mirror of
https://review.haiku-os.org/haiku
synced 2025-01-18 20:48:48 +01:00
4fb4b32043
cmath could be included before inclusion of this header, thus undefining isnan.
211 lines
6.7 KiB
C++
211 lines
6.7 KiB
C++
//----------------------------------------------------------------------------
|
|
// Anti-Grain Geometry - Version 2.4
|
|
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
|
|
//
|
|
// Permission to copy, use, modify, sell and distribute this software
|
|
// is granted provided this copyright notice appears in all copies.
|
|
// This software is provided "as is" without express or implied
|
|
// warranty, and with no claim as to its suitability for any purpose.
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
// Contact: mcseem@antigrain.com
|
|
// mcseemagg@yahoo.com
|
|
// http://www.antigrain.com
|
|
//----------------------------------------------------------------------------
|
|
//
|
|
// classes conv_curve
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
|
|
#ifndef AGG_CONV_CURVE_INCLUDED
|
|
#define AGG_CONV_CURVE_INCLUDED
|
|
|
|
#include "agg_basics.h"
|
|
#include "agg_curves.h"
|
|
|
|
#include <cmath>
|
|
|
|
|
|
namespace agg
|
|
{
|
|
|
|
|
|
//---------------------------------------------------------------conv_curve
|
|
// Curve converter class. Any path storage can have Bezier curves defined
|
|
// by their control points. There're two types of curves supported: curve3
|
|
// and curve4. Curve3 is a conic Bezier curve with 2 endpoints and 1 control
|
|
// point. Curve4 has 2 control points (4 points in total) and can be used
|
|
// to interpolate more complicated curves. Curve4, unlike curve3 can be used
|
|
// to approximate arcs, both circular and elliptical. Curves are approximated
|
|
// with straight lines and one of the approaches is just to store the whole
|
|
// sequence of vertices that approximate our curve. It takes additional
|
|
// memory, and at the same time the consecutive vertices can be calculated
|
|
// on demand.
|
|
//
|
|
// Initially, path storages are not suppose to keep all the vertices of the
|
|
// curves (although, nothing prevents us from doing so). Instead, path_storage
|
|
// keeps only vertices, needed to calculate a curve on demand. Those vertices
|
|
// are marked with special commands. So, if the path_storage contains curves
|
|
// (which are not real curves yet), and we render this storage directly,
|
|
// all we will see is only 2 or 3 straight line segments (for curve3 and
|
|
// curve4 respectively). If we need to see real curves drawn we need to
|
|
// include this class into the conversion pipeline.
|
|
//
|
|
// Class conv_curve recognizes commands path_cmd_curve3 and path_cmd_curve4
|
|
// and converts these vertices into a move_to/line_to sequence.
|
|
//-----------------------------------------------------------------------
|
|
template<class VertexSource,
|
|
class Curve3=curve3,
|
|
class Curve4=curve4> class conv_curve
|
|
{
|
|
public:
|
|
typedef Curve3 curve3_type;
|
|
typedef Curve4 curve4_type;
|
|
typedef conv_curve<VertexSource, Curve3, Curve4> self_type;
|
|
|
|
conv_curve(VertexSource& source) :
|
|
m_source(&source), m_last_x(0.0), m_last_y(0.0) {}
|
|
void attach(VertexSource& source) { m_source = &source; }
|
|
|
|
void approximation_method(curve_approximation_method_e v)
|
|
{
|
|
m_curve3.approximation_method(v);
|
|
m_curve4.approximation_method(v);
|
|
}
|
|
|
|
curve_approximation_method_e approximation_method() const
|
|
{
|
|
return m_curve4.approximation_method();
|
|
}
|
|
|
|
void approximation_scale(double s)
|
|
{
|
|
m_curve3.approximation_scale(s);
|
|
m_curve4.approximation_scale(s);
|
|
}
|
|
|
|
double approximation_scale() const
|
|
{
|
|
return m_curve4.approximation_scale();
|
|
}
|
|
|
|
void angle_tolerance(double v)
|
|
{
|
|
m_curve3.angle_tolerance(v);
|
|
m_curve4.angle_tolerance(v);
|
|
}
|
|
|
|
double angle_tolerance() const
|
|
{
|
|
return m_curve4.angle_tolerance();
|
|
}
|
|
|
|
void cusp_limit(double v)
|
|
{
|
|
m_curve3.cusp_limit(v);
|
|
m_curve4.cusp_limit(v);
|
|
}
|
|
|
|
double cusp_limit() const
|
|
{
|
|
return m_curve4.cusp_limit();
|
|
}
|
|
|
|
void rewind(unsigned path_id);
|
|
unsigned vertex(double* x, double* y);
|
|
|
|
private:
|
|
conv_curve(const self_type&);
|
|
const self_type& operator = (const self_type&);
|
|
|
|
VertexSource* m_source;
|
|
double m_last_x;
|
|
double m_last_y;
|
|
curve3_type m_curve3;
|
|
curve4_type m_curve4;
|
|
};
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
template<class VertexSource, class Curve3, class Curve4>
|
|
void conv_curve<VertexSource, Curve3, Curve4>::rewind(unsigned path_id)
|
|
{
|
|
m_source->rewind(path_id);
|
|
m_last_x = 0.0;
|
|
m_last_y = 0.0;
|
|
m_curve3.reset();
|
|
m_curve4.reset();
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
template<class VertexSource, class Curve3, class Curve4>
|
|
unsigned conv_curve<VertexSource, Curve3, Curve4>::vertex(double* x, double* y)
|
|
{
|
|
if(!is_stop(m_curve3.vertex(x, y)))
|
|
{
|
|
m_last_x = *x;
|
|
m_last_y = *y;
|
|
return path_cmd_line_to;
|
|
}
|
|
|
|
if(!is_stop(m_curve4.vertex(x, y)))
|
|
{
|
|
m_last_x = *x;
|
|
m_last_y = *y;
|
|
return path_cmd_line_to;
|
|
}
|
|
|
|
double ct2_x = 0;
|
|
double ct2_y = 0;
|
|
double end_x = 0;
|
|
double end_y = 0;
|
|
|
|
unsigned cmd = m_source->vertex(x, y);
|
|
switch(cmd)
|
|
{
|
|
case path_cmd_curve3:
|
|
m_source->vertex(&end_x, &end_y);
|
|
|
|
if (!std::isnan(m_last_x) && !std::isnan(m_last_y) && !std::isnan(*x)
|
|
&& !std::isnan(*y) && !std::isnan(end_x) && !std::isnan(end_y)) {
|
|
m_curve3.init(m_last_x, m_last_y,
|
|
*x, *y,
|
|
end_x, end_y);
|
|
|
|
m_curve3.vertex(x, y); // First call returns path_cmd_move_to
|
|
m_curve3.vertex(x, y); // This is the first vertex of the curve
|
|
}
|
|
cmd = path_cmd_line_to;
|
|
break;
|
|
|
|
case path_cmd_curve4:
|
|
m_source->vertex(&ct2_x, &ct2_y);
|
|
m_source->vertex(&end_x, &end_y);
|
|
|
|
if (!std::isnan(m_last_x) && !std::isnan(m_last_y) && !std::isnan(*x)
|
|
&& !std::isnan(*y) && !std::isnan(end_x) && !std::isnan(end_y)) {
|
|
m_curve4.init(m_last_x, m_last_y,
|
|
*x, *y,
|
|
ct2_x, ct2_y,
|
|
end_x, end_y);
|
|
|
|
m_curve4.vertex(x, y); // First call returns path_cmd_move_to
|
|
m_curve4.vertex(x, y); // This is the first vertex of the curve
|
|
}
|
|
cmd = path_cmd_line_to;
|
|
break;
|
|
}
|
|
m_last_x = *x;
|
|
m_last_y = *y;
|
|
return cmd;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|