buildtools/gcc/mpfr/asinh.c
Jérôme Duval b58ddff026 * modified gcc Makefile.in to copy gmp-impl.h and longlong.h headers to build gmp directory (see http://gcc.gnu.org/bugzilla/show_bug.cgi?id=44455 ).
* merged mpfr 3.0.0 and gmp 5.0.1 in buildtools trunk


git-svn-id: file:///srv/svn/repos/haiku/buildtools/trunk@37378 a95241bf-73f2-0310-859d-f6bbb57e9c96
2010-07-03 15:21:01 +00:00

118 lines
3.6 KiB
C

/* mpfr_asinh -- inverse hyperbolic sine
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of asinh is done by *
* asinh = ln(x + sqrt(x^2 + 1)) */
int
mpfr_asinh (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inexact;
int signx, neg;
mpfr_prec_t Ny, Nt;
mpfr_t t; /* auxiliary variables */
mpfr_exp_t err;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
else /* x is necessarily 0 */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (y); /* asinh(0) = 0 */
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
}
/* asinh(x) = x - x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 2, 0,
rnd_mode, {});
Ny = MPFR_PREC (y); /* Precision of output variable */
signx = MPFR_SIGN (x);
neg = MPFR_IS_NEG (x);
/* General case */
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
MPFR_SAVE_EXPO_MARK (expo);
/* initialize intermediary variables */
mpfr_init2 (t, Nt);
/* First computation of asinh */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute asinh */
mpfr_mul (t, x, x, MPFR_RNDD); /* x^2 */
mpfr_add_ui (t, t, 1, MPFR_RNDD); /* x^2+1 */
mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(x^2+1) */
(neg ? mpfr_sub : mpfr_add) (t, t, x, MPFR_RNDN); /* sqrt(x^2+1)+x */
mpfr_log (t, t, MPFR_RNDN); /* ln(sqrt(x^2+1)+x)*/
if (MPFR_LIKELY (MPFR_IS_PURE_FP (t)))
{
/* error estimate -- see algorithms.tex */
err = Nt - (MAX (4 - MPFR_GET_EXP (t), 0) + 1);
if (MPFR_LIKELY (MPFR_IS_ZERO (t)
|| MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
}
/* actualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set4 (y, t, rnd_mode, signx);
mpfr_clear (t);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}