s);
|
|
|
|
/* Calculus of un and vn */
|
|
mpfr_mul (u, op1, op2, MPFR_RNDN); /* Faster since PREC(op) < PREC(u) */
|
|
mpfr_sqrt (u, u, MPFR_RNDN);
|
|
mpfr_add (v, op1, op2, MPFR_RNDN); /* add with !=prec is still good*/
|
|
mpfr_div_2ui (v, v, 1, MPFR_RNDN);
|
|
n = 1;
|
|
while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2)
|
|
{
|
|
mpfr_add (tmp, u, v, MPFR_RNDN);
|
|
mpfr_div_2ui (tmp, tmp, 1, MPFR_RNDN);
|
|
/* See proof in algorithms.tex */
|
|
if (4*eq > p)
|
|
{
|
|
mpfr_t w;
|
|
/* tmp = U(k) */
|
|
mpfr_init2 (w, (p + 1) / 2);
|
|
mpfr_sub (w, v, u, MPFR_RNDN); /* e = V(k-1)-U(k-1) */
|
|
mpfr_sqr (w, w, MPFR_RNDN); /* e = e^2 */
|
|
mpfr_div_2ui (w, w, 4, MPFR_RNDN); /* e*= (1/2)^2*1/4 */
|
|
mpfr_div (w, w, tmp, MPFR_RNDN); /* 1/4*e^2/U(k) */
|
|
mpfr_sub (v, tmp, w, MPFR_RNDN);
|
|
err = MPFR_GET_EXP (tmp) - MPFR_GET_EXP (v); /* 0 or 1 */
|
|
mpfr_clear (w);
|
|
break;
|
|
}
|
|
mpfr_mul (u, u, v, MPFR_RNDN);
|
|
mpfr_sqrt (u, u, MPFR_RNDN);
|
|
mpfr_swap (v, tmp);
|
|
n ++;
|
|
}
|
|
/* the error on v is bounded by (18n+51) ulps, or twice if there
|
|
was an exponent loss in the final subtraction */
|
|
err += MPFR_INT_CEIL_LOG2(18 * n + 51); /* 18n+51 should not overflow
|
|
since n is about log(p) */
|
|
/* we should have n+2 <= 2^(p/4) [see algorithms.tex] */
|
|
if (MPFR_LIKELY (MPFR_INT_CEIL_LOG2(n + 2) <= p / 4 &&
|
|
MPFR_CAN_ROUND (v, p - err, q, rnd_mode)))
|
|
break; /* Stop the loop */
|
|
|
|
/* Next iteration */
|
|
MPFR_ZIV_NEXT (loop, p);
|
|
s = (p - 1) / GMP_NUMB_BITS + 1;
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
/* Setting of the result */
|
|
inexact = mpfr_set (r, v, rnd_mode);
|
|
|
|
/* Let's clean */
|
|
MPFR_TMP_FREE(marker);
|
|
|
|
return inexact; /* agm(u,v) can be exact for u, v rational only for u=v.
|
|
Proof (due to Nicolas Brisebarre): it suffices to consider
|
|
u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2),
|
|
and a theorem due to G.V. Chudnovsky states that for x a
|
|
non-zero algebraic number with |x|<1, then
|
|
2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically
|
|
independent over Q. */
|
|
}
|