mirror of
https://review.haiku-os.org/haiku
synced 2025-01-22 06:16:03 +01:00
f2ced752a0
- this differs slightly from the one that lives in buildtools/gcc as it has been "ported" to the newer libio that haiku uses as part of its own libroot git-svn-id: file:///srv/svn/repos/haiku/trunk/current@9906 a95241bf-73f2-0310-859d-f6bbb57e9c96
2542 lines
92 KiB
C++
2542 lines
92 KiB
C++
/*
|
|
* Copyright (c) 1997
|
|
* Silicon Graphics Computer Systems, Inc.
|
|
*
|
|
* Permission to use, copy, modify, distribute and sell this software
|
|
* and its documentation for any purpose is hereby granted without fee,
|
|
* provided that the above copyright notice appear in all copies and
|
|
* that both that copyright notice and this permission notice appear
|
|
* in supporting documentation. Silicon Graphics makes no
|
|
* representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied warranty.
|
|
*/
|
|
|
|
/* NOTE: This is an internal header file, included by other STL headers.
|
|
* You should not attempt to use it directly.
|
|
*/
|
|
|
|
// rope<_CharT,_Alloc> is a sequence of _CharT.
|
|
// Ropes appear to be mutable, but update operations
|
|
// really copy enough of the data structure to leave the original
|
|
// valid. Thus ropes can be logically copied by just copying
|
|
// a pointer value.
|
|
|
|
#ifndef __SGI_STL_INTERNAL_ROPE_H
|
|
# define __SGI_STL_INTERNAL_ROPE_H
|
|
|
|
# ifdef __GC
|
|
# define __GC_CONST const
|
|
# else
|
|
# define __GC_CONST // constant except for deallocation
|
|
# endif
|
|
# ifdef __STL_SGI_THREADS
|
|
# include <mutex.h>
|
|
# endif
|
|
|
|
__STL_BEGIN_NAMESPACE
|
|
|
|
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
|
|
#pragma set woff 1174
|
|
#endif
|
|
|
|
// The _S_eos function is used for those functions that
|
|
// convert to/from C-like strings to detect the end of the string.
|
|
|
|
// The end-of-C-string character.
|
|
// This is what the draft standard says it should be.
|
|
template <class _CharT>
|
|
inline _CharT _S_eos(_CharT*) { return _CharT(); }
|
|
|
|
// Test for basic character types.
|
|
// For basic character types leaves having a trailing eos.
|
|
template <class _CharT>
|
|
inline bool _S_is_basic_char_type(_CharT*) { return false; }
|
|
template <class _CharT>
|
|
inline bool _S_is_one_byte_char_type(_CharT*) { return false; }
|
|
|
|
inline bool _S_is_basic_char_type(char*) { return true; }
|
|
inline bool _S_is_one_byte_char_type(char*) { return true; }
|
|
inline bool _S_is_basic_char_type(wchar_t*) { return true; }
|
|
|
|
// Store an eos iff _CharT is a basic character type.
|
|
// Do not reference _S_eos if it isn't.
|
|
template <class _CharT>
|
|
inline void _S_cond_store_eos(_CharT&) {}
|
|
|
|
inline void _S_cond_store_eos(char& __c) { __c = 0; }
|
|
inline void _S_cond_store_eos(wchar_t& __c) { __c = 0; }
|
|
|
|
// char_producers are logically functions that generate a section of
|
|
// a string. These can be convereted to ropes. The resulting rope
|
|
// invokes the char_producer on demand. This allows, for example,
|
|
// files to be viewed as ropes without reading the entire file.
|
|
template <class _CharT>
|
|
class char_producer {
|
|
public:
|
|
virtual ~char_producer() {};
|
|
virtual void operator()(size_t __start_pos, size_t __len,
|
|
_CharT* __buffer) = 0;
|
|
// Buffer should really be an arbitrary output iterator.
|
|
// That way we could flatten directly into an ostream, etc.
|
|
// This is thoroughly impossible, since iterator types don't
|
|
// have runtime descriptions.
|
|
};
|
|
|
|
// Sequence buffers:
|
|
//
|
|
// Sequence must provide an append operation that appends an
|
|
// array to the sequence. Sequence buffers are useful only if
|
|
// appending an entire array is cheaper than appending element by element.
|
|
// This is true for many string representations.
|
|
// This should perhaps inherit from ostream<sequence::value_type>
|
|
// and be implemented correspondingly, so that they can be used
|
|
// for formatted. For the sake of portability, we don't do this yet.
|
|
//
|
|
// For now, sequence buffers behave as output iterators. But they also
|
|
// behave a little like basic_ostringstream<sequence::value_type> and a
|
|
// little like containers.
|
|
|
|
template<class _Sequence, size_t _Buf_sz = 100
|
|
# if defined(__sgi) && !defined(__GNUC__)
|
|
# define __TYPEDEF_WORKAROUND
|
|
,class _V = typename _Sequence::value_type
|
|
# endif
|
|
>
|
|
// The 3rd parameter works around a common compiler bug.
|
|
class sequence_buffer : public output_iterator {
|
|
public:
|
|
# ifndef __TYPEDEF_WORKAROUND
|
|
typedef typename _Sequence::value_type value_type;
|
|
# else
|
|
typedef _V value_type;
|
|
# endif
|
|
protected:
|
|
_Sequence* _M_prefix;
|
|
value_type _M_buffer[_Buf_sz];
|
|
size_t _M_buf_count;
|
|
public:
|
|
void flush() {
|
|
_M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
|
|
_M_buf_count = 0;
|
|
}
|
|
~sequence_buffer() { flush(); }
|
|
sequence_buffer() : _M_prefix(0), _M_buf_count(0) {}
|
|
sequence_buffer(const sequence_buffer& __x) {
|
|
_M_prefix = __x._M_prefix;
|
|
_M_buf_count = __x._M_buf_count;
|
|
copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
|
|
}
|
|
sequence_buffer(sequence_buffer& __x) {
|
|
__x.flush();
|
|
_M_prefix = __x._M_prefix;
|
|
_M_buf_count = 0;
|
|
}
|
|
sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {}
|
|
sequence_buffer& operator= (sequence_buffer& __x) {
|
|
__x.flush();
|
|
_M_prefix = __x._M_prefix;
|
|
_M_buf_count = 0;
|
|
return *this;
|
|
}
|
|
sequence_buffer& operator= (const sequence_buffer& __x) {
|
|
_M_prefix = __x._M_prefix;
|
|
_M_buf_count = __x._M_buf_count;
|
|
copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
|
|
return *this;
|
|
}
|
|
void push_back(value_type __x)
|
|
{
|
|
if (_M_buf_count < _Buf_sz) {
|
|
_M_buffer[_M_buf_count] = __x;
|
|
++_M_buf_count;
|
|
} else {
|
|
flush();
|
|
_M_buffer[0] = __x;
|
|
_M_buf_count = 1;
|
|
}
|
|
}
|
|
void append(value_type* __s, size_t __len)
|
|
{
|
|
if (__len + _M_buf_count <= _Buf_sz) {
|
|
size_t __i = _M_buf_count;
|
|
size_t __j = 0;
|
|
for (; __j < __len; __i++, __j++) {
|
|
_M_buffer[__i] = __s[__j];
|
|
}
|
|
_M_buf_count += __len;
|
|
} else if (0 == _M_buf_count) {
|
|
_M_prefix->append(__s, __s + __len);
|
|
} else {
|
|
flush();
|
|
append(__s, __len);
|
|
}
|
|
}
|
|
sequence_buffer& write(value_type* __s, size_t __len)
|
|
{
|
|
append(__s, __len);
|
|
return *this;
|
|
}
|
|
sequence_buffer& put(value_type __x)
|
|
{
|
|
push_back(__x);
|
|
return *this;
|
|
}
|
|
sequence_buffer& operator=(const value_type& __rhs)
|
|
{
|
|
push_back(__rhs);
|
|
return *this;
|
|
}
|
|
sequence_buffer& operator*() { return *this; }
|
|
sequence_buffer& operator++() { return *this; }
|
|
sequence_buffer& operator++(int) { return *this; }
|
|
};
|
|
|
|
// The following should be treated as private, at least for now.
|
|
template<class _CharT>
|
|
class _Rope_char_consumer {
|
|
public:
|
|
// If we had member templates, these should not be virtual.
|
|
// For now we need to use run-time parametrization where
|
|
// compile-time would do. _Hence this should all be private
|
|
// for now.
|
|
// The symmetry with char_producer is accidental and temporary.
|
|
virtual ~_Rope_char_consumer() {};
|
|
virtual bool operator()(const _CharT* __buffer, size_t __len) = 0;
|
|
};
|
|
|
|
//
|
|
// What follows should really be local to rope. Unfortunately,
|
|
// that doesn't work, since it makes it impossible to define generic
|
|
// equality on rope iterators. According to the draft standard, the
|
|
// template parameters for such an equality operator cannot be inferred
|
|
// from the occurence of a member class as a parameter.
|
|
// (SGI compilers in fact allow this, but the __result wouldn't be
|
|
// portable.)
|
|
// Similarly, some of the static member functions are member functions
|
|
// only to avoid polluting the global namespace, and to circumvent
|
|
// restrictions on type inference for template functions.
|
|
//
|
|
|
|
template<class _CharT, class _Alloc=__STL_DEFAULT_ALLOCATOR(_CharT)> class rope;
|
|
template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation;
|
|
template<class _CharT, class _Alloc> struct _Rope_RopeLeaf;
|
|
template<class _CharT, class _Alloc> struct _Rope_RopeFunction;
|
|
template<class _CharT, class _Alloc> struct _Rope_RopeSubstring;
|
|
template<class _CharT, class _Alloc> class _Rope_iterator;
|
|
template<class _CharT, class _Alloc> class _Rope_const_iterator;
|
|
template<class _CharT, class _Alloc> class _Rope_char_ref_proxy;
|
|
template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy;
|
|
|
|
//
|
|
// The internal data structure for representing a rope. This is
|
|
// private to the implementation. A rope is really just a pointer
|
|
// to one of these.
|
|
//
|
|
// A few basic functions for manipulating this data structure
|
|
// are members of _RopeRep. Most of the more complex algorithms
|
|
// are implemented as rope members.
|
|
//
|
|
// Some of the static member functions of _RopeRep have identically
|
|
// named functions in rope that simply invoke the _RopeRep versions.
|
|
//
|
|
// A macro to introduce various allocation and deallocation functions
|
|
// These need to be defined differently depending on whether or not
|
|
// we are using standard conforming allocators, and whether the allocator
|
|
// instances have real state. Thus this macro is invoked repeatedly
|
|
// with different definitions of __ROPE_DEFINE_ALLOC.
|
|
// __ROPE_DEFINE_ALLOC(type,name) defines
|
|
// type * name_allocate(size_t) and
|
|
// void name_deallocate(tipe *, size_t)
|
|
// Both functions may or may not be static.
|
|
|
|
#define __ROPE_DEFINE_ALLOCS(__a) \
|
|
__ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \
|
|
typedef _Rope_RopeConcatenation<_CharT,__a> __C; \
|
|
__ROPE_DEFINE_ALLOC(__C,_C) \
|
|
typedef _Rope_RopeLeaf<_CharT,__a> __L; \
|
|
__ROPE_DEFINE_ALLOC(__L,_L) \
|
|
typedef _Rope_RopeFunction<_CharT,__a> __F; \
|
|
__ROPE_DEFINE_ALLOC(__F,_F) \
|
|
typedef _Rope_RopeSubstring<_CharT,__a> __S; \
|
|
__ROPE_DEFINE_ALLOC(__S,_S)
|
|
|
|
// Internal rope nodes potentially store a copy of the allocator
|
|
// instance used to allocate them. This is mostly redundant.
|
|
// But the alternative would be to pass allocator instances around
|
|
// in some form to nearly all internal functions, since any pointer
|
|
// assignment may result in a zero reference count and thus require
|
|
// deallocation.
|
|
// The _Rope_rep_base class encapsulates
|
|
// the differences between SGI-style allocators and standard-conforming
|
|
// allocators.
|
|
|
|
#ifdef __STL_USE_STD_ALLOCATORS
|
|
|
|
#define __STATIC_IF_SGI_ALLOC /* not static */
|
|
|
|
// Base class for ordinary allocators.
|
|
template <class _CharT, class _Allocator, bool _IsStatic>
|
|
class _Rope_rep_alloc_base {
|
|
public:
|
|
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
|
|
allocator_type;
|
|
allocator_type get_allocator() const { return _M_data_allocator; }
|
|
_Rope_rep_alloc_base(size_t __size, const allocator_type& __a)
|
|
: _M_size(__size), _M_data_allocator(__a) {}
|
|
size_t _M_size; // This is here only to avoid wasting space
|
|
// for an otherwise empty base class.
|
|
|
|
|
|
protected:
|
|
allocator_type _M_data_allocator;
|
|
|
|
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
|
|
typedef typename \
|
|
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
|
|
/*static*/ _Tp * __name##_allocate(size_t __n) \
|
|
{ return __name##Allocator(_M_data_allocator).allocate(__n); } \
|
|
void __name##_deallocate(_Tp* __p, size_t __n) \
|
|
{ __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
|
|
__ROPE_DEFINE_ALLOCS(_Allocator);
|
|
# undef __ROPE_DEFINE_ALLOC
|
|
};
|
|
|
|
// Specialization for allocators that have the property that we don't
|
|
// actually have to store an allocator object.
|
|
template <class _CharT, class _Allocator>
|
|
class _Rope_rep_alloc_base<_CharT,_Allocator,true> {
|
|
public:
|
|
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
|
|
allocator_type;
|
|
allocator_type get_allocator() const { return allocator_type(); }
|
|
_Rope_rep_alloc_base(size_t __size, const allocator_type&)
|
|
: _M_size(__size) {}
|
|
size_t _M_size;
|
|
|
|
protected:
|
|
|
|
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
|
|
typedef typename \
|
|
_Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
|
|
typedef typename \
|
|
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
|
|
static _Tp* __name##_allocate(size_t __n) \
|
|
{ return __name##Alloc::allocate(__n); } \
|
|
void __name##_deallocate(_Tp *__p, size_t __n) \
|
|
{ __name##Alloc::deallocate(__p, __n); }
|
|
__ROPE_DEFINE_ALLOCS(_Allocator);
|
|
# undef __ROPE_DEFINE_ALLOC
|
|
};
|
|
|
|
template <class _CharT, class _Alloc>
|
|
struct _Rope_rep_base
|
|
: public _Rope_rep_alloc_base<_CharT,_Alloc,
|
|
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
|
|
{
|
|
typedef _Rope_rep_alloc_base<_CharT,_Alloc,
|
|
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
|
|
_Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
_Rope_rep_base(size_t __size, const allocator_type& __a)
|
|
: _Base(__size, __a) {}
|
|
};
|
|
|
|
#else /* !__STL_USE_STD_ALLOCATORS */
|
|
|
|
#define __STATIC_IF_SGI_ALLOC static
|
|
|
|
template <class _CharT, class _Alloc>
|
|
class _Rope_rep_base {
|
|
public:
|
|
typedef _Alloc allocator_type;
|
|
static allocator_type get_allocator() { return allocator_type(); }
|
|
_Rope_rep_base(size_t __size, const allocator_type&) : _M_size(__size) {}
|
|
size_t _M_size;
|
|
|
|
protected:
|
|
|
|
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
|
|
typedef simple_alloc<_Tp, _Alloc> __name##Alloc; \
|
|
static _Tp* __name##_allocate(size_t __n) \
|
|
{ return __name##Alloc::allocate(__n); } \
|
|
static void __name##_deallocate(_Tp* __p, size_t __n) \
|
|
{ __name##Alloc::deallocate(__p, __n); }
|
|
__ROPE_DEFINE_ALLOCS(_Alloc);
|
|
# undef __ROPE_DEFINE_ALLOC
|
|
};
|
|
|
|
#endif /* __STL_USE_STD_ALLOCATORS */
|
|
|
|
|
|
template<class _CharT, class _Alloc>
|
|
struct _Rope_RopeRep : public _Rope_rep_base<_CharT,_Alloc> {
|
|
public:
|
|
enum { _S_max_rope_depth = 45 };
|
|
enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
|
|
_Tag _M_tag:8;
|
|
bool _M_is_balanced:8;
|
|
unsigned char _M_depth;
|
|
__GC_CONST _CharT* _M_c_string;
|
|
/* Flattened version of string, if needed. */
|
|
/* typically 0. */
|
|
/* If it's not 0, then the memory is owned */
|
|
/* by this node. */
|
|
/* In the case of a leaf, this may point to */
|
|
/* the same memory as the data field. */
|
|
typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
|
|
_Rope_RopeRep(_Tag __t, int __d, bool __b, size_t __size,
|
|
allocator_type __a)
|
|
: _Rope_rep_base<_CharT,_Alloc>(__size, __a),
|
|
_M_tag(__t), _M_depth(__d), _M_is_balanced(__b), _M_c_string(0)
|
|
{
|
|
# ifndef __GC
|
|
_M_refcount = 1;
|
|
_M_init_refcount_lock();
|
|
# endif
|
|
}
|
|
# ifndef __GC
|
|
# if defined(__STL_WIN32THREADS)
|
|
long _M_refcount; // InterlockedIncrement wants a long *
|
|
# else
|
|
size_t _M_refcount;
|
|
# endif
|
|
// We count references from rope instances
|
|
// and references from other rope nodes. We
|
|
// do not count const_iterator references.
|
|
// Iterator references are counted so that rope modifications
|
|
// can be detected after the fact.
|
|
// Generally function results are counted, i.__e.
|
|
// a pointer returned by a function is included at the
|
|
// point at which the pointer is returned.
|
|
// The recipient should decrement the count if the
|
|
// __result is not needed.
|
|
// Generally function arguments are not reflected
|
|
// in the reference count. The callee should increment
|
|
// the count before saving the argument someplace that
|
|
// will outlive the call.
|
|
# endif
|
|
# ifndef __GC
|
|
# ifdef __STL_SGI_THREADS
|
|
// Reference counting with multiple threads and no
|
|
// hardware or thread package support is pretty awful.
|
|
// Mutexes are normally too expensive.
|
|
// We'll assume a COMPARE_AND_SWAP(destp, __old, new)
|
|
// operation, which might be cheaper.
|
|
# if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64))
|
|
# define __add_and_fetch(l,v) add_then_test((unsigned long*)l,v)
|
|
# endif
|
|
void _M_init_refcount_lock() {}
|
|
void _M_incr_refcount ()
|
|
{
|
|
__add_and_fetch(&_M_refcount, 1);
|
|
}
|
|
size_t _M_decr_refcount ()
|
|
{
|
|
return __add_and_fetch(&_M_refcount, (size_t)(-1));
|
|
}
|
|
# elif defined(__STL_WIN32THREADS)
|
|
void _M_init_refcount_lock() {}
|
|
void _M_incr_refcount ()
|
|
{
|
|
InterlockedIncrement(&_M_refcount);
|
|
}
|
|
size_t _M_decr_refcount ()
|
|
{
|
|
return InterlockedDecrement(&_M_refcount);
|
|
}
|
|
# elif defined(__STL_PTHREADS)
|
|
// This should be portable, but performance is expected
|
|
// to be quite awful. This really needs platform specific
|
|
// code.
|
|
pthread_mutex_t _M_refcount_lock;
|
|
void _M_init_refcount_lock() {
|
|
pthread_mutex_init(&_M_refcount_lock, 0);
|
|
}
|
|
void _M_incr_refcount ()
|
|
{
|
|
pthread_mutex_lock(&_M_refcount_lock);
|
|
++_M_refcount;
|
|
pthread_mutex_unlock(&_M_refcount_lock);
|
|
}
|
|
size_t _M_decr_refcount ()
|
|
{
|
|
size_t __result;
|
|
pthread_mutex_lock(&_M_refcount_lock);
|
|
__result = --_M_refcount;
|
|
pthread_mutex_unlock(&_M_refcount_lock);
|
|
return __result;
|
|
}
|
|
# else
|
|
void _M_init_refcount_lock() {}
|
|
void _M_incr_refcount ()
|
|
{
|
|
++_M_refcount;
|
|
}
|
|
size_t _M_decr_refcount ()
|
|
{
|
|
--_M_refcount;
|
|
return _M_refcount;
|
|
}
|
|
# endif
|
|
# else
|
|
void _M_incr_refcount () {}
|
|
# endif
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
static void _S_free_string(__GC_CONST _CharT*, size_t __len,
|
|
allocator_type __a);
|
|
# define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a);
|
|
# else
|
|
static void _S_free_string(__GC_CONST _CharT*, size_t __len);
|
|
# define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l);
|
|
# endif
|
|
// Deallocate data section of a leaf.
|
|
// This shouldn't be a member function.
|
|
// But its hard to do anything else at the
|
|
// moment, because it's templatized w.r.t.
|
|
// an allocator.
|
|
// Does nothing if __GC is defined.
|
|
# ifndef __GC
|
|
void _M_free_c_string();
|
|
void _M_free_tree();
|
|
// Deallocate t. Assumes t is not 0.
|
|
void _M_unref_nonnil()
|
|
{
|
|
if (0 == _M_decr_refcount()) _M_free_tree();
|
|
}
|
|
void _M_ref_nonnil()
|
|
{
|
|
_M_incr_refcount();
|
|
}
|
|
static void _S_unref(_Rope_RopeRep* __t)
|
|
{
|
|
if (0 != __t) {
|
|
__t->_M_unref_nonnil();
|
|
}
|
|
}
|
|
static void _S_ref(_Rope_RopeRep* __t)
|
|
{
|
|
if (0 != __t) __t->_M_incr_refcount();
|
|
}
|
|
static void _S_free_if_unref(_Rope_RopeRep* __t)
|
|
{
|
|
if (0 != __t && 0 == __t->_M_refcount) __t->_M_free_tree();
|
|
}
|
|
# else /* __GC */
|
|
void _M_unref_nonnil() {}
|
|
void _M_ref_nonnil() {}
|
|
static void _S_unref(_Rope_RopeRep*) {}
|
|
static void _S_ref(_Rope_RopeRep*) {}
|
|
static void _S_free_if_unref(_Rope_RopeRep*) {}
|
|
# endif
|
|
|
|
};
|
|
|
|
template<class _CharT, class _Alloc>
|
|
struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> {
|
|
public:
|
|
// Apparently needed by VC++
|
|
// The data fields of leaves are allocated with some
|
|
// extra space, to accomodate future growth and for basic
|
|
// character types, to hold a trailing eos character.
|
|
enum { _S_alloc_granularity = 8 };
|
|
static size_t _S_rounded_up_size(size_t __n) {
|
|
size_t __size_with_eos;
|
|
|
|
if (_S_is_basic_char_type((_CharT*)0)) {
|
|
__size_with_eos = __n + 1;
|
|
} else {
|
|
__size_with_eos = __n;
|
|
}
|
|
# ifdef __GC
|
|
return __size_with_eos;
|
|
# else
|
|
// Allow slop for in-place expansion.
|
|
return (__size_with_eos + _S_alloc_granularity-1)
|
|
&~ (_S_alloc_granularity-1);
|
|
# endif
|
|
}
|
|
__GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */
|
|
/* The allocated size is */
|
|
/* _S_rounded_up_size(size), except */
|
|
/* in the GC case, in which it */
|
|
/* doesn't matter. */
|
|
typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
|
|
_Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, allocator_type __a)
|
|
: _Rope_RopeRep<_CharT,_Alloc>(_S_leaf, 0, true, __size, __a),
|
|
_M_data(__d)
|
|
{
|
|
__stl_assert(__size > 0);
|
|
if (_S_is_basic_char_type((_CharT *)0)) {
|
|
// already eos terminated.
|
|
_M_c_string = __d;
|
|
}
|
|
}
|
|
// The constructor assumes that d has been allocated with
|
|
// the proper allocator and the properly padded size.
|
|
// In contrast, the destructor deallocates the data:
|
|
# ifndef __GC
|
|
~_Rope_RopeLeaf() {
|
|
if (_M_data != _M_c_string) {
|
|
_M_free_c_string();
|
|
}
|
|
__STL_FREE_STRING(_M_data, _M_size, get_allocator());
|
|
}
|
|
# endif
|
|
};
|
|
|
|
template<class _CharT, class _Alloc>
|
|
struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT,_Alloc> {
|
|
public:
|
|
_Rope_RopeRep<_CharT,_Alloc>* _M_left;
|
|
_Rope_RopeRep<_CharT,_Alloc>* _M_right;
|
|
typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
|
|
_Rope_RopeConcatenation(_Rope_RopeRep<_CharT,_Alloc>* __l,
|
|
_Rope_RopeRep<_CharT,_Alloc>* __r,
|
|
allocator_type __a)
|
|
: _Rope_RopeRep<_CharT,_Alloc>(
|
|
_S_concat, max(__l->_M_depth, __r->_M_depth) + 1, false,
|
|
__l->_M_size + __r->_M_size, __a),
|
|
_M_left(__l), _M_right(__r)
|
|
{}
|
|
# ifndef __GC
|
|
~_Rope_RopeConcatenation() {
|
|
_M_free_c_string();
|
|
_M_left->_M_unref_nonnil();
|
|
_M_right->_M_unref_nonnil();
|
|
}
|
|
# endif
|
|
};
|
|
|
|
template<class _CharT, class _Alloc>
|
|
struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT,_Alloc> {
|
|
public:
|
|
char_producer<_CharT>* _M_fn;
|
|
# ifndef __GC
|
|
bool _M_delete_when_done; // Char_producer is owned by the
|
|
// rope and should be explicitly
|
|
// deleted when the rope becomes
|
|
// inaccessible.
|
|
# else
|
|
// In the GC case, we either register the rope for
|
|
// finalization, or not. Thus the field is unnecessary;
|
|
// the information is stored in the collector data structures.
|
|
// We do need a finalization procedure to be invoked by the
|
|
// collector.
|
|
static void _S_fn_finalization_proc(void * __tree, void *) {
|
|
delete ((_Rope_RopeFunction *)__tree) -> _M_fn;
|
|
}
|
|
# endif
|
|
typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
|
|
_Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size,
|
|
bool __d, allocator_type __a)
|
|
:_Rope_RopeRep<_CharT,_Alloc>(_S_function, 0, true, __size, __a),
|
|
_M_fn(__f)
|
|
# ifndef __GC
|
|
, _M_delete_when_done(__d)
|
|
# endif
|
|
{
|
|
__stl_assert(__size > 0);
|
|
# ifdef __GC
|
|
if (__d) {
|
|
GC_REGISTER_FINALIZER(
|
|
this, _Rope_RopeFunction::_S_fn_finalization_proc, 0, 0, 0);
|
|
}
|
|
# endif
|
|
}
|
|
# ifndef __GC
|
|
~_Rope_RopeFunction() {
|
|
_M_free_c_string();
|
|
if (_M_delete_when_done) {
|
|
delete _M_fn;
|
|
}
|
|
}
|
|
# endif
|
|
};
|
|
// Substring results are usually represented using just
|
|
// concatenation nodes. But in the case of very long flat ropes
|
|
// or ropes with a functional representation that isn't practical.
|
|
// In that case, we represent the __result as a special case of
|
|
// RopeFunction, whose char_producer points back to the rope itself.
|
|
// In all cases except repeated substring operations and
|
|
// deallocation, we treat the __result as a RopeFunction.
|
|
template<class _CharT, class _Alloc>
|
|
struct _Rope_RopeSubstring : public _Rope_RopeFunction<_CharT,_Alloc>,
|
|
public char_producer<_CharT> {
|
|
public:
|
|
// XXX this whole class should be rewritten.
|
|
_Rope_RopeRep<_CharT,_Alloc>* _M_base; // not 0
|
|
size_t _M_start;
|
|
virtual void operator()(size_t __start_pos, size_t __req_len,
|
|
_CharT* __buffer) {
|
|
switch(_M_base->_M_tag) {
|
|
case _S_function:
|
|
case _S_substringfn:
|
|
{
|
|
char_producer<_CharT>* __fn =
|
|
((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn;
|
|
__stl_assert(__start_pos + __req_len <= _M_size);
|
|
__stl_assert(_M_start + _M_size <= _M_base->_M_size);
|
|
(*__fn)(__start_pos + _M_start, __req_len, __buffer);
|
|
}
|
|
break;
|
|
case _S_leaf:
|
|
{
|
|
__GC_CONST _CharT* __s =
|
|
((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data;
|
|
uninitialized_copy_n(__s + __start_pos + _M_start, __req_len,
|
|
__buffer);
|
|
}
|
|
break;
|
|
default:
|
|
__stl_assert(false);
|
|
}
|
|
}
|
|
typedef _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type;
|
|
_Rope_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
|
|
size_t __l, allocator_type __a)
|
|
: _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a), _M_base(__b)
|
|
, _M_start(__s)
|
|
{
|
|
__stl_assert(__l > 0);
|
|
__stl_assert(__s + __l <= __b->_M_size);
|
|
# ifndef __GC
|
|
_M_base->_M_ref_nonnil();
|
|
# endif
|
|
_M_tag = _S_substringfn;
|
|
}
|
|
virtual ~_Rope_RopeSubstring()
|
|
{
|
|
# ifndef __GC
|
|
_M_base->_M_unref_nonnil();
|
|
// _M_free_c_string(); -- done by parent class
|
|
# endif
|
|
}
|
|
};
|
|
|
|
|
|
// Self-destructing pointers to Rope_rep.
|
|
// These are not conventional smart pointers. Their
|
|
// only purpose in life is to ensure that unref is called
|
|
// on the pointer either at normal exit or if an exception
|
|
// is raised. It is the caller's responsibility to
|
|
// adjust reference counts when these pointers are initialized
|
|
// or assigned to. (This convention significantly reduces
|
|
// the number of potentially expensive reference count
|
|
// updates.)
|
|
#ifndef __GC
|
|
template<class _CharT, class _Alloc>
|
|
struct _Rope_self_destruct_ptr {
|
|
_Rope_RopeRep<_CharT,_Alloc>* _M_ptr;
|
|
~_Rope_self_destruct_ptr()
|
|
{ _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); }
|
|
# ifdef __STL_USE_EXCEPTIONS
|
|
_Rope_self_destruct_ptr() : _M_ptr(0) {};
|
|
# else
|
|
_Rope_self_destruct_ptr() {};
|
|
# endif
|
|
_Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {}
|
|
_Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; }
|
|
_Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; }
|
|
operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; }
|
|
_Rope_self_destruct_ptr& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x)
|
|
{ _M_ptr = __x; return *this; }
|
|
};
|
|
#endif
|
|
|
|
// Dereferencing a nonconst iterator has to return something
|
|
// that behaves almost like a reference. It's not possible to
|
|
// return an actual reference since assignment requires extra
|
|
// work. And we would get into the same problems as with the
|
|
// CD2 version of basic_string.
|
|
template<class _CharT, class _Alloc>
|
|
class _Rope_char_ref_proxy {
|
|
friend class rope<_CharT,_Alloc>;
|
|
friend class _Rope_iterator<_CharT,_Alloc>;
|
|
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
|
|
# ifdef __GC
|
|
typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
|
|
# else
|
|
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
|
|
# endif
|
|
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
|
|
typedef rope<_CharT,_Alloc> _My_rope;
|
|
size_t _M_pos;
|
|
_CharT _M_current;
|
|
bool _M_current_valid;
|
|
_My_rope* _M_root; // The whole rope.
|
|
public:
|
|
_Rope_char_ref_proxy(_My_rope* __r, size_t __p) :
|
|
_M_pos(__p), _M_current_valid(false), _M_root(__r) {}
|
|
_Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x) :
|
|
_M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {}
|
|
// Don't preserve cache if the reference can outlive the
|
|
// expression. We claim that's not possible without calling
|
|
// a copy constructor or generating reference to a proxy
|
|
// reference. We declare the latter to have undefined semantics.
|
|
_Rope_char_ref_proxy(_My_rope* __r, size_t __p,
|
|
_CharT __c) :
|
|
_M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {}
|
|
inline operator _CharT () const;
|
|
_Rope_char_ref_proxy& operator= (_CharT __c);
|
|
_Rope_char_ptr_proxy<_CharT,_Alloc> operator& () const;
|
|
_Rope_char_ref_proxy& operator= (const _Rope_char_ref_proxy& __c) {
|
|
return operator=((_CharT)__c);
|
|
}
|
|
};
|
|
|
|
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
|
|
template<class _CharT, class __Alloc>
|
|
inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
|
|
_Rope_char_ref_proxy <_CharT, __Alloc > __b) {
|
|
_CharT __tmp = __a;
|
|
__a = __b;
|
|
__b = __tmp;
|
|
}
|
|
#else
|
|
// There is no really acceptable way to handle this. The default
|
|
// definition of swap doesn't work for proxy references.
|
|
// It can't really be made to work, even with ugly hacks, since
|
|
// the only unusual operation it uses is the copy constructor, which
|
|
// is needed for other purposes. We provide a macro for
|
|
// full specializations, and instantiate the most common case.
|
|
# define _ROPE_SWAP_SPECIALIZATION(_CharT, __Alloc) \
|
|
inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, \
|
|
_Rope_char_ref_proxy <_CharT, __Alloc > __b) { \
|
|
_CharT __tmp = __a; \
|
|
__a = __b; \
|
|
__b = __tmp; \
|
|
}
|
|
|
|
_ROPE_SWAP_SPECIALIZATION(char,__STL_DEFAULT_ALLOCATOR(char))
|
|
|
|
#endif /* !__STL_FUNCTION_TMPL_PARTIAL_ORDER */
|
|
|
|
template<class _CharT, class _Alloc>
|
|
class _Rope_char_ptr_proxy {
|
|
// XXX this class should be rewritten.
|
|
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
|
|
size_t _M_pos;
|
|
rope<_CharT,_Alloc>* _M_root; // The whole rope.
|
|
public:
|
|
_Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x)
|
|
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
|
|
_Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x)
|
|
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
|
|
_Rope_char_ptr_proxy() {}
|
|
_Rope_char_ptr_proxy(_CharT* __x) : _M_root(0), _M_pos(0) {
|
|
__stl_assert(0 == __x);
|
|
}
|
|
_Rope_char_ptr_proxy&
|
|
operator= (const _Rope_char_ptr_proxy& __x) {
|
|
_M_pos = __x._M_pos;
|
|
_M_root = __x._M_root;
|
|
return *this;
|
|
}
|
|
friend bool operator== __STL_NULL_TMPL_ARGS
|
|
(const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
|
|
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y);
|
|
|
|
_Rope_char_ref_proxy<_CharT,_Alloc> operator*() const {
|
|
return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos);
|
|
}
|
|
};
|
|
|
|
|
|
// Rope iterators:
|
|
// Unlike in the C version, we cache only part of the stack
|
|
// for rope iterators, since they must be efficiently copyable.
|
|
// When we run out of cache, we have to reconstruct the iterator
|
|
// value.
|
|
// Pointers from iterators are not included in reference counts.
|
|
// Iterators are assumed to be thread private. Ropes can
|
|
// be shared.
|
|
|
|
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
|
|
#pragma set woff 1375
|
|
#endif
|
|
|
|
template<class _CharT, class _Alloc>
|
|
class _Rope_iterator_base
|
|
: public random_access_iterator<_CharT, ptrdiff_t> {
|
|
friend class rope<_CharT,_Alloc>;
|
|
public:
|
|
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
|
|
// Borland doesnt want this to be protected.
|
|
protected:
|
|
enum { _S_path_cache_len = 4 }; // Must be <= 9.
|
|
enum { _S_iterator_buf_len = 15 };
|
|
size_t _M_current_pos;
|
|
_RopeRep* _M_root; // The whole rope.
|
|
size_t _M_leaf_pos; // Starting position for current leaf
|
|
__GC_CONST _CharT* _M_buf_start;
|
|
// Buffer possibly
|
|
// containing current char.
|
|
__GC_CONST _CharT* _M_buf_ptr;
|
|
// Pointer to current char in buffer.
|
|
// != 0 ==> buffer valid.
|
|
__GC_CONST _CharT* _M_buf_end;
|
|
// One past __last valid char in buffer.
|
|
// What follows is the path cache. We go out of our
|
|
// way to make this compact.
|
|
// Path_end contains the bottom section of the path from
|
|
// the root to the current leaf.
|
|
const _RopeRep* _M_path_end[_S_path_cache_len];
|
|
int _M_leaf_index; // Last valid __pos in path_end;
|
|
// _M_path_end[0] ... _M_path_end[leaf_index-1]
|
|
// point to concatenation nodes.
|
|
unsigned char _M_path_directions;
|
|
// (path_directions >> __i) & 1 is 1
|
|
// iff we got from _M_path_end[leaf_index - __i - 1]
|
|
// to _M_path_end[leaf_index - __i] by going to the
|
|
// __right. Assumes path_cache_len <= 9.
|
|
_CharT _M_tmp_buf[_S_iterator_buf_len];
|
|
// Short buffer for surrounding chars.
|
|
// This is useful primarily for
|
|
// RopeFunctions. We put the buffer
|
|
// here to avoid locking in the
|
|
// multithreaded case.
|
|
// The cached path is generally assumed to be valid
|
|
// only if the buffer is valid.
|
|
static void _S_setbuf(_Rope_iterator_base& __x);
|
|
// Set buffer contents given
|
|
// path cache.
|
|
static void _S_setcache(_Rope_iterator_base& __x);
|
|
// Set buffer contents and
|
|
// path cache.
|
|
static void _S_setcache_for_incr(_Rope_iterator_base& __x);
|
|
// As above, but assumes path
|
|
// cache is valid for previous posn.
|
|
_Rope_iterator_base() {}
|
|
_Rope_iterator_base(_RopeRep* __root, size_t __pos)
|
|
: _M_root(__root), _M_current_pos(__pos), _M_buf_ptr(0) {}
|
|
void _M_incr(size_t __n);
|
|
void _M_decr(size_t __n);
|
|
public:
|
|
size_t index() const { return _M_current_pos; }
|
|
_Rope_iterator_base(const _Rope_iterator_base& __x) {
|
|
if (0 != __x._M_buf_ptr) {
|
|
*this = __x;
|
|
} else {
|
|
_M_current_pos = __x._M_current_pos;
|
|
_M_root = __x._M_root;
|
|
_M_buf_ptr = 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<class _CharT, class _Alloc> class _Rope_iterator;
|
|
|
|
template<class _CharT, class _Alloc>
|
|
class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
|
|
friend class rope<_CharT,_Alloc>;
|
|
protected:
|
|
_Rope_const_iterator(const _RopeRep* __root, size_t __pos):
|
|
_Rope_iterator_base<_CharT,_Alloc>(
|
|
const_cast<_RopeRep*>(__root), __pos)
|
|
// Only nonconst iterators modify root ref count
|
|
{}
|
|
public:
|
|
typedef _CharT reference; // Really a value. Returning a reference
|
|
// Would be a mess, since it would have
|
|
// to be included in refcount.
|
|
typedef const _CharT* pointer;
|
|
|
|
public:
|
|
_Rope_const_iterator() {};
|
|
_Rope_const_iterator(const _Rope_const_iterator& __x) :
|
|
_Rope_iterator_base<_CharT,_Alloc>(__x) { }
|
|
_Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x);
|
|
_Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) :
|
|
_Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) {}
|
|
_Rope_const_iterator& operator= (const _Rope_const_iterator& __x) {
|
|
if (0 != __x._M_buf_ptr) {
|
|
*(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
|
|
} else {
|
|
_M_current_pos = __x._M_current_pos;
|
|
_M_root = __x._M_root;
|
|
_M_buf_ptr = 0;
|
|
}
|
|
return(*this);
|
|
}
|
|
reference operator*() {
|
|
if (0 == _M_buf_ptr) _S_setcache(*this);
|
|
return *_M_buf_ptr;
|
|
}
|
|
_Rope_const_iterator& operator++() {
|
|
__GC_CONST _CharT* __next;
|
|
if (0 != _M_buf_ptr && (__next = _M_buf_ptr + 1) < _M_buf_end) {
|
|
_M_buf_ptr = __next;
|
|
++_M_current_pos;
|
|
} else {
|
|
_M_incr(1);
|
|
}
|
|
return *this;
|
|
}
|
|
_Rope_const_iterator& operator+=(ptrdiff_t __n) {
|
|
if (__n >= 0) {
|
|
_M_incr(__n);
|
|
} else {
|
|
_M_decr(-__n);
|
|
}
|
|
return *this;
|
|
}
|
|
_Rope_const_iterator& operator--() {
|
|
_M_decr(1);
|
|
return *this;
|
|
}
|
|
_Rope_const_iterator& operator-=(ptrdiff_t __n) {
|
|
if (__n >= 0) {
|
|
_M_decr(__n);
|
|
} else {
|
|
_M_incr(-__n);
|
|
}
|
|
return *this;
|
|
}
|
|
_Rope_const_iterator operator++(int) {
|
|
size_t __old_pos = _M_current_pos;
|
|
_M_incr(1);
|
|
return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
|
|
// This makes a subsequent dereference expensive.
|
|
// Perhaps we should instead copy the iterator
|
|
// if it has a valid cache?
|
|
}
|
|
_Rope_const_iterator operator--(int) {
|
|
size_t __old_pos = _M_current_pos;
|
|
_M_decr(1);
|
|
return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
|
|
}
|
|
friend _Rope_const_iterator<_CharT,_Alloc> operator- __STL_NULL_TMPL_ARGS
|
|
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
ptrdiff_t __n);
|
|
friend _Rope_const_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
|
|
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
ptrdiff_t __n);
|
|
friend _Rope_const_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
|
|
(ptrdiff_t __n,
|
|
const _Rope_const_iterator<_CharT,_Alloc>& __x);
|
|
reference operator[](size_t __n) {
|
|
return rope<_CharT,_Alloc>::_S_fetch(_M_root, _M_current_pos + __n);
|
|
}
|
|
friend bool operator== __STL_NULL_TMPL_ARGS
|
|
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_const_iterator<_CharT,_Alloc>& __y);
|
|
friend bool operator< __STL_NULL_TMPL_ARGS
|
|
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_const_iterator<_CharT,_Alloc>& __y);
|
|
friend ptrdiff_t operator- __STL_NULL_TMPL_ARGS
|
|
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_const_iterator<_CharT,_Alloc>& __y);
|
|
};
|
|
|
|
template<class _CharT, class _Alloc>
|
|
class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
|
|
friend class rope<_CharT,_Alloc>;
|
|
protected:
|
|
rope<_CharT,_Alloc>* _M_root_rope;
|
|
// root is treated as a cached version of this,
|
|
// and is used to detect changes to the underlying
|
|
// rope.
|
|
// Root is included in the reference count.
|
|
// This is necessary so that we can detect changes reliably.
|
|
// Unfortunately, it requires careful bookkeeping for the
|
|
// nonGC case.
|
|
_Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos)
|
|
: _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr, __pos),
|
|
_M_root_rope(__r)
|
|
{ _RopeRep::_S_ref(_M_root); }
|
|
|
|
void _M_check();
|
|
public:
|
|
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
|
|
typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer;
|
|
|
|
public:
|
|
rope<_CharT,_Alloc>& container() { return *_M_root_rope; }
|
|
_Rope_iterator() {
|
|
_M_root = 0; // Needed for reference counting.
|
|
};
|
|
_Rope_iterator(const _Rope_iterator& __x) :
|
|
_Rope_iterator_base<_CharT,_Alloc>(__x) {
|
|
_M_root_rope = __x._M_root_rope;
|
|
_RopeRep::_S_ref(_M_root);
|
|
}
|
|
_Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos);
|
|
~_Rope_iterator() {
|
|
_RopeRep::_S_unref(_M_root);
|
|
}
|
|
_Rope_iterator& operator= (const _Rope_iterator& __x) {
|
|
_RopeRep* __old = _M_root;
|
|
|
|
_RopeRep::_S_ref(__x._M_root);
|
|
if (0 != __x._M_buf_ptr) {
|
|
_M_root_rope = __x._M_root_rope;
|
|
*(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
|
|
} else {
|
|
_M_current_pos = __x._M_current_pos;
|
|
_M_root = __x._M_root;
|
|
_M_root_rope = __x._M_root_rope;
|
|
_M_buf_ptr = 0;
|
|
}
|
|
_RopeRep::_S_unref(__old);
|
|
return(*this);
|
|
}
|
|
reference operator*() {
|
|
_M_check();
|
|
if (0 == _M_buf_ptr) {
|
|
return _Rope_char_ref_proxy<_CharT,_Alloc>(
|
|
_M_root_rope, _M_current_pos);
|
|
} else {
|
|
return _Rope_char_ref_proxy<_CharT,_Alloc>(
|
|
_M_root_rope, _M_current_pos, *_M_buf_ptr);
|
|
}
|
|
}
|
|
_Rope_iterator& operator++() {
|
|
_M_incr(1);
|
|
return *this;
|
|
}
|
|
_Rope_iterator& operator+=(difference_type __n) {
|
|
if (__n >= 0) {
|
|
_M_incr(__n);
|
|
} else {
|
|
_M_decr(-__n);
|
|
}
|
|
return *this;
|
|
}
|
|
_Rope_iterator& operator--() {
|
|
_M_decr(1);
|
|
return *this;
|
|
}
|
|
_Rope_iterator& operator-=(difference_type __n) {
|
|
if (__n >= 0) {
|
|
_M_decr(__n);
|
|
} else {
|
|
_M_incr(-__n);
|
|
}
|
|
return *this;
|
|
}
|
|
_Rope_iterator operator++(int) {
|
|
size_t __old_pos = _M_current_pos;
|
|
_M_incr(1);
|
|
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
|
|
}
|
|
_Rope_iterator operator--(int) {
|
|
size_t __old_pos = _M_current_pos;
|
|
_M_decr(1);
|
|
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
|
|
}
|
|
reference operator[](ptrdiff_t __n) {
|
|
return _Rope_char_ref_proxy<_CharT,_Alloc>(
|
|
_M_root_rope, _M_current_pos + __n);
|
|
}
|
|
friend bool operator== __STL_NULL_TMPL_ARGS
|
|
(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_iterator<_CharT,_Alloc>& __y);
|
|
friend bool operator< __STL_NULL_TMPL_ARGS
|
|
(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_iterator<_CharT,_Alloc>& __y);
|
|
friend ptrdiff_t operator- __STL_NULL_TMPL_ARGS
|
|
(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_iterator<_CharT,_Alloc>& __y);
|
|
friend _Rope_iterator<_CharT,_Alloc> operator- __STL_NULL_TMPL_ARGS
|
|
(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
ptrdiff_t __n);
|
|
friend _Rope_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
|
|
(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
ptrdiff_t __n);
|
|
friend _Rope_iterator<_CharT,_Alloc> operator+ __STL_NULL_TMPL_ARGS
|
|
(ptrdiff_t __n,
|
|
const _Rope_iterator<_CharT,_Alloc>& __x);
|
|
|
|
};
|
|
|
|
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
|
|
#pragma reset woff 1375
|
|
#endif
|
|
|
|
// The rope base class encapsulates
|
|
// the differences between SGI-style allocators and standard-conforming
|
|
// allocators.
|
|
|
|
#ifdef __STL_USE_STD_ALLOCATORS
|
|
|
|
// Base class for ordinary allocators.
|
|
template <class _CharT, class _Allocator, bool _IsStatic>
|
|
class _Rope_alloc_base {
|
|
public:
|
|
typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
|
|
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
|
|
allocator_type;
|
|
allocator_type get_allocator() const { return _M_data_allocator; }
|
|
_Rope_alloc_base(_RopeRep *__t, const allocator_type& __a)
|
|
: _M_tree_ptr(__t), _M_data_allocator(__a) {}
|
|
_Rope_alloc_base(const allocator_type& __a)
|
|
: _M_data_allocator(__a) {}
|
|
|
|
protected:
|
|
// The only data members of a rope:
|
|
allocator_type _M_data_allocator;
|
|
_RopeRep* _M_tree_ptr;
|
|
|
|
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
|
|
typedef typename \
|
|
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
|
|
_Tp* __name##_allocate(size_t __n) const \
|
|
{ return __name##Allocator(_M_data_allocator).allocate(__n); } \
|
|
void __name##_deallocate(_Tp *__p, size_t __n) const \
|
|
{ __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
|
|
__ROPE_DEFINE_ALLOCS(_Allocator)
|
|
# undef __ROPE_DEFINE_ALLOC
|
|
};
|
|
|
|
// Specialization for allocators that have the property that we don't
|
|
// actually have to store an allocator object.
|
|
template <class _CharT, class _Allocator>
|
|
class _Rope_alloc_base<_CharT,_Allocator,true> {
|
|
public:
|
|
typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
|
|
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
|
|
allocator_type;
|
|
allocator_type get_allocator() const { return allocator_type(); }
|
|
_Rope_alloc_base(_RopeRep *__t, const allocator_type&)
|
|
: _M_tree_ptr(__t) {}
|
|
_Rope_alloc_base(const allocator_type&) {}
|
|
|
|
protected:
|
|
// The only data member of a rope:
|
|
_RopeRep *_M_tree_ptr;
|
|
|
|
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
|
|
typedef typename \
|
|
_Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
|
|
typedef typename \
|
|
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
|
|
static _Tp* __name##_allocate(size_t __n) \
|
|
{ return __name##Alloc::allocate(__n); } \
|
|
static void __name##_deallocate(_Tp *__p, size_t __n) \
|
|
{ __name##Alloc::deallocate(__p, __n); }
|
|
__ROPE_DEFINE_ALLOCS(_Allocator)
|
|
# undef __ROPE_DEFINE_ALLOC
|
|
};
|
|
|
|
template <class _CharT, class _Alloc>
|
|
struct _Rope_base
|
|
: public _Rope_alloc_base<_CharT,_Alloc,
|
|
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
|
|
{
|
|
typedef _Rope_alloc_base<_CharT,_Alloc,
|
|
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
|
|
_Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
_Rope_base(_RopeRep* __t, const allocator_type& __a) : _Base(__t, __a) {}
|
|
_Rope_base(const allocator_type& __a) : _Base(__a) {}
|
|
};
|
|
|
|
#else /* !__STL_USE_STD_ALLOCATORS */
|
|
|
|
template <class _CharT, class _Alloc>
|
|
class _Rope_base {
|
|
public:
|
|
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
|
|
typedef _Alloc allocator_type;
|
|
static allocator_type get_allocator() { return allocator_type(); }
|
|
_Rope_base(_RopeRep * __t, const allocator_type&) : _M_tree_ptr(__t) {}
|
|
_Rope_base(const allocator_type&) {}
|
|
|
|
protected:
|
|
// The only data member of a rope:
|
|
_RopeRep* _M_tree_ptr;
|
|
|
|
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
|
|
typedef simple_alloc<_Tp, _Alloc> __name##Alloc; \
|
|
static _Tp* __name##_allocate(size_t __n) \
|
|
{ return __name##Alloc::allocate(__n); } \
|
|
static void __name##_deallocate(_Tp *__p, size_t __n) \
|
|
{ __name##Alloc::deallocate(__p, __n); }
|
|
__ROPE_DEFINE_ALLOCS(_Alloc)
|
|
# undef __ROPE_DEFINE_ALLOC
|
|
};
|
|
|
|
#endif /* __STL_USE_STD_ALLOCATORS */
|
|
|
|
|
|
template <class _CharT, class _Alloc>
|
|
class rope : public _Rope_base<_CharT,_Alloc> {
|
|
public:
|
|
typedef _CharT value_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef size_t size_type;
|
|
typedef _CharT const_reference;
|
|
typedef const _CharT* const_pointer;
|
|
typedef _Rope_iterator<_CharT,_Alloc> iterator;
|
|
typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator;
|
|
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
|
|
typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer;
|
|
|
|
friend class _Rope_iterator<_CharT,_Alloc>;
|
|
friend class _Rope_const_iterator<_CharT,_Alloc>;
|
|
friend struct _Rope_RopeRep<_CharT,_Alloc>;
|
|
friend class _Rope_iterator_base<_CharT,_Alloc>;
|
|
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
|
|
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
|
|
friend struct _Rope_RopeSubstring<_CharT,_Alloc>;
|
|
|
|
protected:
|
|
typedef _Rope_base<_CharT,_Alloc> _Base;
|
|
typedef typename _Base::allocator_type allocator_type;
|
|
# ifdef __STL_USE_NAMESPACES
|
|
using _Base::_M_tree_ptr;
|
|
# endif
|
|
typedef __GC_CONST _CharT* _Cstrptr;
|
|
# ifdef __STL_SGI_THREADS
|
|
static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
|
|
# if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64))
|
|
return (_Cstrptr) test_and_set((unsigned long*)__p,
|
|
(unsigned long)__q);
|
|
# else
|
|
return (_Cstrptr) __test_and_set((unsigned long*)__p,
|
|
(unsigned long)__q);
|
|
# endif
|
|
}
|
|
# elif defined(__STL_WIN32THREADS)
|
|
static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
|
|
return (_Cstrptr) InterlockedExchange(
|
|
(LPLONG)__p, (LONG)__q);
|
|
}
|
|
# elif defined(__STL_PTHREADS)
|
|
// This should be portable, but performance is expected
|
|
// to be quite awful. This really needs platform specific
|
|
// code.
|
|
static pthread_mutex_t _S_swap_lock;
|
|
static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
|
|
pthread_mutex_lock(&_S_swap_lock);
|
|
_Cstrptr __result = *__p;
|
|
*__p = __q;
|
|
pthread_mutex_unlock(&_S_swap_lock);
|
|
return __result;
|
|
}
|
|
# else
|
|
static _Cstrptr _S_atomic_swap(_Cstrptr* __p, _Cstrptr __q) {
|
|
_Cstrptr __result = *__p;
|
|
*__p = __q;
|
|
return __result;
|
|
}
|
|
# endif
|
|
|
|
static _CharT _S_empty_c_str[1];
|
|
|
|
static bool _S_is0(_CharT __c) { return __c == _S_eos((_CharT*)0); }
|
|
enum { _S_copy_max = 23 };
|
|
// For strings shorter than _S_copy_max, we copy to
|
|
// concatenate.
|
|
|
|
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
|
|
typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
|
|
typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
|
|
typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
|
|
typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring;
|
|
|
|
// Retrieve a character at the indicated position.
|
|
static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
|
|
|
|
# ifndef __GC
|
|
// Obtain a pointer to the character at the indicated position.
|
|
// The pointer can be used to change the character.
|
|
// If such a pointer cannot be produced, as is frequently the
|
|
// case, 0 is returned instead.
|
|
// (Returns nonzero only if all nodes in the path have a refcount
|
|
// of 1.)
|
|
static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
|
|
# endif
|
|
|
|
static bool _S_apply_to_pieces(
|
|
// should be template parameter
|
|
_Rope_char_consumer<_CharT>& __c,
|
|
const _RopeRep* __r,
|
|
size_t __begin, size_t __end);
|
|
// begin and end are assumed to be in range.
|
|
|
|
# ifndef __GC
|
|
static void _S_unref(_RopeRep* __t)
|
|
{
|
|
_RopeRep::_S_unref(__t);
|
|
}
|
|
static void _S_ref(_RopeRep* __t)
|
|
{
|
|
_RopeRep::_S_ref(__t);
|
|
}
|
|
# else /* __GC */
|
|
static void _S_unref(_RopeRep*) {}
|
|
static void _S_ref(_RopeRep*) {}
|
|
# endif
|
|
|
|
|
|
# ifdef __GC
|
|
typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
|
|
# else
|
|
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
|
|
# endif
|
|
|
|
// _Result is counted in refcount.
|
|
static _RopeRep* _S_substring(_RopeRep* __base,
|
|
size_t __start, size_t __endp1);
|
|
|
|
static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
|
|
const _CharT* __iter, size_t __slen);
|
|
// Concatenate rope and char ptr, copying __s.
|
|
// Should really take an arbitrary iterator.
|
|
// Result is counted in refcount.
|
|
static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
|
|
const _CharT* __iter, size_t __slen)
|
|
// As above, but one reference to __r is about to be
|
|
// destroyed. Thus the pieces may be recycled if all
|
|
// relevent reference counts are 1.
|
|
# ifdef __GC
|
|
// We can't really do anything since refcounts are unavailable.
|
|
{ return _S_concat_char_iter(__r, __iter, __slen); }
|
|
# else
|
|
;
|
|
# endif
|
|
|
|
static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right);
|
|
// General concatenation on _RopeRep. _Result
|
|
// has refcount of 1. Adjusts argument refcounts.
|
|
|
|
public:
|
|
void apply_to_pieces( size_t __begin, size_t __end,
|
|
_Rope_char_consumer<_CharT>& __c) const {
|
|
_S_apply_to_pieces(__c, _M_tree_ptr, __begin, __end);
|
|
}
|
|
|
|
|
|
protected:
|
|
|
|
static size_t _S_rounded_up_size(size_t __n) {
|
|
return _RopeLeaf::_S_rounded_up_size(__n);
|
|
}
|
|
|
|
static size_t _S_allocated_capacity(size_t __n) {
|
|
if (_S_is_basic_char_type((_CharT*)0)) {
|
|
return _S_rounded_up_size(__n) - 1;
|
|
} else {
|
|
return _S_rounded_up_size(__n);
|
|
}
|
|
}
|
|
|
|
// Allocate and construct a RopeLeaf using the supplied allocator
|
|
// Takes ownership of s instead of copying.
|
|
static _RopeLeaf* _S_new_RopeLeaf(__GC_CONST _CharT *__s,
|
|
size_t __size, allocator_type __a)
|
|
{
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
_RopeLeaf* __space = _LAllocator(__a).allocate(1);
|
|
# else
|
|
_RopeLeaf* __space = _L_allocate(1);
|
|
# endif
|
|
return new(__space) _RopeLeaf(__s, __size, __a);
|
|
}
|
|
|
|
static _RopeConcatenation* _S_new_RopeConcatenation(
|
|
_RopeRep* __left, _RopeRep* __right,
|
|
allocator_type __a)
|
|
{
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
_RopeConcatenation* __space = _CAllocator(__a).allocate(1);
|
|
# else
|
|
_RopeConcatenation* __space = _C_allocate(1);
|
|
# endif
|
|
return new(__space) _RopeConcatenation(__left, __right, __a);
|
|
}
|
|
|
|
static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f,
|
|
size_t __size, bool __d, allocator_type __a)
|
|
{
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
_RopeFunction* __space = _FAllocator(__a).allocate(1);
|
|
# else
|
|
_RopeFunction* __space = _F_allocate(1);
|
|
# endif
|
|
return new(__space) _RopeFunction(__f, __size, __d, __a);
|
|
}
|
|
|
|
static _RopeSubstring* _S_new_RopeSubstring(
|
|
_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
|
|
size_t __l, allocator_type __a)
|
|
{
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
_RopeSubstring* __space = _SAllocator(__a).allocate(1);
|
|
# else
|
|
_RopeSubstring* __space = _S_allocate(1);
|
|
# endif
|
|
return new(__space) _RopeSubstring(__b, __s, __l, __a);
|
|
}
|
|
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
static
|
|
_RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
|
|
size_t __size, allocator_type __a)
|
|
# define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
|
|
_S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)
|
|
# else
|
|
static
|
|
_RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr2(const _CharT* __s,
|
|
size_t __size)
|
|
# define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
|
|
_S_RopeLeaf_from_unowned_char_ptr2(__s, __size)
|
|
# endif
|
|
{
|
|
if (0 == __size) return 0;
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
_CharT* __buf = __a.allocate(_S_rounded_up_size(__size));
|
|
# else
|
|
_CharT* __buf = _Data_allocate(_S_rounded_up_size(__size));
|
|
allocator_type __a = allocator_type();
|
|
# endif
|
|
|
|
uninitialized_copy_n(__s, __size, __buf);
|
|
_S_cond_store_eos(__buf[__size]);
|
|
__STL_TRY {
|
|
return _S_new_RopeLeaf(__buf, __size, __a);
|
|
}
|
|
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, __size, __a))
|
|
}
|
|
|
|
|
|
// Concatenation of nonempty strings.
|
|
// Always builds a concatenation node.
|
|
// Rebalances if the result is too deep.
|
|
// Result has refcount 1.
|
|
// Does not increment left and right ref counts even though
|
|
// they are referenced.
|
|
static _RopeRep*
|
|
_S_tree_concat(_RopeRep* __left, _RopeRep* __right);
|
|
|
|
// Concatenation helper functions
|
|
static _RopeLeaf*
|
|
_S_leaf_concat_char_iter(_RopeLeaf* __r,
|
|
const _CharT* __iter, size_t __slen);
|
|
// Concatenate by copying leaf.
|
|
// should take an arbitrary iterator
|
|
// result has refcount 1.
|
|
# ifndef __GC
|
|
static _RopeLeaf* _S_destr_leaf_concat_char_iter
|
|
(_RopeLeaf* __r, const _CharT* __iter, size_t __slen);
|
|
// A version that potentially clobbers __r if __r->_M_refcount == 1.
|
|
# endif
|
|
|
|
// A helper function for exponentiating strings.
|
|
// This uses a nonstandard refcount convention.
|
|
// The result has refcount 0.
|
|
struct _Concat_fn
|
|
: public binary_function<rope<_CharT,_Alloc>,
|
|
rope<_CharT,_Alloc>,
|
|
rope<_CharT,_Alloc> > {
|
|
rope operator() (const rope& __x, const rope& __y) {
|
|
return __x + __y;
|
|
}
|
|
};
|
|
|
|
// Needed by the call to "power" used to build ropes
|
|
// consisting of n copies of a character.
|
|
friend rope identity_element(_Concat_fn)
|
|
{ return rope<_CharT,_Alloc>(); }
|
|
|
|
static size_t _S_char_ptr_len(const _CharT* __s);
|
|
// slightly generalized strlen
|
|
|
|
rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
|
|
: _Base(__t,__a) { }
|
|
|
|
|
|
// Copy __r to the _CharT buffer.
|
|
// Returns __buffer + __r->_M_size.
|
|
// Assumes that buffer is uninitialized.
|
|
static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
|
|
|
|
// Again, with explicit starting position and length.
|
|
// Assumes that buffer is uninitialized.
|
|
static _CharT* _S_flatten(_RopeRep* __r,
|
|
size_t __start, size_t __len,
|
|
_CharT* __buffer);
|
|
|
|
static const unsigned long
|
|
_S_min_len[_RopeRep::_S_max_rope_depth + 1];
|
|
|
|
static bool _S_is_balanced(_RopeRep* __r)
|
|
{ return (__r->_M_size >= _S_min_len[__r->_M_depth]); }
|
|
|
|
static bool _S_is_almost_balanced(_RopeRep* __r)
|
|
{ return (__r->_M_depth == 0 ||
|
|
__r->_M_size >= _S_min_len[__r->_M_depth - 1]); }
|
|
|
|
static bool _S_is_roughly_balanced(_RopeRep* __r)
|
|
{ return (__r->_M_depth <= 1 ||
|
|
__r->_M_size >= _S_min_len[__r->_M_depth - 2]); }
|
|
|
|
// Assumes the result is not empty.
|
|
static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,
|
|
_RopeRep* __right)
|
|
{
|
|
_RopeRep* __result = _S_concat(__left, __right);
|
|
if (_S_is_balanced(__result)) __result->_M_is_balanced = true;
|
|
return __result;
|
|
}
|
|
|
|
// The basic rebalancing operation. Logically copies the
|
|
// rope. The result has refcount of 1. The client will
|
|
// usually decrement the reference count of __r.
|
|
// The result is within height 2 of balanced by the above
|
|
// definition.
|
|
static _RopeRep* _S_balance(_RopeRep* __r);
|
|
|
|
// Add all unbalanced subtrees to the forest of balanceed trees.
|
|
// Used only by balance.
|
|
static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
|
|
|
|
// Add __r to forest, assuming __r is already balanced.
|
|
static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
|
|
|
|
// Print to stdout, exposing structure
|
|
static void _S_dump(_RopeRep* __r, int __indent = 0);
|
|
|
|
// Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
|
|
static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
|
|
|
|
public:
|
|
bool empty() const { return 0 == _M_tree_ptr; }
|
|
|
|
// Comparison member function. This is public only for those
|
|
// clients that need a ternary comparison. Others
|
|
// should use the comparison operators below.
|
|
int compare(const rope& __y) const {
|
|
return _S_compare(_M_tree_ptr, __y._M_tree_ptr);
|
|
}
|
|
|
|
rope(const _CharT* __s, const allocator_type& __a = allocator_type())
|
|
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),
|
|
__a),__a)
|
|
{ }
|
|
|
|
rope(const _CharT* __s, size_t __len,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)
|
|
{ }
|
|
|
|
// Should perhaps be templatized with respect to the iterator type
|
|
// and use Sequence_buffer. (It should perhaps use sequence_buffer
|
|
// even now.)
|
|
rope(const _CharT *__s, const _CharT *__e,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)
|
|
{ }
|
|
|
|
rope(const const_iterator& __s, const const_iterator& __e,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
|
|
__e._M_current_pos), __a)
|
|
{ }
|
|
|
|
rope(const iterator& __s, const iterator& __e,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
|
|
__e._M_current_pos), __a)
|
|
{ }
|
|
|
|
rope(_CharT __c, const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{
|
|
_CharT* __buf = _Data_allocate(_S_rounded_up_size(1));
|
|
|
|
construct(__buf, __c);
|
|
__STL_TRY {
|
|
_M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);
|
|
}
|
|
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, 1, __a))
|
|
}
|
|
|
|
rope(size_t __n, _CharT __c,
|
|
const allocator_type& __a = allocator_type());
|
|
|
|
rope(const allocator_type& __a = allocator_type())
|
|
: _Base(0, __a) {}
|
|
|
|
// Construct a rope from a function that can compute its members
|
|
rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
|
|
const allocator_type& __a = allocator_type())
|
|
: _Base(__a)
|
|
{
|
|
_M_tree_ptr = (0 == __len) ?
|
|
0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
|
|
}
|
|
|
|
rope(const rope& __x, const allocator_type& __a = allocator_type())
|
|
: _Base(__x._M_tree_ptr, __a)
|
|
{
|
|
_S_ref(_M_tree_ptr);
|
|
}
|
|
|
|
~rope()
|
|
{
|
|
_S_unref(_M_tree_ptr);
|
|
}
|
|
|
|
rope& operator=(const rope& __x)
|
|
{
|
|
_RopeRep* __old = _M_tree_ptr;
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
__stl_assert(get_allocator() == __x.get_allocator());
|
|
# endif
|
|
_M_tree_ptr = __x._M_tree_ptr;
|
|
_S_ref(_M_tree_ptr);
|
|
_S_unref(__old);
|
|
return(*this);
|
|
}
|
|
|
|
void push_back(_CharT __x)
|
|
{
|
|
_RopeRep* __old = _M_tree_ptr;
|
|
_M_tree_ptr = _S_concat_char_iter(_M_tree_ptr, &__x, 1);
|
|
_S_unref(__old);
|
|
}
|
|
|
|
void pop_back()
|
|
{
|
|
_RopeRep* __old = _M_tree_ptr;
|
|
_M_tree_ptr =
|
|
_S_substring(_M_tree_ptr, 0, _M_tree_ptr->_M_size - 1);
|
|
_S_unref(__old);
|
|
}
|
|
|
|
_CharT back() const
|
|
{
|
|
return _S_fetch(_M_tree_ptr, _M_tree_ptr->_M_size - 1);
|
|
}
|
|
|
|
void push_front(_CharT __x)
|
|
{
|
|
_RopeRep* __old = _M_tree_ptr;
|
|
_RopeRep* __left =
|
|
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, get_allocator());
|
|
__STL_TRY {
|
|
_M_tree_ptr = _S_concat(__left, _M_tree_ptr);
|
|
_S_unref(__old);
|
|
_S_unref(__left);
|
|
}
|
|
__STL_UNWIND(_S_unref(__left))
|
|
}
|
|
|
|
void pop_front()
|
|
{
|
|
_RopeRep* __old = _M_tree_ptr;
|
|
_M_tree_ptr = _S_substring(_M_tree_ptr, 1, _M_tree_ptr->_M_size);
|
|
_S_unref(__old);
|
|
}
|
|
|
|
_CharT front() const
|
|
{
|
|
return _S_fetch(_M_tree_ptr, 0);
|
|
}
|
|
|
|
void balance()
|
|
{
|
|
_RopeRep* __old = _M_tree_ptr;
|
|
_M_tree_ptr = _S_balance(_M_tree_ptr);
|
|
_S_unref(__old);
|
|
}
|
|
|
|
void copy(_CharT* __buffer) const {
|
|
destroy(__buffer, __buffer + size());
|
|
_S_flatten(_M_tree_ptr, __buffer);
|
|
}
|
|
|
|
// This is the copy function from the standard, but
|
|
// with the arguments reordered to make it consistent with the
|
|
// rest of the interface.
|
|
// Note that this guaranteed not to compile if the draft standard
|
|
// order is assumed.
|
|
size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const
|
|
{
|
|
size_t __size = size();
|
|
size_t __len = (__pos + __n > __size? __size - __pos : __n);
|
|
|
|
destroy(__buffer, __buffer + __len);
|
|
_S_flatten(_M_tree_ptr, __pos, __len, __buffer);
|
|
return __len;
|
|
}
|
|
|
|
// Print to stdout, exposing structure. May be useful for
|
|
// performance debugging.
|
|
void dump() {
|
|
_S_dump(_M_tree_ptr);
|
|
}
|
|
|
|
// Convert to 0 terminated string in new allocated memory.
|
|
// Embedded 0s in the input do not terminate the copy.
|
|
const _CharT* c_str() const;
|
|
|
|
// As above, but lso use the flattened representation as the
|
|
// the new rope representation.
|
|
const _CharT* replace_with_c_str();
|
|
|
|
// Reclaim memory for the c_str generated flattened string.
|
|
// Intentionally undocumented, since it's hard to say when this
|
|
// is safe for multiple threads.
|
|
void delete_c_str () {
|
|
if (0 == _M_tree_ptr) return;
|
|
if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag &&
|
|
((_RopeLeaf*)_M_tree_ptr)->_M_data ==
|
|
_M_tree_ptr->_M_c_string) {
|
|
// Representation shared
|
|
return;
|
|
}
|
|
# ifndef __GC
|
|
_M_tree_ptr->_M_free_c_string();
|
|
# endif
|
|
_M_tree_ptr->_M_c_string = 0;
|
|
}
|
|
|
|
_CharT operator[] (size_type __pos) const {
|
|
return _S_fetch(_M_tree_ptr, __pos);
|
|
}
|
|
|
|
_CharT at(size_type __pos) const {
|
|
// if (__pos >= size()) throw out_of_range; // XXX
|
|
return (*this)[__pos];
|
|
}
|
|
|
|
const_iterator begin() const {
|
|
return(const_iterator(_M_tree_ptr, 0));
|
|
}
|
|
|
|
// An easy way to get a const iterator from a non-const container.
|
|
const_iterator const_begin() const {
|
|
return(const_iterator(_M_tree_ptr, 0));
|
|
}
|
|
|
|
const_iterator end() const {
|
|
return(const_iterator(_M_tree_ptr, size()));
|
|
}
|
|
|
|
const_iterator const_end() const {
|
|
return(const_iterator(_M_tree_ptr, size()));
|
|
}
|
|
|
|
size_type size() const {
|
|
return(0 == _M_tree_ptr? 0 : _M_tree_ptr->_M_size);
|
|
}
|
|
|
|
size_type length() const {
|
|
return size();
|
|
}
|
|
|
|
size_type max_size() const {
|
|
return _S_min_len[_RopeRep::_S_max_rope_depth-1] - 1;
|
|
// Guarantees that the result can be sufficirntly
|
|
// balanced. Longer ropes will probably still work,
|
|
// but it's harder to make guarantees.
|
|
}
|
|
|
|
# ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
|
|
typedef reverse_iterator<const_iterator> const_reverse_iterator;
|
|
# else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
|
|
typedef reverse_iterator<const_iterator, value_type, const_reference,
|
|
difference_type> const_reverse_iterator;
|
|
# endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
|
|
|
|
const_reverse_iterator rbegin() const {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
|
|
const_reverse_iterator const_rbegin() const {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
|
|
const_reverse_iterator rend() const {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
const_reverse_iterator const_rend() const {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
friend rope<_CharT,_Alloc>
|
|
operator+ __STL_NULL_TMPL_ARGS (const rope<_CharT,_Alloc>& __left,
|
|
const rope<_CharT,_Alloc>& __right);
|
|
|
|
friend rope<_CharT,_Alloc>
|
|
operator+ __STL_NULL_TMPL_ARGS (const rope<_CharT,_Alloc>& __left,
|
|
const _CharT* __right);
|
|
|
|
friend rope<_CharT,_Alloc>
|
|
operator+ __STL_NULL_TMPL_ARGS (const rope<_CharT,_Alloc>& __left,
|
|
_CharT __right);
|
|
|
|
// The symmetric cases are intentionally omitted, since they're presumed
|
|
// to be less common, and we don't handle them as well.
|
|
|
|
// The following should really be templatized.
|
|
// The first argument should be an input iterator or
|
|
// forward iterator with value_type _CharT.
|
|
rope& append(const _CharT* __iter, size_t __n) {
|
|
_RopeRep* __result =
|
|
_S_destr_concat_char_iter(_M_tree_ptr, __iter, __n);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
return *this;
|
|
}
|
|
|
|
rope& append(const _CharT* __c_string) {
|
|
size_t __len = _S_char_ptr_len(__c_string);
|
|
append(__c_string, __len);
|
|
return(*this);
|
|
}
|
|
|
|
rope& append(const _CharT* __s, const _CharT* __e) {
|
|
_RopeRep* __result =
|
|
_S_destr_concat_char_iter(_M_tree_ptr, __s, __e - __s);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
return *this;
|
|
}
|
|
|
|
rope& append(const_iterator __s, const_iterator __e) {
|
|
__stl_assert(__s._M_root == __e._M_root);
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
__stl_assert(get_allocator() == __s._M_root->get_allocator());
|
|
# endif
|
|
_Self_destruct_ptr __appendee(_S_substring(
|
|
__s._M_root, __s._M_current_pos, __e._M_current_pos));
|
|
_RopeRep* __result =
|
|
_S_concat(_M_tree_ptr, (_RopeRep*)__appendee);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
return *this;
|
|
}
|
|
|
|
rope& append(_CharT __c) {
|
|
_RopeRep* __result =
|
|
_S_destr_concat_char_iter(_M_tree_ptr, &__c, 1);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
return *this;
|
|
}
|
|
|
|
rope& append() { return append(_CharT()); } // XXX why?
|
|
|
|
rope& append(const rope& __y) {
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
__stl_assert(__y.get_allocator() == get_allocator());
|
|
# endif
|
|
_RopeRep* __result = _S_concat(_M_tree_ptr, __y._M_tree_ptr);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
return *this;
|
|
}
|
|
|
|
rope& append(size_t __n, _CharT __c) {
|
|
rope<_CharT,_Alloc> __last(__n, __c);
|
|
return append(__last);
|
|
}
|
|
|
|
void swap(rope& __b) {
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
__stl_assert(get_allocator() == __b.get_allocator());
|
|
# endif
|
|
_RopeRep* __tmp = _M_tree_ptr;
|
|
_M_tree_ptr = __b._M_tree_ptr;
|
|
__b._M_tree_ptr = __tmp;
|
|
}
|
|
|
|
|
|
protected:
|
|
// Result is included in refcount.
|
|
static _RopeRep* replace(_RopeRep* __old, size_t __pos1,
|
|
size_t __pos2, _RopeRep* __r) {
|
|
if (0 == __old) { _S_ref(__r); return __r; }
|
|
_Self_destruct_ptr __left(
|
|
_S_substring(__old, 0, __pos1));
|
|
_Self_destruct_ptr __right(
|
|
_S_substring(__old, __pos2, __old->_M_size));
|
|
_RopeRep* __result;
|
|
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
__stl_assert(__old->get_allocator() == __r->get_allocator());
|
|
# endif
|
|
if (0 == __r) {
|
|
__result = _S_concat(__left, __right);
|
|
} else {
|
|
_Self_destruct_ptr __left_result(_S_concat(__left, __r));
|
|
__result = _S_concat(__left_result, __right);
|
|
}
|
|
return __result;
|
|
}
|
|
|
|
public:
|
|
void insert(size_t __p, const rope& __r) {
|
|
_RopeRep* __result =
|
|
replace(_M_tree_ptr, __p, __p, __r._M_tree_ptr);
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
__stl_assert(get_allocator() == __r.get_allocator());
|
|
# endif
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
}
|
|
|
|
void insert(size_t __p, size_t __n, _CharT __c) {
|
|
rope<_CharT,_Alloc> __r(__n,__c);
|
|
insert(__p, __r);
|
|
}
|
|
|
|
void insert(size_t __p, const _CharT* __i, size_t __n) {
|
|
_Self_destruct_ptr __left(_S_substring(_M_tree_ptr, 0, __p));
|
|
_Self_destruct_ptr __right(_S_substring(_M_tree_ptr, __p, size()));
|
|
_Self_destruct_ptr __left_result(
|
|
_S_concat_char_iter(__left, __i, __n));
|
|
_RopeRep* __result = _S_concat(__left_result, __right);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
}
|
|
|
|
void insert(size_t __p, const _CharT* __c_string) {
|
|
insert(__p, __c_string, _S_char_ptr_len(__c_string));
|
|
}
|
|
|
|
void insert(size_t __p, _CharT __c) {
|
|
insert(__p, &__c, 1);
|
|
}
|
|
|
|
void insert(size_t __p) {
|
|
_CharT __c = _CharT();
|
|
insert(__p, &__c, 1);
|
|
}
|
|
|
|
void insert(size_t __p, const _CharT* __i, const _CharT* __j) {
|
|
rope __r(__i, __j);
|
|
insert(__p, __r);
|
|
}
|
|
|
|
void insert(size_t __p, const const_iterator& __i,
|
|
const const_iterator& __j) {
|
|
rope __r(__i, __j);
|
|
insert(__p, __r);
|
|
}
|
|
|
|
void insert(size_t __p, const iterator& __i,
|
|
const iterator& __j) {
|
|
rope __r(__i, __j);
|
|
insert(__p, __r);
|
|
}
|
|
|
|
// (position, length) versions of replace operations:
|
|
|
|
void replace(size_t __p, size_t __n, const rope& __r) {
|
|
_RopeRep* __result =
|
|
replace(_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
}
|
|
|
|
void replace(size_t __p, size_t __n,
|
|
const _CharT* __i, size_t __i_len) {
|
|
rope __r(__i, __i_len);
|
|
replace(__p, __n, __r);
|
|
}
|
|
|
|
void replace(size_t __p, size_t __n, _CharT __c) {
|
|
rope __r(__c);
|
|
replace(__p, __n, __r);
|
|
}
|
|
|
|
void replace(size_t __p, size_t __n, const _CharT* __c_string) {
|
|
rope __r(__c_string);
|
|
replace(__p, __n, __r);
|
|
}
|
|
|
|
void replace(size_t __p, size_t __n,
|
|
const _CharT* __i, const _CharT* __j) {
|
|
rope __r(__i, __j);
|
|
replace(__p, __n, __r);
|
|
}
|
|
|
|
void replace(size_t __p, size_t __n,
|
|
const const_iterator& __i, const const_iterator& __j) {
|
|
rope __r(__i, __j);
|
|
replace(__p, __n, __r);
|
|
}
|
|
|
|
void replace(size_t __p, size_t __n,
|
|
const iterator& __i, const iterator& __j) {
|
|
rope __r(__i, __j);
|
|
replace(__p, __n, __r);
|
|
}
|
|
|
|
// Single character variants:
|
|
void replace(size_t __p, _CharT __c) {
|
|
iterator __i(this, __p);
|
|
*__i = __c;
|
|
}
|
|
|
|
void replace(size_t __p, const rope& __r) {
|
|
replace(__p, 1, __r);
|
|
}
|
|
|
|
void replace(size_t __p, const _CharT* __i, size_t __i_len) {
|
|
replace(__p, 1, __i, __i_len);
|
|
}
|
|
|
|
void replace(size_t __p, const _CharT* __c_string) {
|
|
replace(__p, 1, __c_string);
|
|
}
|
|
|
|
void replace(size_t __p, const _CharT* __i, const _CharT* __j) {
|
|
replace(__p, 1, __i, __j);
|
|
}
|
|
|
|
void replace(size_t __p, const const_iterator& __i,
|
|
const const_iterator& __j) {
|
|
replace(__p, 1, __i, __j);
|
|
}
|
|
|
|
void replace(size_t __p, const iterator& __i,
|
|
const iterator& __j) {
|
|
replace(__p, 1, __i, __j);
|
|
}
|
|
|
|
// Erase, (position, size) variant.
|
|
void erase(size_t __p, size_t __n) {
|
|
_RopeRep* __result = replace(_M_tree_ptr, __p, __p + __n, 0);
|
|
_S_unref(_M_tree_ptr);
|
|
_M_tree_ptr = __result;
|
|
}
|
|
|
|
// Erase, single character
|
|
void erase(size_t __p) {
|
|
erase(__p, __p + 1);
|
|
}
|
|
|
|
// Insert, iterator variants.
|
|
iterator insert(const iterator& __p, const rope& __r)
|
|
{ insert(__p.index(), __r); return __p; }
|
|
iterator insert(const iterator& __p, size_t __n, _CharT __c)
|
|
{ insert(__p.index(), __n, __c); return __p; }
|
|
iterator insert(const iterator& __p, _CharT __c)
|
|
{ insert(__p.index(), __c); return __p; }
|
|
iterator insert(const iterator& __p )
|
|
{ insert(__p.index()); return __p; }
|
|
iterator insert(const iterator& __p, const _CharT* c_string)
|
|
{ insert(__p.index(), c_string); return __p; }
|
|
iterator insert(const iterator& __p, const _CharT* __i, size_t __n)
|
|
{ insert(__p.index(), __i, __n); return __p; }
|
|
iterator insert(const iterator& __p, const _CharT* __i,
|
|
const _CharT* __j)
|
|
{ insert(__p.index(), __i, __j); return __p; }
|
|
iterator insert(const iterator& __p,
|
|
const const_iterator& __i, const const_iterator& __j)
|
|
{ insert(__p.index(), __i, __j); return __p; }
|
|
iterator insert(const iterator& __p,
|
|
const iterator& __i, const iterator& __j)
|
|
{ insert(__p.index(), __i, __j); return __p; }
|
|
|
|
// Replace, range variants.
|
|
void replace(const iterator& __p, const iterator& __q,
|
|
const rope& __r)
|
|
{ replace(__p.index(), __q.index() - __p.index(), __r); }
|
|
void replace(const iterator& __p, const iterator& __q, _CharT __c)
|
|
{ replace(__p.index(), __q.index() - __p.index(), __c); }
|
|
void replace(const iterator& __p, const iterator& __q,
|
|
const _CharT* __c_string)
|
|
{ replace(__p.index(), __q.index() - __p.index(), __c_string); }
|
|
void replace(const iterator& __p, const iterator& __q,
|
|
const _CharT* __i, size_t __n)
|
|
{ replace(__p.index(), __q.index() - __p.index(), __i, __n); }
|
|
void replace(const iterator& __p, const iterator& __q,
|
|
const _CharT* __i, const _CharT* __j)
|
|
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
|
|
void replace(const iterator& __p, const iterator& __q,
|
|
const const_iterator& __i, const const_iterator& __j)
|
|
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
|
|
void replace(const iterator& __p, const iterator& __q,
|
|
const iterator& __i, const iterator& __j)
|
|
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
|
|
|
|
// Replace, iterator variants.
|
|
void replace(const iterator& __p, const rope& __r)
|
|
{ replace(__p.index(), __r); }
|
|
void replace(const iterator& __p, _CharT __c)
|
|
{ replace(__p.index(), __c); }
|
|
void replace(const iterator& __p, const _CharT* __c_string)
|
|
{ replace(__p.index(), __c_string); }
|
|
void replace(const iterator& __p, const _CharT* __i, size_t __n)
|
|
{ replace(__p.index(), __i, __n); }
|
|
void replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
|
|
{ replace(__p.index(), __i, __j); }
|
|
void replace(const iterator& __p, const_iterator __i,
|
|
const_iterator __j)
|
|
{ replace(__p.index(), __i, __j); }
|
|
void replace(const iterator& __p, iterator __i, iterator __j)
|
|
{ replace(__p.index(), __i, __j); }
|
|
|
|
// Iterator and range variants of erase
|
|
iterator erase(const iterator& __p, const iterator& __q) {
|
|
size_t __p_index = __p.index();
|
|
erase(__p_index, __q.index() - __p_index);
|
|
return iterator(this, __p_index);
|
|
}
|
|
iterator erase(const iterator& __p) {
|
|
size_t __p_index = __p.index();
|
|
erase(__p_index, 1);
|
|
return iterator(this, __p_index);
|
|
}
|
|
|
|
rope substr(size_t __start, size_t __len = 1) const {
|
|
return rope<_CharT,_Alloc>(
|
|
_S_substring(_M_tree_ptr, __start, __start + __len));
|
|
}
|
|
|
|
rope substr(iterator __start, iterator __end) const {
|
|
return rope<_CharT,_Alloc>(
|
|
_S_substring(_M_tree_ptr, __start.index(), __end.index()));
|
|
}
|
|
|
|
rope substr(iterator __start) const {
|
|
size_t __pos = __start.index();
|
|
return rope<_CharT,_Alloc>(
|
|
_S_substring(_M_tree_ptr, __pos, __pos + 1));
|
|
}
|
|
|
|
rope substr(const_iterator __start, const_iterator __end) const {
|
|
// This might eventually take advantage of the cache in the
|
|
// iterator.
|
|
return rope<_CharT,_Alloc>(
|
|
_S_substring(_M_tree_ptr, __start.index(), __end.index()));
|
|
}
|
|
|
|
rope<_CharT,_Alloc> substr(const_iterator __start) {
|
|
size_t __pos = __start.index();
|
|
return rope<_CharT,_Alloc>(
|
|
_S_substring(_M_tree_ptr, __pos, __pos + 1));
|
|
}
|
|
|
|
static const size_type npos;
|
|
|
|
size_type find(_CharT __c, size_type __pos = 0) const;
|
|
size_type find(_CharT* __s, size_type __pos = 0) const {
|
|
size_type __result_pos;
|
|
const_iterator __result = search(const_begin() + __pos, const_end(),
|
|
__s, __s + _S_char_ptr_len(__s));
|
|
__result_pos = __result.index();
|
|
# ifndef __STL_OLD_ROPE_SEMANTICS
|
|
if (__result_pos == size()) __result_pos = npos;
|
|
# endif
|
|
return __result_pos;
|
|
}
|
|
|
|
iterator mutable_begin() {
|
|
return(iterator(this, 0));
|
|
}
|
|
|
|
iterator mutable_end() {
|
|
return(iterator(this, size()));
|
|
}
|
|
|
|
# ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
|
|
typedef reverse_iterator<iterator> reverse_iterator;
|
|
# else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
|
|
typedef reverse_iterator<iterator, value_type, reference,
|
|
difference_type> reverse_iterator;
|
|
# endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
|
|
|
|
reverse_iterator mutable_rbegin() {
|
|
return reverse_iterator(mutable_end());
|
|
}
|
|
|
|
reverse_iterator mutable_rend() {
|
|
return reverse_iterator(mutable_begin());
|
|
}
|
|
|
|
reference mutable_reference_at(size_type __pos) {
|
|
return reference(this, __pos);
|
|
}
|
|
|
|
# ifdef __STD_STUFF
|
|
reference operator[] (size_type __pos) {
|
|
return _char_ref_proxy(this, __pos);
|
|
}
|
|
|
|
reference at(size_type __pos) {
|
|
// if (__pos >= size()) throw out_of_range; // XXX
|
|
return (*this)[__pos];
|
|
}
|
|
|
|
void resize(size_type __n, _CharT __c) {}
|
|
void resize(size_type __n) {}
|
|
void reserve(size_type __res_arg = 0) {}
|
|
size_type capacity() const {
|
|
return max_size();
|
|
}
|
|
|
|
// Stuff below this line is dangerous because it's error prone.
|
|
// I would really like to get rid of it.
|
|
// copy function with funny arg ordering.
|
|
size_type copy(_CharT* __buffer, size_type __n,
|
|
size_type __pos = 0) const {
|
|
return copy(__pos, __n, __buffer);
|
|
}
|
|
|
|
iterator end() { return mutable_end(); }
|
|
|
|
iterator begin() { return mutable_begin(); }
|
|
|
|
reverse_iterator rend() { return mutable_rend(); }
|
|
|
|
reverse_iterator rbegin() { return mutable_rbegin(); }
|
|
|
|
# else
|
|
|
|
const_iterator end() { return const_end(); }
|
|
|
|
const_iterator begin() { return const_begin(); }
|
|
|
|
const_reverse_iterator rend() { return const_rend(); }
|
|
|
|
const_reverse_iterator rbegin() { return const_rbegin(); }
|
|
|
|
# endif
|
|
|
|
};
|
|
|
|
template <class _CharT, class _Alloc>
|
|
const rope<_CharT, _Alloc>::size_type rope<_CharT, _Alloc>::npos =
|
|
(size_type)(-1);
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
|
|
return (__x._M_current_pos == __y._M_current_pos &&
|
|
__x._M_root == __y._M_root);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
|
|
return (__x._M_current_pos < __y._M_current_pos);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
|
|
return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline _Rope_const_iterator<_CharT,_Alloc>
|
|
operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
|
|
return _Rope_const_iterator<_CharT,_Alloc>(
|
|
__x._M_root, __x._M_current_pos - __n);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline _Rope_const_iterator<_CharT,_Alloc>
|
|
operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
|
|
return _Rope_const_iterator<_CharT,_Alloc>(
|
|
__x._M_root, __x._M_current_pos + __n);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline _Rope_const_iterator<_CharT,_Alloc>
|
|
operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) {
|
|
return _Rope_const_iterator<_CharT,_Alloc>(
|
|
__x._M_root, __x._M_current_pos + __n);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_iterator<_CharT,_Alloc>& __y) {
|
|
return (__x._M_current_pos == __y._M_current_pos &&
|
|
__x._M_root_rope == __y._M_root_rope);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_iterator<_CharT,_Alloc>& __y) {
|
|
return (__x._M_current_pos < __y._M_current_pos);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
const _Rope_iterator<_CharT,_Alloc>& __y) {
|
|
return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline _Rope_iterator<_CharT,_Alloc>
|
|
operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
ptrdiff_t __n) {
|
|
return _Rope_iterator<_CharT,_Alloc>(
|
|
__x._M_root_rope, __x._M_current_pos - __n);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline _Rope_iterator<_CharT,_Alloc>
|
|
operator+(const _Rope_iterator<_CharT,_Alloc>& __x,
|
|
ptrdiff_t __n) {
|
|
return _Rope_iterator<_CharT,_Alloc>(
|
|
__x._M_root_rope, __x._M_current_pos + __n);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline _Rope_iterator<_CharT,_Alloc>
|
|
operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) {
|
|
return _Rope_iterator<_CharT,_Alloc>(
|
|
__x._M_root_rope, __x._M_current_pos + __n);
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline
|
|
rope<_CharT,_Alloc>
|
|
operator+ (const rope<_CharT,_Alloc>& __left,
|
|
const rope<_CharT,_Alloc>& __right)
|
|
{
|
|
# ifdef __STL_USE_STD_ALLOCATORS
|
|
__stl_assert(__left.get_allocator() == __right.get_allocator());
|
|
# endif
|
|
return rope<_CharT,_Alloc>(
|
|
rope<_CharT,_Alloc>::_S_concat(__left._M_tree_ptr, __right._M_tree_ptr));
|
|
// Inlining this should make it possible to keep __left and
|
|
// __right in registers.
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline
|
|
rope<_CharT,_Alloc>&
|
|
operator+= (rope<_CharT,_Alloc>& __left,
|
|
const rope<_CharT,_Alloc>& __right)
|
|
{
|
|
__left.append(__right);
|
|
return __left;
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline
|
|
rope<_CharT,_Alloc>
|
|
operator+ (const rope<_CharT,_Alloc>& __left,
|
|
const _CharT* __right) {
|
|
size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right);
|
|
return rope<_CharT,_Alloc>(
|
|
rope<_CharT,_Alloc>::_S_concat_char_iter(
|
|
__left._M_tree_ptr, __right, __rlen));
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline
|
|
rope<_CharT,_Alloc>&
|
|
operator+= (rope<_CharT,_Alloc>& __left,
|
|
const _CharT* __right) {
|
|
__left.append(__right);
|
|
return __left;
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline
|
|
rope<_CharT,_Alloc>
|
|
operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) {
|
|
return rope<_CharT,_Alloc>(
|
|
rope<_CharT,_Alloc>::_S_concat_char_iter(
|
|
__left._M_tree_ptr, &__right, 1));
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline
|
|
rope<_CharT,_Alloc>&
|
|
operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) {
|
|
__left.append(__right);
|
|
return __left;
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
bool
|
|
operator< (const rope<_CharT,_Alloc>& __left,
|
|
const rope<_CharT,_Alloc>& __right) {
|
|
return __left.compare(__right) < 0;
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
bool
|
|
operator== (const rope<_CharT,_Alloc>& __left,
|
|
const rope<_CharT,_Alloc>& __right) {
|
|
return __left.compare(__right) == 0;
|
|
}
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
|
|
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
|
|
return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root);
|
|
}
|
|
|
|
template<class _CharT, class _Alloc>
|
|
ostream& operator<< (ostream& __o, const rope<_CharT,_Alloc>& __r);
|
|
|
|
typedef rope<char> crope;
|
|
typedef rope<wchar_t> wrope;
|
|
|
|
inline crope::reference __mutable_reference_at(crope& __c, size_t __i)
|
|
{
|
|
return __c.mutable_reference_at(__i);
|
|
}
|
|
|
|
inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i)
|
|
{
|
|
return __c.mutable_reference_at(__i);
|
|
}
|
|
|
|
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
|
|
|
|
template <class _CharT, class _Alloc>
|
|
inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) {
|
|
__x.swap(__y);
|
|
}
|
|
|
|
#else
|
|
|
|
inline void swap(crope __x, crope __y) { __x.swap(__y); }
|
|
inline void swap(wrope __x, wrope __y) { __x.swap(__y); }
|
|
|
|
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
|
|
|
|
// Hash functions should probably be revisited later:
|
|
__STL_TEMPLATE_NULL struct hash<crope>
|
|
{
|
|
size_t operator()(const crope& __str) const
|
|
{
|
|
size_t __size = __str.size();
|
|
|
|
if (0 == __size) return 0;
|
|
return 13*__str[0] + 5*__str[__size - 1] + __size;
|
|
}
|
|
};
|
|
|
|
|
|
__STL_TEMPLATE_NULL struct hash<wrope>
|
|
{
|
|
size_t operator()(const wrope& __str) const
|
|
{
|
|
size_t __size = __str.size();
|
|
|
|
if (0 == __size) return 0;
|
|
return 13*__str[0] + 5*__str[__size - 1] + __size;
|
|
}
|
|
};
|
|
|
|
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
|
|
#pragma reset woff 1174
|
|
#endif
|
|
|
|
__STL_END_NAMESPACE
|
|
|
|
# include <ropeimpl.h>
|
|
|
|
# endif /* __SGI_STL_INTERNAL_ROPE_H */
|
|
|
|
// Local Variables:
|
|
// mode:C++
|
|
// End:
|