194 lines
3.6 KiB
C
Raw Normal View History

/*
* Copyright 2009, Ingo Weinhold, ingo_weinhold@gmx.de. All Rights Reserved.
* Distributed under the terms of the MIT License.
*/
#ifndef ARRAY_H
#define ARRAY_H
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
template<typename Element>
class Array {
public:
inline Array();
~Array();
inline int Size() const { return fSize; }
inline int Count() const { return fSize; }
inline bool IsEmpty() const { return fSize == 0; }
inline Element* Elements() const { return fElements; }
inline bool Add(const Element& element);
inline bool Insert(const Element& element, int index);
inline bool Remove(int index);
inline Element& ElementAt(int index);
inline const Element& ElementAt(int index) const;
inline Element& operator[](int index);
inline const Element& operator[](int index) const;
private:
static const int kMinCapacity = 8;
bool _Resize(int index, int delta);
private:
Element* fElements;
int fSize;
int fCapacity;
};
template<typename Element>
Array<Element>::Array()
:
fElements(NULL),
fSize(0),
fCapacity(0)
{
}
template<typename Element>
Array<Element>::~Array()
{
free(fElements);
}
template<typename Element>
bool
Array<Element>::Add(const Element& element)
{
if (fSize == fCapacity) {
if (!_Resize(fSize, 1))
return false;
}
fElements[fSize] = element;
fSize++;
return true;
}
template<typename Element>
bool
Array<Element>::Insert(const Element& element, int index)
{
if (index < 0 || index > fSize)
index = fSize;
if (fSize == fCapacity) {
if (!_Resize(index, 1))
return false;
} else if (index < fSize) {
memmove(fElements + index + 1, fElements + index,
sizeof(Element) * (fSize - index));
}
fElements[index] = element;
fSize++;
return false;
}
template<typename Element>
bool
Array<Element>::Remove(int index)
{
if (index < 0 || index >= fSize) {
char buffer[128];
snprintf(buffer, sizeof(buffer), "Array::Remove(): index: %d, size: %d",
index, fSize);
return false;
}
if (fSize <= fCapacity / 2 && fCapacity > kMinCapacity) {
_Resize(index, -1);
} else if (index < fSize) {
memmove(fElements + index, fElements + index + 1,
sizeof(Element) * (fSize - index - 1));
}
fSize--;
return true;
}
template<typename Element>
Element&
Array<Element>::ElementAt(int index)
{
return fElements[index];
}
template<typename Element>
const Element&
Array<Element>::ElementAt(int index) const
{
return fElements[index];
}
template<typename Element>
Element&
Array<Element>::operator[](int index)
{
return fElements[index];
}
template<typename Element>
const Element&
Array<Element>::operator[](int index) const
{
return fElements[index];
}
template<typename Element>
bool
Array<Element>::_Resize(int index, int delta)
{
// determine new capacity
int newSize = fSize + delta;
int newCapacity = kMinCapacity;
while (newCapacity < newSize)
newCapacity *= 2;
if (newCapacity == fCapacity)
return true;
// allocate new array
Element* elements = (Element*)malloc(newCapacity * sizeof(Element));
if (elements == NULL)
return false;
if (index > 0)
memcpy(elements, fElements, index * sizeof(Element));
if (index < fSize) {
if (delta > 0) {
// leave a gap of delta elements
memcpy(elements + index + delta, fElements + index,
(fSize - index) * sizeof(Element));
} else if (index < fSize + delta) {
// drop -delta elements
memcpy(elements + index, fElements + index - delta,
(fSize - index + delta) * sizeof(Element));
}
}
free(fElements);
fElements = elements;
fCapacity = newCapacity;
return true;
}
#endif // ARRAY_H