mirror of
https://review.haiku-os.org/haiku
synced 2025-02-02 03:36:14 +01:00
198 lines
4.5 KiB
C
198 lines
4.5 KiB
C
|
/*
|
||
|
* Copyright 2007, Hugo Santos. All Rights Reserved.
|
||
|
* Distributed under the terms of the MIT License.
|
||
|
*
|
||
|
* Authors:
|
||
|
* Hugo Santos, hugosantos@gmail.com
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef _OPEN_HASH_TABLE_H_
|
||
|
#define _OPEN_HASH_TABLE_H_
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
|
||
|
// the Definition template must have three methods: `HashKey', `Hash' and
|
||
|
// `Compare'. It must also define several types as shown in the following
|
||
|
// example:
|
||
|
//
|
||
|
// struct Foo {
|
||
|
// int bar;
|
||
|
// };
|
||
|
//
|
||
|
// struct HashTableDefinition {
|
||
|
// typedef void * ParentType;
|
||
|
// typedef int KeyType;
|
||
|
// typedef Foo ValueType;
|
||
|
//
|
||
|
// static size_t HashKey(void *parent, int key) { return key >> 1; }
|
||
|
// static size_t Hash(void *parent, Foo *value) { return HashKey(value->bar); }
|
||
|
// static bool Compare(void *parent, int key, Foo *value)
|
||
|
// { return value->bar == key; }
|
||
|
// };
|
||
|
|
||
|
// This hash table implementation uses open addressing vs. the more common
|
||
|
// chaining. This approach is advantageous as the number of expected collisions
|
||
|
// is the same (property of the hash function) while not wasting one additional
|
||
|
// word per item and having better cache locality. The usage of quadratic
|
||
|
// probing reduces the effectiveness of cache locality but prevents clustering.
|
||
|
template<typename Definition>
|
||
|
class OpenHashTable {
|
||
|
public:
|
||
|
typedef typename Definition::ParentType ParentType;
|
||
|
typedef typename Definition::KeyType KeyType;
|
||
|
typedef typename Definition::ValueType ValueType;
|
||
|
|
||
|
static const size_t kMinimumSize = 32;
|
||
|
|
||
|
// we use new [] / delete [] for allocation. If in the future this
|
||
|
// is revealed to be insufficient we can switch to a template based
|
||
|
// allocator. All allocations are of power of 2 lengths.
|
||
|
|
||
|
// regrowth factor: 200 / 256 = 78.125%
|
||
|
// 50 / 256 = 19.53125%
|
||
|
|
||
|
OpenHashTable(const ParentType &parent, size_t initialSize = kMinimumSize)
|
||
|
: fParent(parent), fItemCount(0), fTable(NULL),
|
||
|
fDeletedToken((ValueType *)(((char *)0) - 1))
|
||
|
{
|
||
|
if (initialSize < kMinimumSize)
|
||
|
initialSize = kMinimumSize;
|
||
|
|
||
|
_Resize(initialSize);
|
||
|
}
|
||
|
|
||
|
~OpenHashTable()
|
||
|
{
|
||
|
delete [] fTable;
|
||
|
}
|
||
|
|
||
|
status_t InitCheck() const { return fTable ? B_OK : B_NO_MEMORY; }
|
||
|
|
||
|
ValueType *Lookup(const KeyType &key) const
|
||
|
{
|
||
|
size_t index = Definition::HashKey(fParent, key) & (fTableSize - 1);
|
||
|
size_t f = 0;
|
||
|
|
||
|
while (true) {
|
||
|
ValueType *slot = fTable[index];
|
||
|
|
||
|
if (slot == NULL)
|
||
|
return NULL;
|
||
|
else if (!_IsDeleted(slot)
|
||
|
&& Definition::Compare(fParent, key, slot))
|
||
|
return slot;
|
||
|
|
||
|
index = _NextSlot(f, index, fTableSize);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool Insert(ValueType *value)
|
||
|
{
|
||
|
if (fItemCount >= (fTableSize * 200 / 256)) {
|
||
|
if (!_Resize(fTableSize * 2))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
InsertUnchecked(value);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void InsertUnchecked(ValueType *value)
|
||
|
{
|
||
|
ValueType *previous = _Insert(fTable, fTableSize, value);
|
||
|
if (_IsDeleted(previous))
|
||
|
fDeletedCount--;
|
||
|
fItemCount++;
|
||
|
}
|
||
|
|
||
|
void Remove(ValueType *value)
|
||
|
{
|
||
|
RemoveUnchecked(value);
|
||
|
|
||
|
if (fTableSize > kMinimumSize && fItemCount < (fTableSize * 50 / 256))
|
||
|
_Resize(fTableSize / 2);
|
||
|
}
|
||
|
|
||
|
void RemoveUnchecked(ValueType *value)
|
||
|
{
|
||
|
size_t index = Definition::Hash(fParent, value) & (fTableSize - 1);
|
||
|
size_t f = 0;
|
||
|
|
||
|
while (true) {
|
||
|
if (fTable[index] == value) {
|
||
|
fTable[index] = (ValueType *)fDeletedToken;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
index = _NextSlot(f, index, fTableSize);
|
||
|
}
|
||
|
|
||
|
fItemCount--;
|
||
|
fDeletedCount++;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
ValueType *_Insert(ValueType **table, size_t tableSize, ValueType *value)
|
||
|
{
|
||
|
size_t index = Definition::Hash(fParent, value) & (tableSize - 1);
|
||
|
size_t f = 0;
|
||
|
|
||
|
while (true) {
|
||
|
if (table[index] == NULL || table[index] == fDeletedToken) {
|
||
|
ValueType *previous = table[index];
|
||
|
table[index] = value;
|
||
|
return previous;
|
||
|
}
|
||
|
|
||
|
index = _NextSlot(f, index, tableSize);
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static size_t _NextSlot(size_t &f, size_t index, size_t tableSize)
|
||
|
{
|
||
|
// quadratic probing
|
||
|
f++;
|
||
|
return (index + f) & (tableSize - 1);
|
||
|
}
|
||
|
|
||
|
bool _IsDeleted(ValueType *value) const
|
||
|
{
|
||
|
return value == fDeletedToken;
|
||
|
}
|
||
|
|
||
|
bool _Resize(size_t newSize)
|
||
|
{
|
||
|
ValueType **newTable = new ValueType *[newSize];
|
||
|
if (newTable == NULL)
|
||
|
return false;
|
||
|
|
||
|
for (size_t i = 0; i < newSize; i++)
|
||
|
newTable[i] = NULL;
|
||
|
|
||
|
if (fTable) {
|
||
|
for (size_t i = 0; i < fTableSize; i++) {
|
||
|
if (fTable[i] && !_IsDeleted(fTable[i]))
|
||
|
_Insert(newTable, newSize, fTable[i]);
|
||
|
}
|
||
|
|
||
|
delete [] fTable;
|
||
|
}
|
||
|
|
||
|
fTableSize = newSize;
|
||
|
fDeletedCount = 0;
|
||
|
fTable = newTable;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
ParentType fParent;
|
||
|
size_t fTableSize, fItemCount, fDeletedCount;
|
||
|
ValueType **fTable;
|
||
|
|
||
|
const ValueType *fDeletedToken;
|
||
|
};
|
||
|
|
||
|
#endif
|