{HAIKU,HOST,TARGET}_KERNEL_PIC_{CC,LINK}FLAGS which define the
compiler/linker flags specifying the kind of position independence
the kernel shall have. For x86 we had and still have -fno-pic, but the
PPC kernel has -fPIE (position independent executable) now, as we
need to relocate it.
* The boot loader relocates the kernel now. Mostly copied the relocation
code from the kernel ELF loader. Almost completely rewrote the PPC
specific relocation code, though. It's more correct and more complete now
(some things are still missing though).
* Added boot platform awareness to the kernel. Moved the generic
Open Firmware code (openfirmware.c/h) from the boot loader to the kernel.
* The kernel PPC serial debug output is sent to the console for the time
being.
* The PPC boot loader counts the CPUs now and allocates the kernel stacks
(made OF device iteration a bit more flexible on the way -- the search
can be restricted to subtree). Furthermore we really enter the kernel...
(Yay! :-) ... and crash in the first dprintf() (in the atomic_set()
called by acquire_spinlock()). kprintf() works, though.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15756 a95241bf-73f2-0310-859d-f6bbb57e9c96
as only the BitmapManager class is allowed to call them.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15718 a95241bf-73f2-0310-859d-f6bbb57e9c96
specifying whether only the exact supplied address is acceptable. If
false, the address is considered a hint only. It will be picked, if
available, otherwise a greater address is tried to be acquired, and
as last resort any address. This feature is only implemented for PPC.
It is needed since the preferred kernel text base address 0x80000000
might not be available (and actually isn't on my Mac mini).
* Fixed a bug in the PPC memory management code:
is_{virtual,physical}_allocated() were checking whether the given
range was completely contained by an existing range instead of
checking for intersection. As a consequence we could (and did) allocate
a range intersecting with already allocated ranges. The kernel segment
thus overwrote OF memory for instance.
* The ELF loader makes sure that it got both text and data segment of
the image to be loaded.
The PPC boot loader successfully loads kernel and modules now. Next
comes the hard part, I'm afraid.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15708 a95241bf-73f2-0310-859d-f6bbb57e9c96
IP, and UDP, as well as a home brewn UDP based protocol, "remote disk",
which provides random access to a single remote file/device. The Open
Firmware flavored boot loader automatically initializes the net stack,
searches for a remote disk, and tries to boot from it, if the boot
device is a network device (e.g. when loading the boot loader via
TFTP).
This is quite nice for developing with a two-machine setup, since one
doesn't even need to install Haiku on the test machine anymore, but can
serve it directly from the development machine. When the networking
support in the kernel is working, this method could even be used to
fully boot, not just for loading kernel and initial modules.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15689 a95241bf-73f2-0310-859d-f6bbb57e9c96
vm_cache_ref starts with a reference count of 1. When acquiring a vm_cache,
you no longer need to worry if that should go through the vm_store, or not;
as it now always does.
* map_backing_store() no longer needs to play with the vm_cache_ref
references.
* that simplified some code.
* vfs_get_vnode_cache() now grabs a reference to the cache, if successful.
* better balanced vnode ownership on vnode_store creation (vnode_store
released the vnode before if its creation failed).
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15641 a95241bf-73f2-0310-859d-f6bbb57e9c96
this saves 4 bytes per page. To compensate the loss of bytes, the offset is now
stored in page size units, that's enough to address 2^44 or 16 TB (which is now
the maximal supported file size!).
* Renamed vm_page::ppn to physical_page_number.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15637 a95241bf-73f2-0310-859d-f6bbb57e9c96
arch/*/thread_struct.h to arch_thread_types.h, so that it can directly
be included without having to specify the architecure.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15616 a95241bf-73f2-0310-859d-f6bbb57e9c96
them apart (this even saves a pointer from vm_virtual_map to its address space)
* aspace -> address_space
* vm_create_address_space() did not check if creating the semaphore succeeded
* Removed team::kaspace - was not really needed (introduced a new vm_kernel_address_space()
function that doesn't grab a reference to the address space)
* Removed vm_address_space::name - it was just a copy of the team name, anyway,
and there is always only one address space per team
* Removed aspace_id - the address space is now using the team_id
* Some cleanup.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15609 a95241bf-73f2-0310-859d-f6bbb57e9c96
written the page, we now do it before, so that it cannot lose any changed data
anymore; it doesn't matter if the page is written to while writing it back, the
worst thing that can happen is that we write the same page twice. Also, we don't
rely on the PAGE_MODIFIED bit anymore, we now check all mappings of that page
to find all modified pages, no matter how far the (currently disabled) page
daemon had come.
Also, destroying an area will now result in writing back changed pages - this
is only really important for memory mapped files, though, and should probably
be avoided for other vm_store types.
Minor cleanup.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15597 a95241bf-73f2-0310-859d-f6bbb57e9c96
Moved some headers around and cleaned them up.
Fixed threading code in libbind.so. Don't know why I hadn't noticed this before. Now it is reliable, but uses an even uglier hack.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15585 a95241bf-73f2-0310-859d-f6bbb57e9c96
mappings yet, that's a good way to test this functionality.
* Turns out the directory of the mappings must be known already - they
should be added automatically, but I've added them manually for now
(which is okay for the default system directory).
* Having more than one style with the same family in the mappings didn't
work as planned - it now does.
* On my current system, time spend in the font manager constructor went
down from 1.5 secs to around 12000 usecs (and I have only a moderate
number of fonts installed, or so I thought - looks like the mappings
were a good idea :-)) - and that directly cuts down the boot time.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15580 a95241bf-73f2-0310-859d-f6bbb57e9c96
service depends on it, it doesn't make any sense to call it that early in the
game.
* The VFS now has a low memory handler for vnodes as well. If there is enough
memory left, it won't free any vnodes anymore.
* Potential crashing bug fix: some functions did not check if the FD passed
in belonged to the right type; they just assumed it had a valid vnode, but
it could have had a mount structure associated as well.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15566 a95241bf-73f2-0310-859d-f6bbb57e9c96
memory status.
Added new B_NO_LOW_MEMORY constant for the usual case.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15551 a95241bf-73f2-0310-859d-f6bbb57e9c96
kernel TLBs from being flushed on context switch.
* new arch_cpu_user_TLB_invalidate() that now does what arch_cpu_global_TLB_invalidate()
did before.
* arch_cpu_global_TLB_invalidate() will now flush all TLBs, even those from the
kernel.
* some cleanups.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15535 a95241bf-73f2-0310-859d-f6bbb57e9c96
* The boot loader now checks the CPU for the cpuid and rdtsc features, which we
currently both rely on.
* Removed old and no longer used stage2_priv.h header
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15534 a95241bf-73f2-0310-859d-f6bbb57e9c96
has not yet been tested, though - I'll do this after this commit):
* Removed the arch_memory_type stuff from vm_area; since there are only 8 memory
ranges on x86, it's simply overkill. The MTRR code now remembers the area ID
and finds the MTRR that way (it could also iterate over the existing MTRRs).
* Introduced some post_modules() init functions.
* If the other x86 CPUs out there don't differ a lot, MTRR functionality might
be put back into the kernel.
* x86_write_msr() was broken, it wrote the 64 bit number with the 32 bit words
switched - it took me some time (and lots of #GPs) to figure that one out.
* Removed the macro read_ebp() and introduced a function x86_read_ebp()
(it's not really a time critical call).
* Followed the Intel docs on how to change MTRRs (symmetrically on all CPUs
with caches turned off).
* Asking for memory types will automatically change the requested length to
a power of two - note that BeOS seems to behave in the same, although that's
not really very clean.
* fixed MTRRs are ignored for now - we should make sure at least, though,
that they are identical on all CPUs (or turn them off, even though I'd
prefer the BIOS stuff to be uncacheable, which we don't enforce yet, though).
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15528 a95241bf-73f2-0310-859d-f6bbb57e9c96
* finally nailed that much hated bug where the
wrong background underneath the cursor was restored.
I always looked for this in the wrong place -
of course, you cannot blit regions on top
of the cursor and expect the backup of the
background to be magically valid still... ;-)
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@15461 a95241bf-73f2-0310-859d-f6bbb57e9c96