mirror of
https://review.haiku-os.org/haiku
synced 2025-01-22 14:24:48 +01:00
e39da397f5
* removed the useless parts of AGG (which are only needed for the interactive examples) * make sure to jam -a libagg.a to solve any linking issues git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@17838 a95241bf-73f2-0310-859d-f6bbb57e9c96
242 lines
8.1 KiB
C++
242 lines
8.1 KiB
C++
//----------------------------------------------------------------------------
|
|
// Anti-Grain Geometry - Version 2.4
|
|
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
|
|
//
|
|
// Permission to copy, use, modify, sell and distribute this software
|
|
// is granted provided this copyright notice appears in all copies.
|
|
// This software is provided "as is" without express or implied
|
|
// warranty, and with no claim as to its suitability for any purpose.
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
// Contact: mcseem@antigrain.com
|
|
// mcseemagg@yahoo.com
|
|
// http://www.antigrain.com
|
|
//----------------------------------------------------------------------------
|
|
//
|
|
// Adaptation for high precision colors has been sponsored by
|
|
// Liberty Technology Systems, Inc., visit http://lib-sys.com
|
|
//
|
|
// Liberty Technology Systems, Inc. is the provider of
|
|
// PostScript and PDF technology for software developers.
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
|
|
#ifndef AGG_SPAN_GOURAUD_GRAY_INCLUDED
|
|
#define AGG_SPAN_GOURAUD_GRAY_INCLUDED
|
|
|
|
#include "agg_basics.h"
|
|
#include "agg_color_gray.h"
|
|
#include "agg_dda_line.h"
|
|
#include "agg_span_gouraud.h"
|
|
|
|
namespace agg
|
|
{
|
|
|
|
//=======================================================span_gouraud_gray
|
|
template<class ColorT> class span_gouraud_gray : public span_gouraud<ColorT>
|
|
{
|
|
public:
|
|
typedef ColorT color_type;
|
|
typedef typename color_type::value_type value_type;
|
|
typedef span_gouraud<color_type> base_type;
|
|
typedef typename base_type::coord_type coord_type;
|
|
enum subpixel_scale_e
|
|
{
|
|
subpixel_shift = 4,
|
|
subpixel_scale = 1 << subpixel_shift
|
|
};
|
|
|
|
private:
|
|
//--------------------------------------------------------------------
|
|
struct gray_calc
|
|
{
|
|
void init(const coord_type& c1, const coord_type& c2)
|
|
{
|
|
m_x1 = c1.x - 0.5;
|
|
m_y1 = c1.y - 0.5;
|
|
m_dx = c2.x - c1.x;
|
|
double dy = c2.y - c1.y;
|
|
m_1dy = (fabs(dy) < 1e-10) ? 1e10 : 1.0 / dy;
|
|
m_v1 = c1.color.v;
|
|
m_a1 = c1.color.a;
|
|
m_dv = c2.color.v - m_v1;
|
|
m_da = c2.color.a - m_a1;
|
|
}
|
|
|
|
void calc(double y)
|
|
{
|
|
double k = (y - m_y1) * m_1dy;
|
|
if(k < 0.0) k = 0.0;
|
|
if(k > 1.0) k = 1.0;
|
|
m_v = m_v1 + iround(m_dv * k);
|
|
m_a = m_a1 + iround(m_da * k);
|
|
m_x = iround((m_x1 + m_dx * k) * subpixel_scale);
|
|
}
|
|
|
|
double m_x1;
|
|
double m_y1;
|
|
double m_dx;
|
|
double m_1dy;
|
|
int m_v1;
|
|
int m_a1;
|
|
int m_dv;
|
|
int m_da;
|
|
int m_v;
|
|
int m_a;
|
|
int m_x;
|
|
};
|
|
|
|
|
|
public:
|
|
//--------------------------------------------------------------------
|
|
span_gouraud_gray() {}
|
|
span_gouraud_gray(const color_type& c1,
|
|
const color_type& c2,
|
|
const color_type& c3,
|
|
double x1, double y1,
|
|
double x2, double y2,
|
|
double x3, double y3,
|
|
double d = 0) :
|
|
base_type(c1, c2, c3, x1, y1, x2, y2, x3, y3, d)
|
|
{}
|
|
|
|
//--------------------------------------------------------------------
|
|
void prepare()
|
|
{
|
|
coord_type coord[3];
|
|
base_type::arrange_vertices(coord);
|
|
|
|
m_y2 = int(coord[1].y);
|
|
|
|
m_swap = cross_product(coord[0].x, coord[0].y,
|
|
coord[2].x, coord[2].y,
|
|
coord[1].x, coord[1].y) < 0.0;
|
|
|
|
m_c1.init(coord[0], coord[2]);
|
|
m_c2.init(coord[0], coord[1]);
|
|
m_c3.init(coord[1], coord[2]);
|
|
}
|
|
|
|
//--------------------------------------------------------------------
|
|
void generate(color_type* span, int x, int y, unsigned len)
|
|
{
|
|
m_c1.calc(y);
|
|
const gray_calc* pc1 = &m_c1;
|
|
const gray_calc* pc2 = &m_c2;
|
|
|
|
if(y < m_y2)
|
|
{
|
|
// Bottom part of the triangle (first subtriangle)
|
|
//-------------------------
|
|
m_c2.calc(y + m_c2.m_1dy);
|
|
}
|
|
else
|
|
{
|
|
// Upper part (second subtriangle)
|
|
//-------------------------
|
|
m_c3.calc(y - m_c3.m_1dy);
|
|
pc2 = &m_c3;
|
|
}
|
|
|
|
if(m_swap)
|
|
{
|
|
// It means that the triangle is oriented clockwise,
|
|
// so that we need to swap the controlling structures
|
|
//-------------------------
|
|
const gray_calc* t = pc2;
|
|
pc2 = pc1;
|
|
pc1 = t;
|
|
}
|
|
|
|
// Get the horizontal length with subpixel accuracy
|
|
// and protect it from division by zero
|
|
//-------------------------
|
|
int nlen = abs(pc2->m_x - pc1->m_x);
|
|
if(nlen <= 0) nlen = 1;
|
|
|
|
dda_line_interpolator<14> v(pc1->m_v, pc2->m_v, nlen);
|
|
dda_line_interpolator<14> a(pc1->m_a, pc2->m_a, nlen);
|
|
|
|
// Calculate the starting point of the gradient with subpixel
|
|
// accuracy and correct (roll back) the interpolators.
|
|
// This operation will also clip the beginning of the span
|
|
// if necessary.
|
|
//-------------------------
|
|
int start = pc1->m_x - (x << subpixel_shift);
|
|
v -= start;
|
|
a -= start;
|
|
nlen += start;
|
|
|
|
int vv, va;
|
|
enum lim_e { lim = color_type::base_mask };
|
|
|
|
// Beginning part of the span. Since we rolled back the
|
|
// interpolators, the color values may have overflow.
|
|
// So that, we render the beginning part with checking
|
|
// for overflow. It lasts until "start" is positive;
|
|
// typically it's 1-2 pixels, but may be more in some cases.
|
|
//-------------------------
|
|
while(len && start > 0)
|
|
{
|
|
vv = v.y();
|
|
va = a.y();
|
|
if(vv < 0) vv = 0; if(vv > lim) vv = lim;
|
|
if(va < 0) va = 0; if(va > lim) va = lim;
|
|
span->v = (value_type)vv;
|
|
span->a = (value_type)va;
|
|
v += subpixel_scale;
|
|
a += subpixel_scale;
|
|
nlen -= subpixel_scale;
|
|
start -= subpixel_scale;
|
|
++span;
|
|
--len;
|
|
}
|
|
|
|
// Middle part, no checking for overflow.
|
|
// Actual spans can be longer than the calculated length
|
|
// because of anti-aliasing, thus, the interpolators can
|
|
// overflow. But while "nlen" is positive we are safe.
|
|
//-------------------------
|
|
while(len && nlen > 0)
|
|
{
|
|
span->v = (value_type)v.y();
|
|
span->a = (value_type)a.y();
|
|
v += subpixel_scale;
|
|
a += subpixel_scale;
|
|
nlen -= subpixel_scale;
|
|
++span;
|
|
--len;
|
|
}
|
|
|
|
// Ending part; checking for overflow.
|
|
// Typically it's 1-2 pixels, but may be more in some cases.
|
|
//-------------------------
|
|
while(len)
|
|
{
|
|
vv = v.y();
|
|
va = a.y();
|
|
if(vv < 0) vv = 0; if(vv > lim) vv = lim;
|
|
if(va < 0) va = 0; if(va > lim) va = lim;
|
|
span->v = (value_type)vv;
|
|
span->a = (value_type)va;
|
|
v += subpixel_scale;
|
|
a += subpixel_scale;
|
|
++span;
|
|
--len;
|
|
}
|
|
}
|
|
|
|
|
|
private:
|
|
bool m_swap;
|
|
int m_y2;
|
|
gray_calc m_c1;
|
|
gray_calc m_c2;
|
|
gray_calc m_c3;
|
|
};
|
|
|
|
|
|
}
|
|
|
|
#endif
|