buildtools/jam/make1.c
Fredrik Holmqvist 7a4d04f795 Disabled the "..skipped x for lack of y..." message as it is not very useful information and hides the interesting info in noise (why it failed).
It should probably be a command line option as it might be interesting in some cases.
Also added a "Build Failure" at the end if there were failed targets.


git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@41294 a95241bf-73f2-0310-859d-f6bbb57e9c96
2011-05-01 11:34:52 +00:00

674 lines
17 KiB
C

/*
* Copyright 1993-2002 Christopher Seiwald and Perforce Software, Inc.
*
* This file is part of Jam - see jam.c for Copyright information.
*/
/*
* make1.c - execute command to bring targets up to date
*
* This module contains make1(), the entry point called by make() to
* recursively decend the dependency graph executing update actions as
* marked by make0().
*
* External routines:
*
* make1() - execute commands to update a TARGET and all its dependents
*
* Internal routines, the recursive/asynchronous command executors:
*
* make1a() - recursively traverse target tree, calling make1b()
* make1b() - dependents of target built, now build target with make1c()
* make1c() - launch target's next command, call make1b() when done
* make1d() - handle command execution completion and call back make1c()
*
* Internal support routines:
*
* make1cmds() - turn ACTIONS into CMDs, grouping, splitting, etc
* make1list() - turn a list of targets into a LIST, for $(<) and $(>)
* make1settings() - for vars that get bound, build up replacement lists
* make1bind() - bind targets that weren't bound in dependency analysis
*
* 04/16/94 (seiwald) - Split from make.c.
* 04/21/94 (seiwald) - Handle empty "updated" actions.
* 05/04/94 (seiwald) - async multiprocess (-j) support
* 06/01/94 (seiwald) - new 'actions existing' does existing sources
* 12/20/94 (seiwald) - NOTIME renamed NOTFILE.
* 01/19/95 (seiwald) - distinguish between CANTFIND/CANTMAKE targets.
* 01/22/94 (seiwald) - pass per-target JAMSHELL down to execcmd().
* 02/28/95 (seiwald) - Handle empty "existing" actions.
* 03/10/95 (seiwald) - Fancy counts.
* 02/07/01 (seiwald) - Fix jam -d0 return status.
* 01/21/02 (seiwald) - new -q to quit quickly on build failure
* 02/28/02 (seiwald) - don't delete 'actions updated' targets on failure
* 02/28/02 (seiwald) - merge EXEC_xxx flags in with RULE_xxx
* 07/17/02 (seiwald) - TEMPORARY sources for headers now get built
* 09/23/02 (seiwald) - "...using temp..." only displayed on -da now.
* 10/22/02 (seiwald) - list_new() now does its own newstr()/copystr()
* 11/04/02 (seiwald) - const-ing for string literals
* 12/03/02 (seiwald) - fix odd includes support by grafting them onto depends
*/
# include "jam.h"
# include "lists.h"
# include "parse.h"
# include "variable.h"
# include "rules.h"
# include "search.h"
# include "newstr.h"
# include "make.h"
# include "command.h"
# include "execcmd.h"
static void make1a( TARGET *t, TARGET *parent );
static void make1b( TARGET *t );
static void make1c( TARGET *t );
static void make1d( void *closure, int status );
static CMD *make1cmds( ACTIONS *a0 );
static LIST *make1list( LIST *l, TARGETS *targets, int flags,
int *missingTargets );
static SETTINGS *make1settings( LIST *vars );
static void make1bind( TARGET *t, int warn );
/* Ugly static - it's too hard to carry it through the callbacks. */
static struct {
int failed;
int skipped;
int total;
int made;
} counts[1] ;
/*
* make1() - execute commands to update a TARGET and all its dependents
*/
static int intr = 0;
int
make1( TARGET *t )
{
memset( (char *)counts, 0, sizeof( *counts ) );
/* Recursively make the target and its dependents */
make1a( t, (TARGET *)0 );
/* Wait for any outstanding commands to finish running. */
while( execwait() )
;
/* Talk about it */
if( counts->failed ) {
printf("\nBUILD FAILURE:\n");
if( DEBUG_MAKE ) printf( "...failed updating %d target(s)...\n", counts->failed );
}
if( DEBUG_MAKE && counts->skipped )
printf( "...skipped %d target(s)...\n", counts->skipped );
if( DEBUG_MAKE && counts->made )
printf( "...updated %d target(s)...\n", counts->made );
return counts->total != counts->made;
}
/*
* make1a() - recursively traverse target tree, calling make1b()
*/
static void
make1a(
TARGET *t,
TARGET *parent )
{
TARGETS *c;
/* If the parent is the first to try to build this target */
/* or this target is in the make1c() quagmire, arrange for the */
/* parent to be notified when this target is built. */
if( parent )
switch( t->progress )
{
case T_MAKE_INIT:
case T_MAKE_ACTIVE:
case T_MAKE_RUNNING:
t->parents = targetentry( t->parents, parent );
parent->asynccnt++;
}
if( t->progress != T_MAKE_INIT )
return;
/* Asynccnt counts the dependents preventing this target from */
/* proceeding to make1b() for actual building. We start off with */
/* a count of 1 to prevent anything from happening until we can */
/* call all dependents. This 1 is accounted for when we call */
/* make1b() ourselves, below. */
t->asynccnt = 1;
/* Recurse on our dependents, manipulating progress to guard */
/* against circular dependency. */
t->progress = T_MAKE_ONSTACK;
for( c = t->depends; c && !intr; c = c->next )
make1a( c->target, t );
t->progress = T_MAKE_ACTIVE;
/* Now that all dependents have bumped asynccnt, we now allow */
/* decrement our reference to asynccnt. */
make1b( t );
}
/*
* make1b() - dependents of target built, now build target with make1c()
*/
static void
make1b( TARGET *t )
{
TARGETS *c;
const char *failed = "dependents";
/* If any dependents are still outstanding, wait until they */
/* call make1b() to signal their completion. */
if( --t->asynccnt )
return;
/* Now ready to build target 't'... if dependents built ok. */
/* Collect status from dependents */
for( c = t->depends; c; c = c->next )
if( c->target->status > t->status )
{
failed = c->target->name;
t->status = c->target->status;
}
/* If actions on deps have failed, bail. */
/* Otherwise, execute all actions to make target */
if( t->status == EXEC_CMD_FAIL && t->actions )
{
++counts->skipped;
// printf( "...skipped %s for lack of %s...\n", t->name, failed );
}
if( t->status == EXEC_CMD_OK )
switch( t->fate )
{
case T_FATE_INIT:
case T_FATE_MAKING:
/* shouldn't happen */
case T_FATE_STABLE:
case T_FATE_NEWER:
break;
case T_FATE_CANTFIND:
case T_FATE_CANTMAKE:
t->status = EXEC_CMD_FAIL;
break;
case T_FATE_ISTMP:
if( DEBUG_MAKEQ )
printf( "...using %s...\n", t->name );
break;
case T_FATE_TOUCHED:
case T_FATE_MISSING:
case T_FATE_NEEDTMP:
case T_FATE_OUTDATED:
case T_FATE_UPDATE:
/* Set "on target" vars, build actions, unset vars */
/* Set "progress" so that make1c() counts this target among */
/* the successes/failures. */
if( t->actions )
{
++counts->total;
if( DEBUG_MAKE && !( counts->total % 100 ) )
printf( "...on %dth target...\n", counts->total );
pushsettings( t->settings );
t->cmds = (char *)make1cmds( t->actions );
popsettings( t->settings );
t->progress = T_MAKE_RUNNING;
}
break;
}
/* Call make1c() to begin the execution of the chain of commands */
/* needed to build target. If we're not going to build target */
/* (because of dependency failures or because no commands need to */
/* be run) the chain will be empty and make1c() will directly */
/* signal the completion of target. */
make1c( t );
}
/*
* make1c() - launch target's next command, call make1b() when done
*/
static void
make1c( TARGET *t )
{
CMD *cmd = (CMD *)t->cmds;
/* If there are (more) commands to run to build this target */
/* (and we haven't hit an error running earlier comands) we */
/* launch the command with execcmd(). */
/* If there are no more commands to run, we collect the status */
/* from all the actions then report our completion to all the */
/* parents. */
if( cmd && t->status == EXEC_CMD_OK )
{
if( DEBUG_MAKE )
if( DEBUG_MAKEQ || ! ( cmd->rule->flags & RULE_QUIETLY ) )
{
printf( "%s ", cmd->rule->name );
list_print( lol_get( &cmd->args, 0 ) );
printf( "\n" );
}
if( DEBUG_EXEC )
printf( "%s\n", cmd->buf );
if( globs.cmdout )
fprintf( globs.cmdout, "%s", cmd->buf );
if( globs.noexec )
{
make1d( t, EXEC_CMD_OK );
}
else
{
fflush( stdout );
execcmd( cmd->buf, make1d, t, cmd->shell );
}
}
else
{
TARGETS *c;
ACTIONS *actions;
/* Collect status from actions, and distribute it as well */
for( actions = t->actions; actions; actions = actions->next )
if( actions->action->status > t->status )
t->status = actions->action->status;
for( actions = t->actions; actions; actions = actions->next )
if( t->status > actions->action->status )
actions->action->status = t->status;
/* Tally success/failure for those we tried to update. */
if( t->progress == T_MAKE_RUNNING )
switch( t->status )
{
case EXEC_CMD_OK:
++counts->made;
break;
case EXEC_CMD_FAIL:
++counts->failed;
break;
}
/* Tell parents dependent has been built */
t->progress = T_MAKE_DONE;
for( c = t->parents; c; c = c->next )
make1b( c->target );
}
}
/*
* make1d() - handle command execution completion and call back make1c()
*/
static void
make1d(
void *closure,
int status )
{
TARGET *t = (TARGET *)closure;
CMD *cmd = (CMD *)t->cmds;
/* Execcmd() has completed. All we need to do is fiddle with the */
/* status and signal our completion so make1c() can run the next */
/* command. On interrupts, we bail heavily. */
if( status == EXEC_CMD_FAIL && ( cmd->rule->flags & RULE_IGNORE ) )
status = EXEC_CMD_OK;
/* On interrupt, set intr so _everything_ fails */
if( status == EXEC_CMD_INTR )
++intr;
if( status == EXEC_CMD_FAIL && DEBUG_MAKE )
{
/* Print command text on failure */
if( !DEBUG_EXEC )
printf( "%s\n", cmd->buf );
printf( "...failed %s ", cmd->rule->name );
list_print( lol_get( &cmd->args, 0 ) );
printf( "...\n" );
if( globs.quitquick ) ++intr;
}
/* If the command was interrupted or failed and the target */
/* is not "precious", remove the targets. */
/* Precious == 'actions updated' -- the target maintains state. */
if( status != EXEC_CMD_OK && !( cmd->rule->flags & RULE_UPDATED ) )
{
LIST *targets = lol_get( &cmd->args, 0 );
for( ; targets; targets = list_next( targets ) )
if( !unlink( targets->string ) )
printf( "...removing %s\n", targets->string );
}
/* Free this command and call make1c() to move onto next command. */
t->status = status;
t->cmds = (char *)cmd_next( cmd );
cmd_free( cmd );
make1c( t );
}
/*
* make1cmds() - turn ACTIONS into CMDs, grouping, splitting, etc
*
* Essentially copies a chain of ACTIONs to a chain of CMDs,
* grouping RULE_TOGETHER actions, splitting RULE_PIECEMEAL actions,
* and handling RULE_UPDATED actions. The result is a chain of
* CMDs which can be expanded by var_string() and executed with
* execcmd().
*/
static CMD *
make1cmds( ACTIONS *a0 )
{
CMD *cmds = 0;
LIST *shell = var_get( "JAMSHELL" ); /* shell is per-target */
/* Step through actions */
/* Actions may be shared with other targets or grouped with */
/* RULE_TOGETHER, so actions already seen are skipped. */
for( ; a0; a0 = a0->next )
{
RULE *rule = a0->action->rule;
SETTINGS *boundvars;
LIST *nt, *ns;
ACTIONS *a1;
CMD *cmd;
int start, chunk, length, maxline;
int missingTargets = 0;
int ruleFlags = rule->flags;
/* Only do rules with commands to execute. */
/* If this action has already been executed, use saved status */
if( !rule->actions || a0->action->running )
continue;
a0->action->running = 1;
/* Make LISTS of targets and sources */
/* If `execute together` has been specified for this rule, tack */
/* on sources from each instance of this rule for this target. */
nt = make1list( L0, a0->action->targets, 0 , &missingTargets );
/* If a target is missing use all sources. */
if (missingTargets)
ruleFlags &= ~RULE_UPDATED;
ns = make1list( L0, a0->action->sources, ruleFlags, NULL );
if( ruleFlags & RULE_TOGETHER )
for( a1 = a0->next; a1; a1 = a1->next )
if( a1->action->rule == rule && !a1->action->running )
{
ns = make1list( ns, a1->action->sources, ruleFlags, NULL );
a1->action->running = 1;
}
/* If doing only updated (or existing) sources, but none have */
/* been updated (or exist), skip this action. */
if( !ns && ( ruleFlags & ( RULE_UPDATED | RULE_EXISTING ) ) )
{
list_free( nt );
continue;
}
/* If we had 'actions xxx bind vars' we bind the vars now */
boundvars = make1settings( rule->bindlist );
pushsettings( boundvars );
/*
* Build command, starting with all source args.
*
* If cmd_new returns 0, it's because the resulting command
* length is > MAXLINE. In this case, we'll slowly reduce
* the number of source arguments presented until it does
* fit. This only applies to actions that allow PIECEMEAL
* commands.
*
* While reducing slowly takes a bit of compute time to get
* things just right, it's worth it to get as close to MAXLINE
* as possible, because launching the commands we're executing
* is likely to be much more compute intensive!
*
* Note we loop through at least once, for sourceless actions.
*
* Max line length is the action specific maxline or, if not
* given or bigger than MAXLINE, MAXLINE.
*/
start = 0;
chunk = length = list_length( ns );
maxline = ruleFlags / RULE_MAXLINE;
maxline = maxline && maxline < MAXLINE ? maxline : MAXLINE;
do
{
/* Build cmd: cmd_new consumes its lists. */
CMD *cmd = cmd_new( rule,
list_copy( L0, nt ),
list_sublist( ns, start, chunk ),
list_copy( L0, shell ),
maxline );
if( cmd )
{
/* It fit: chain it up. */
if( !cmds ) cmds = cmd;
else cmds->tail->next = cmd;
cmds->tail = cmd;
start += chunk;
}
else if( ( ruleFlags & RULE_PIECEMEAL ) && chunk > 1 )
{
/* Reduce chunk size slowly. */
chunk = chunk * 9 / 10;
}
else
{
/* Too long and not splittable. */
printf( "%s actions too long (max %d)!\n",
rule->name, maxline );
exit( EXITBAD );
}
}
while( start < length );
/* These were always copied when used. */
list_free( nt );
list_free( ns );
/* Free the variables whose values were bound by */
/* 'actions xxx bind vars' */
popsettings( boundvars );
freesettings( boundvars );
}
return cmds;
}
/*
* make1list() - turn a list of targets into a LIST, for $(<) and $(>)
*/
static LIST *
make1list(
LIST *l,
TARGETS *targets,
int flags,
int *missingTargets )
{
for( ; targets; targets = targets->next )
{
TARGET *t = targets->target;
/* Sources to 'actions existing' are never in the dependency */
/* graph (if they were, they'd get built and 'existing' would */
/* be superfluous, so throttle warning message about independent */
/* targets. */
if( t->binding == T_BIND_UNBOUND )
make1bind( t, !( flags & RULE_EXISTING ) );
if( ( flags & RULE_EXISTING ) && t->binding != T_BIND_EXISTS )
continue;
if ( t->binding != T_BIND_EXISTS && missingTargets)
*missingTargets = 1;
if( ( flags & RULE_UPDATED ) && t->fate <= T_FATE_STABLE )
continue;
/* Prohibit duplicates for RULE_TOGETHER */
if( flags & RULE_TOGETHER )
{
LIST *m;
for( m = l; m; m = m->next )
if( !strcmp( m->string, t->boundname ) )
break;
if( m )
continue;
}
/* Build new list */
l = list_new( l, t->boundname, 1 );
}
return l;
}
/*
* make1settings() - for vars that get bound values, build up replacement lists
*/
static SETTINGS *
make1settings( LIST *vars )
{
SETTINGS *settings = 0;
for( ; vars; vars = list_next( vars ) )
{
LIST *l = var_get( vars->string );
LIST *nl = 0;
for( ; l; l = list_next( l ) )
{
TARGET *t = bindtarget( l->string );
/* Make sure the target is bound, warning if it is not in the */
/* dependency graph. */
if( t->binding == T_BIND_UNBOUND )
make1bind( t, 1 );
/* Build new list */
nl = list_new( nl, t->boundname, 1 );
}
/* Add to settings chain */
settings = addsettings( settings, 0, vars->string, nl );
}
return settings;
}
/*
* make1bind() - bind targets that weren't bound in dependency analysis
*
* Spot the kludge! If a target is not in the dependency tree, it didn't
* get bound by make0(), so we have to do it here. Ugly.
*/
static void
make1bind(
TARGET *t,
int warn )
{
if( t->flags & T_FLAG_NOTFILE )
return;
/* Sources to 'actions existing' are never in the dependency */
/* graph (if they were, they'd get built and 'existing' would */
/* be superfluous, so throttle warning message about independent */
/* targets. */
if( warn )
printf( "warning: using independent target %s\n", t->name );
pushsettings( t->settings );
t->boundname = search( t->name, &t->time );
t->binding = t->time ? T_BIND_EXISTS : T_BIND_MISSING;
popsettings( t->settings );
}