/* * Copyright 2007, Hugo Santos. All Rights Reserved. * Distributed under the terms of the MIT License. */ #ifndef _KERNEL_UTIL_OPEN_HASH_TABLE_H #define _KERNEL_UTIL_OPEN_HASH_TABLE_H #include #include #include #ifdef _KERNEL_MODE # include # include #endif /*! The Definition template must have four methods: `HashKey', `Hash', `Compare' and `GetLink;. It must also define several types as shown in the following example: struct Foo { int bar; Foo* fNext; }; struct HashTableDefinition { typedef int KeyType; typedef Foo ValueType; size_t HashKey(int key) const { return key >> 1; } size_t Hash(Foo* value) const { return HashKey(value->bar); } bool Compare(int key, Foo* value) const { return value->bar == key; } Foo*& GetLink(Foo* value) const { return value->fNext; } }; */ struct MallocAllocator { void* Allocate(size_t size) const { return malloc(size); } void Free(void* memory) const { free(memory); } }; template class BOpenHashTable { public: typedef BOpenHashTable HashTable; typedef typename Definition::KeyType KeyType; typedef typename Definition::ValueType ValueType; static const size_t kMinimumSize = 8; // All allocations are of power of 2 lengths. // regrowth factor: 200 / 256 = 78.125% // 50 / 256 = 19.53125% BOpenHashTable() : fTableSize(0), fItemCount(0), fTable(NULL) { } BOpenHashTable(const Definition& definition) : fDefinition(definition), fTableSize(0), fItemCount(0), fTable(NULL) { } BOpenHashTable(const Definition& definition, const Allocator& allocator) : fDefinition(definition), fAllocator(allocator), fTableSize(0), fItemCount(0), fTable(NULL) { } ~BOpenHashTable() { fAllocator.Free(fTable); } status_t Init(size_t initialSize = kMinimumSize) { if (initialSize > 0 && !_Resize(initialSize)) return B_NO_MEMORY; return B_OK; } size_t TableSize() const { return fTableSize; } size_t CountElements() const { return fItemCount; } ValueType* Lookup(const KeyType& key) const { if (fTableSize == 0) return NULL; size_t index = fDefinition.HashKey(key) & (fTableSize - 1); ValueType* slot = fTable[index]; while (slot) { if (fDefinition.Compare(key, slot)) break; slot = _Link(slot); } return slot; } status_t Insert(ValueType* value) { if (fTableSize == 0) { if (!_Resize(kMinimumSize)) return B_NO_MEMORY; } else if (AutoExpand && fItemCount >= (fTableSize * 200 / 256)) _Resize(fTableSize * 2); InsertUnchecked(value); return B_OK; } void InsertUnchecked(ValueType* value) { if (CheckDuplicates && _ExhaustiveSearch(value)) { #ifdef _KERNEL_MODE panic("Hash Table: value already in table."); #else debugger("Hash Table: value already in table."); #endif } _Insert(fTable, fTableSize, value); fItemCount++; } // TODO: a ValueType* Remove(const KeyType& key) method is missing bool Remove(ValueType* value) { if (!RemoveUnchecked(value)) return false; if (AutoExpand && fTableSize > kMinimumSize && fItemCount < (fTableSize * 50 / 256)) _Resize(fTableSize / 2); return true; } bool RemoveUnchecked(ValueType* value) { size_t index = fDefinition.Hash(value) & (fTableSize - 1); ValueType* previous = NULL; ValueType* slot = fTable[index]; while (slot) { ValueType* next = _Link(slot); if (value == slot) { if (previous) _Link(previous) = next; else fTable[index] = next; break; } previous = slot; slot = next; } if (slot == NULL) return false; if (CheckDuplicates && _ExhaustiveSearch(value)) { #ifdef _KERNEL_MODE panic("Hash Table: duplicate detected."); #else debugger("Hash Table: duplicate detected."); #endif } fItemCount--; return true; } /*! Removes all elements from the hash table. No resizing happens. The elements are not deleted. If \a returnElements is \c true, the method returns all elements chained via their hash table link. */ ValueType* Clear(bool returnElements = false) { if (fItemCount == 0) return NULL; ValueType* result = NULL; if (returnElements) { ValueType** nextPointer = &result; // iterate through all buckets for (size_t i = 0; i < fTableSize; i++) { ValueType* element = fTable[i]; if (element != NULL) { // add the bucket to the list *nextPointer = element; // update nextPointer to point to the fNext of the last // element in the bucket while (element != NULL) { nextPointer = &_Link(element); element = *nextPointer; } } } } memset(this->fTable, 0, sizeof(ValueType*) * this->fTableSize); fItemCount = 0; return result; } /*! If the table needs resizing, the number of bytes for the required allocation is returned. If no resizing is needed, 0 is returned. */ size_t ResizeNeeded() const { size_t size = fTableSize; if (size == 0 || fItemCount >= (size * 200 / 256)) { // grow table if (size == 0) size = kMinimumSize; while (fItemCount >= size * 200 / 256) size <<= 1; } else if (size > kMinimumSize && fItemCount < size * 50 / 256) { // shrink table while (fItemCount < size * 50 / 256) size >>= 1; if (size < kMinimumSize) size = kMinimumSize; } if (size == fTableSize) return 0; return size * sizeof(ValueType*); } /*! Resizes the table using the given allocation. The allocation must not be \c NULL. It must be of size \a size, which must a value returned earlier by ResizeNeeded(). If the size requirements have changed in the meantime, the method free()s the given allocation and returns \c false, unless \a force is \c true, in which case the supplied allocation is used in any event. Otherwise \c true is returned. If \a oldTable is non-null and resizing is successful, the old table will not be freed, but will be returned via this parameter instead. */ bool Resize(void* allocation, size_t size, bool force = false, void** oldTable = NULL) { if (!force && size != ResizeNeeded()) { fAllocator.Free(allocation); return false; } _Resize((ValueType**)allocation, size / sizeof(ValueType*), oldTable); return true; } class Iterator { public: Iterator(const HashTable* table) : fTable(table) { Rewind(); } Iterator(const HashTable* table, size_t index, ValueType* value) : fTable(table), fIndex(index), fNext(value) {} bool HasNext() const { return fNext != NULL; } ValueType* Next() { ValueType* current = fNext; _GetNext(); return current; } void Rewind() { // get the first one fIndex = 0; fNext = NULL; _GetNext(); } protected: Iterator() {} void _GetNext() { if (fNext) fNext = fTable->_Link(fNext); while (fNext == NULL && fIndex < fTable->fTableSize) fNext = fTable->fTable[fIndex++]; } const HashTable* fTable; size_t fIndex; ValueType* fNext; }; Iterator GetIterator() const { return Iterator(this); } Iterator GetIterator(const KeyType& key) const { if (fTableSize == 0) return Iterator(this, fTableSize, NULL); size_t index = fDefinition.HashKey(key) & (fTableSize - 1); ValueType* slot = fTable[index]; while (slot) { if (fDefinition.Compare(key, slot)) break; slot = _Link(slot); } if (slot == NULL) return Iterator(this, fTableSize, NULL); return Iterator(this, index + 1, slot); } protected: // for g++ 2.95 friend class Iterator; void _Insert(ValueType** table, size_t tableSize, ValueType* value) { size_t index = fDefinition.Hash(value) & (tableSize - 1); _Link(value) = table[index]; table[index] = value; } bool _Resize(size_t newSize) { ValueType** newTable = (ValueType**)fAllocator.Allocate(sizeof(ValueType*) * newSize); if (newTable == NULL) return false; _Resize(newTable, newSize); return true; } void _Resize(ValueType** newTable, size_t newSize, void** _oldTable = NULL) { for (size_t i = 0; i < newSize; i++) newTable[i] = NULL; if (fTable) { for (size_t i = 0; i < fTableSize; i++) { ValueType* bucket = fTable[i]; while (bucket) { ValueType* next = _Link(bucket); _Insert(newTable, newSize, bucket); bucket = next; } } if (_oldTable != NULL) *_oldTable = fTable; else fAllocator.Free(fTable); } else if (_oldTable != NULL) *_oldTable = NULL; fTableSize = newSize; fTable = newTable; } ValueType*& _Link(ValueType* bucket) const { return fDefinition.GetLink(bucket); } bool _ExhaustiveSearch(ValueType* value) const { for (size_t i = 0; i < fTableSize; i++) { ValueType* bucket = fTable[i]; while (bucket) { if (bucket == value) return true; bucket = _Link(bucket); } } return false; } Definition fDefinition; Allocator fAllocator; size_t fTableSize; size_t fItemCount; ValueType** fTable; }; #endif // _KERNEL_UTIL_OPEN_HASH_TABLE_H